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Abstract. Standard image registration methods do not account for
changes in image appearance. Hence, metamorphosis approaches have
been developed which jointly estimate a space deformation and a change
in image appearance to construct a spatio-temporal trajectory smoothly
transforming a source to a target image. For standard metamorphosis,
geometric changes are not explicitly modeled. We propose a geometric
metamorphosis formulation, which explains changes in image appearance
by a global deformation, a deformation of a geometric model, and an im-
age composition model. This work is motivated by the clinical challenge
of predicting the long-term effects of traumatic brain injuries based on
time-series images. This work is also applicable to the quantification of
tumor progression (e.g., estimating its infiltrating and displacing compo-
nents) and predicting chronic blood perfusion changes after stroke. We
demonstrate the utility of the method using simulated data as well as
scans from a clinical traumatic brain injury patient.

1 Introduction and Background

Image registration is based on structural similarity between a source and a target
image. Similarity is often measured either by comparing image intensities directly
or using indirect intensity measures like mutual information or cross correlation.
However, for images with pathologies, assumptions of structural and intensity
similarity may not hold.

In traumtic brain injury (TBI) cases, one clinical challenge is distinguishing
permanent from transient changes in the brain in order to prescribe effective
treatment and rehabilitation plans. Scans are acquired upon initial presentation
in the clinic as well as after four to eight months (see Fig. 1). The geometry
of the pathology, the deformation of the brain, and infiltration of the pathology
into the brain change drastically between these scans. Determining the regions in
which the infiltration has receded can be particularly useful in predicting long-
term outcome. Similarly, in tumor cases, post-treatment assessment requires
determination of changes in tumor geometry, tumor infiltration, scarring, and
overall brain morphology. In stroke cases, there is a clinical need to predict
chronic changes in blood perfusion from acute scans. In general, these cases are



Fig. 1. MP-RAGE, post-
contrast MRI scans from TBI
case. Left : Initial scan. Right :
Eight months after initial scan.
Rigidly registered. 1x1x1mm
voxels.

characterized by global tissue deformations, local changes in the geometry of a
pathology, and local changes in the composition of the tissue and the pathology.
We refer to these changes as “geometric metamorphosis.”

While geometric metamorphosis changes may be tolerated by registration
methods with low-dimensional image transformation models, direct application
of a classical deformable registration method will likely produce unrealistic esti-
mates of deformation. To address geometric metamorphosis changes, deformable
registration approaches with weak and strong models of appearance change have
been proposed. For example, methods having strong models of brain tumor mass
effects and infiltration have been developed [4,7] and have been used to simulate
tumors in atlas images to allow for spatial normalization of subjects with brain
tumors [10]. While highly sophisticated, these methods are application-specific
and rely on a good match of the tumor model to the observed tumor. On the other
hand, image metamorphosis methods [9] use weak models to smoothly transform
a source to a target image exactly. However, the transformations estimated by
image metamorphosis do not explicitely model the deformation or composition
of the pathologies and instead compromise between a globally smooth spatial
transformation and the interpolation of image intensities along individual point
trajectories. Hence, image metamorphosis models will have difficulty quantifying
effects such as tumor infiltration or tissue recovery in stroke. Consider also that
the approach proposed in this paper is, in spirit, related to the methods proposed
in [5,8,2] in which areas that cannot be matched (because no correspondence
exists) are masked out. However, in those methods registration results inside
these masked-out areas are only driven by the spatial regularity terms of the de-
formable registration algorithms. Our method explicitly includes a deformable
geometric model of the extent of the appearance change in order to capture
pathology deformations in conjunction with underlying image deformations.

Sec. 2 discusses the geometric metamorphosis model. Its numerical solution
method is discussed in Sec. 3. Results are presented in Sec. 5. The paper con-
cludes with a summary and outlook on future work in Sec. 6.

2 Geometric Metamorphosis Model

Taking tumor growth as an example, changes in image appearance can be caused
by a mixture of tissue deformation, tumor growth displacing healthy tissue, and
tumor infiltration into healthy tissue. Tissue deformation and displacement due
to tumor growth could be captured (between time-points) using a standard reg-



istration method6. However, infiltration does not imply spatial changes. A regis-
tration method should be able to distinguish image appearance changes arising
from the composition of background deformations of the image and foreground
deformations of an embedded geometric object, e.g., a tumor.

We model these transformations through a fluid-registration formulation. In
large displacement diffeomorphic metric mapping (LDDMM) [6] one minimizes

E =

∫ 1

0

‖v‖2L dt+
1

σ2
‖I(1)− I1‖2, s.t. It +∇IT v = 0; I(0) = I0,

where v is a sought-for time-dependent velocity field which induces a spatial
transformation warping the source image I0 to the target image I1. Typical LD-
DMM formulations register from source I0 to target I1 on the time interval [0, 1],
thus I(1) represents the warped source image. L is a differential operator (here,
L = γ − α∇2, α, γ > 0) controlling spatial regularity of v; σ > 0 controls the
influence of the image match term. This is an inexact matching that only allows
for the deformation of the source image I0, but not for a change of its appear-
ance. In order to explicitly model appearance changes, we augment this standard
image registration model with an extra control to model foreground deformation
of a geometric model (Sec. 2.1) which induces image changes through an image
composition model (Sec. 2.2).

2.1 Deformation Model

Fig. 2 illustrates the principle of the geometric metamorphosis model. Since we
model geometric metamorphosis as the composition of background and fore-
ground deformations, we introduce the (smooth) indicator functions T1 and T2
as models of the geometric object, T1(x) and T2(x) ∈ [0, 1]. We then register
the background global deformation on time [0, 1] and the foreground geometry
change on time (1, 2], solving for the time-dependent velocity fields v and vτ , re-
spectively. We define the geometric metamorphosis problem as the minimization
of

E = (1− w)

∫ 1

0

‖v‖2L dt+ w

∫ 2

1

‖vτ‖2L dt

+
1

σ2
1

Sim(Ic(I1, I
τ (1), T2), Ic(I(1), Iτ (1), T2)) +

1

σ2
2

Sim(Iτ (2), T2),

s.t. It+∇IT v = 0; I(0) = I0,

{
Iτt +∇(Iτ )T v = 0, Iτ (0) = T1, t ∈ [0, 1],

Iτt +∇(Iτ )T vτ = 0, t ∈ (1, 2],

(1)

where Iτ is the image of the geometric object and w ∈ (0, 1) controls the trade-
off between background and foreground deformations. Note that the geometric

6 We assume for simplicity that the geometric object causing image change is present
in both the source and target image, although it may undergo significant distortions.



model T1 and its image Iτ are subject to both deformations, whereas the source
image is only subjected to the background deformation. Ic(·, ·, ·) denotes the
image composition model (see Sec. 2.2). Sim denotes a similarity measure of
choice. For simplicity, we use the L2 distance measure, Sim(I, J) = ‖I−J‖2. Two
similarity terms are used to assure matching of (i) the regions which correspond
in both images and (ii) the geometric models.

2.2 Image Composition Model

To accommodate local expansions and contractions of the geometric model af-
fecting image appearance, the image composition model needs to preserve regions
where the source and target image can be reliably matched. It needs to disre-
gard areas where no matching image information can be found due to the shape
change of the geometric model. The composition model

Ic(I, Iτ (1), T2)(x) := I(x)(1− Iτ (1, x))(1− T2(x)), (2)

achieves this by zeroing out regions defined by the smoothed indicator functions
Iτ (1) and T2. Since this happens for both arguments of the similarity function in
Eq. 1 the image match is effectively disregarded in these regions. This definition is
reminiscent of cost function masking as for example used when registering images
with and without lesions [2]. Here, we use regions in the source and target image
to alter the energy function and estimate the regions which should be excluded in
a joint optimization process. This allows for a combined estimation of foreground
and background deformation.

Time
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Fig. 2. Geometric Metamorphosis. An image is explained by a global deformation
(via v) and a geometric model deformation (via vτ ). Corresponding structures in the
source and target guide the estimation of v and vτ addresses additional appearance
differences at the pathology. To avoid faulty evaluation of image similarities, a suitable
image composition method is required (Sec. 2.2). Regions which carry no matchable
information are set to 0 in the image composition model. For a shrinking geometric
model (blue) this region is specified by Iτ (1) (which already includes the background
deformation) and for a growing geometric model (red) by T2. Defining the composition
model as Eq. 2 allows localized growing and shrinking simultaneously.



3 Numerical Solution

We follow the solution method of [3] to solve the registration problem. To com-
pute the optimality conditions, we add the dynamic constraints through the
Lagrange multipliers λ and λτ . Note that λτ is allowed to be discontinuous at
t = 1 due to the energy term depending on Iτ (1). After some computations we
obtain the optimality conditions for t ∈ [0, 1)

0 = 2(1− w)L†Lv + λ∇I + λτ∇Iτ

It +∇IT v = 0, I(0) = I0,

−λt − div(λv) = 0, λ(1) =
2

σ2
1

(I1 − I(1))(1− T2)2(1− Iτ (1))2,

Iτt +∇(Iτ )T v = 0, Iτ (0) = T1,

−λτt − div(λτv) = 0, λτ (1−) = λτ (1+) +
2

σ2
1

(I(1)− I1)2(1− T2)2(1− Iτ (1)),

and for t ∈ (1, 2]

2wL†Lvτ + λτ∇Iτ = 0,

Iτt +∇(Iτ )T vτ = 0,

−λτt − div(λτvτ ) = 0, λτ (2) = − 2

σ2
2

(Iτ (2)− T2).

The final conditions for λ and λτ in [0, 1) reflect the “don’t care” areas of the
registration: areas where T2 = 1 or Iτ (1) = 1 are zeroed out. This is sensible,
because the Lagrangian multipliers represent the image-matching error. We ob-
tain a solution fulfilling the optimality conditions through the following adjoint
solution method:

0) Initialize v, vτ to zero.
1) Solve It +∇IT v = 0, I(0) = I0 and Iτt +∇(Iτ )T v = 0, Iτ (0) = T1 forward

in time in [0, 1].
2) Continue solving for Iτ for t ∈ (1, 2] but with velocity field vτ .
3) Compute the adjoint solution λ backward for t ∈ [0, 1].
4) Compute the adjoint solution λτ backward for t ∈ (1, 2].
5) Apply the jump condition to λτ at t = 1.
6) Compute the adjoint solution λτ backward for t ∈ [0, 1).
5) Compute for every point and time-point the gradients

∇v(t)E = 2(1− w)L†Lv + λ∇I + λτ∇Iτ , t ∈ [0, 1],

∇vτ (t)E = 2wL†Lvτ + λτ∇Iτ , t ∈ (1, 2].

6) Do a gradient descent step to update the velocities (using line search).
7) Repeat steps 1 - 6 until convergence.



4 Estimating Geometric Deformation

Once the foreground and background velocity fields v and vτ have been esti-
mated, they can be used to represent the geometric deformation modulo the
background deformation. This allows for visualization and quantification, for
example of tumor growth. Computing (backward in time) the mapping

−Φrt −DΦrv = 0, Φr(1) = id, t ∈ [0, 1]

where id is the identity map and D the Jacobian, shape change is computed as

S(0) = T2 ◦ Φr(0)− T1, S(1) = T2 − Iτ (1)

in the coordinate system of the source and the target image respectively. Here
positive values indicate expansion and negative values contraction with respect
to the source image.

5 Experimental Results

We test the geometric metamorphosis model on two sets of synthetic images,
and a TBI image pair. The first synthetic set (Fig. 3) illustrates four different
scenarios: (i) all change caused by infiltration, (ii) all change caused by global
deformation, (iii) global deformation and local infiltration, and (iv) global de-
formation and local recession.

The second synthetic set consists of ten different global and object warps
applied to the same source image and geometric object. After registering, we
compute the mean and standard deviation of the percent overlap for the geo-
metric object as,

Overlap(T2, I
τ (2)) = sum((Iτ≥0.5(2)) ∩ (T2,≥0.5))/sum((T2,≥0.5)),

where I≥x is a binary mask of all pixels in I greater than or equal to x.
We also compute the background registration accuracy using six manually

selected landmarks in the tissue region as ground truth. Landmark locations are
calculated on the pixel grid and are accurate to +/- 0.5 pixels. We compare the
results of our method against the B-Spline and LDDMM registration methods.
Given the expected similar results in the regions of the image away from the
geometric object we look at the extreme percentiles of the landmark distance
mismatch values. Both LDDMM and geometric metamorphosis compute 95% of
the landmarks to within 0.5 pixels of their correct location, but our method is
able to achieve a significantly higher overlap accuracy (Fig. 3).

The TBI test case contains considerable deformation as well as object reces-
sion around the pathology site. To illustrate those changes, we provide manual
segmentations of the pathology sites in both images (Fig. 4)7. Of clinical impor-
tance, Fig. 5 shows the progression of the pathology label map over the entire
time solution interval [0,2].

7 Note that it is expected that a high segmentations accuracy is not required [1].



(i)

(ii)

(iii)

(iv)

Overlap Accuracy

Mean Std. Dev.

B-Spline 0.394 0.033
LDDMM 0.540 0.013
Geo. Met. 0.975 0.039

Landmark Pixel Distance
Mismatch Percentiles

90th 95th 100th

B-Spline 2.74 3.33 3.66
LDDMM 0.5 0.5 0.5
Geo. Met. 0.5 0.5 1.5

Algorithm Comparison: Ten
synthetic cases registered us-
ing B-Spline, LDDMM, and
geometric metamorphosis.

Fig. 3. Synthetic Results. Each row, left to right: I0, I1, I(1) and global deformation,
Iτ (2) and composite deformation. (i) Local infiltration. (ii) Image deformation. (iii)
Image deformation and local infiltration. (iv) Image deformation and local recession.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 4. TBI Results. Top: (a) Initial scan, T1 overlaid. (b) Second scan, T2 overlaid.
(c) Image deformation and I(1). (d) Retraction area deformation and Iτ (2). Bottom:
(e) S(0): Shape change in the source image coordinate frame (f) S(1): Shape change
in the target image coordinate frame, (g) Incursion (red) and retraction (blue) in I2.

6 Conclusions and Future Work

We proposed a new image registration method which allows for background de-
formation of the image, foreground deformation of a geometric object, and their
composition so as to match a target image. This method can thereby account for
processes which cause images to change due to pathology infiltration/recession
as well as image deformation. Since the method makes minimal assumptions
about the underlying change, it is flexible and generally applicable. We demon-
strated the behavior of the model for the registration of simulated data and
traumatic brain injury cases. If desired, the registration framework can be aug-



T1 Iτ (0)−→ −→ Iτ (1)

Iτ (1.1) −→ −→ Iτ (2)T2

Fig. 5. TBI Pathology Label Map. Progression of TBI pathology label map on [0,2].
Red portion of each frame shows the change from the previous time point. Top: [0,1]
Changes in global deformation. Bottom: (1,2] Changes in infiltration and recession.

mented with a more sophisticated, application-dependent model, for example, of
tumor growth, as in [4]. In future work we will investigate adaptations wherein
a geometric model is only available in one of the two images and a transformed
model either needs to be estimated from the image or does not exist, e.g., when
registering a tumor patient to a healthy atlas. This work was sponsored in part
by the following grants: NIH 1R01CA138419-01, NIH 1U54EB005149-01, NIH
1R01MH091645-01A1, NIH 2P41EB002025-26A1 and NSF EECS-0925875.
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