Polymorphism

COMP 524: Programming Languages
Srinivas Krishnan
April 7, 2011

Based in part on slides and notes by Bjoern Brandenburg, S. Olivier and A. Block.
Static Type Checking & Redundancy

Assumptions so far.

➡ Each name is bound to exactly one entity (e.g., a subroutine).
➡ **Static** typing: every entity has a **specific** type.

Suppose we wanted to extract the first element of a 2-tuple.

➡ Easy in Prolog or Python.
 ‣ **Dynamic** type checking: no type violation at runtime.
➡ Hard to do in (basic) Haskell or Java (if it had tuples).
 ‣ What is the **type** of the **first** element?
 ‣ What is the **type** of the **second** element?
 ‣ What is the **type** of **getFirst**?
Idea: Type Variables

Problem with specific types.

- **Unnecessarily** constrained.

 - E.g., tuple de-structuring does not depend on type, so why have restrictions?

What if we could write it for “any” type?

- Analogy: arithmetic with numbers vs. arithmetic with variables.
- Raises level of abstraction.

 - Often called **generic programming**.

```plaintext
getFirst :: (a, b) -> a
getFirst (x, y) = x
```
Idea: Type Variables

Problem with specific types.

➡ **Unnecessarily** constrained.

➡ Analogy: arithmetic with numbers vs. arithmetic with variables.

➡ Raises level of abstraction.

 › Often called *generic programming*.

Haskell: lower-case letters are type variables. getFirst is defined for all types a and b without specific restrictions, i.e. *any* type.

```
getFirst :: (a, b) -> a
getFirst (x, y) = x
```
Parametric Polymorphism

Parametrized subroutines.

- Defined in terms of one or more **type parameters**.
- “Subroutine recipe:” how to define a **specific instance** of the family of subroutines **given specific types**.

Implementation.

- Compiler can **generate type-specific versions**.
 - Or, if possible, code that works with any type (e.g., getFirst).
- **Type checking** becomes more complicated.
 - In fact, with certain kinds of polymorphism, type system can be come **undecidable** (for details see grad school).

Widespread in modern imperative languages.

- Often called **generic programming**.
Type Classes

What is the type of multiplication?

➡ Can take any two numbers.
 ▸ There are many number types: Int, Float, ...

➡ But not just any type.
 ▸ E.g., addition of tuples not (uniquely) defined.

Idea: type restrictions.

➡ Multiplication defined for all types such that the type is a number.

> :t (*)
(*) :: (Num a) => a -> a -> a -> a
Type Classes

Haskell: if a is a member of the type class `Num`…

- But not just any type.
 - E.g., addition of tuples not (uniquely) defined.

Idea: type restrictions.

- Multiplication defined for all types that is a number.

```
> :t (*)
(*) :: (Num a) => a -> a -> a
```

...then...

...multiplication is defined as function that maps 2 as to one a.
Polymorphic Types

Composite types with type variables.

➤ Some data structures are defined for any type.
 ‣ List, Tree, Map, Stack, etc.
 ‣ “a X of Y”, e.g., “a List of Int”
➤ Generic or parametrized types.
➤ Heavily used in collection libraries.

```haskell
data Tree a = Nil
  | Node { left :: Tree a,
          value :: a,
          right :: Tree a }
```
Polymorphic Types

Haskell

Tree type is parametrized.

- List, Tree, Map, Stack, etc.
- “a X of Y”, e.g., “a List of Int”

Generic or parametrized types.

- Heavily used in collection libraries.

```haskell
data Tree a = Nil
            | Node { left :: Tree a
                  , value :: a
                  , right :: Tree a
                  }
```

Type parameter used for components.
Ad-Hoc Polymorphism / Overloading

What about multiplication in Java?

- Defined for a few specific types.
- Uses same symbol ‘*’.

Overloading.

- Same name is used for multiple bindings.
- Disambiguated based on types.
- **Context-independent**: only parameter types used for disambiguation.
- **Context-dependent**: parameter types may be ambiguous if return type is unambiguous.
Ad-Hoc Polymorphism / Overloading

What about multiplication in Java?

➡ Defined for a **few specific types**.
➡ Uses same symbol ‘*’.

Haskell: ad-hoc polymorphism is not supported; polymorphic code is required to use type classes.

➡ **Context-independent**: only parameter types used for disambiguation.
➡ **Context-dependent**: parameter types may be ambiguous if return type is unambiguous.
Type Classes in Haskell

Definition of a type.

- A set of values.
- A set of operations that can be applied to values of the types.

Definition of a type class.

- A set of types that for which a number of standard operations is declared.
 - e.g., “every Numeric type must support addition”
- Haskell’s way of controlling overloading.
 - A function can only be overloaded if it is defined by a type class.
Type Classes in Haskell

Common Type Classes

Eq — values can be tested for equality (==, /=)
Ord — values are ordered (<, <=, >, >=, max, min)
Show — can be converted to string (show)
Read — can be parsed from a string (read)
Num — a numeric type (+, -, *, negate, abs, signum)
Integral — integers (mod, div)
Fractional — divisible numbers (/, recip)

A function can only be overloaded if it is defined...
Defining a Type Class

```haskell
-- Minimal complete definition: either '==' or '/='.  
--
class Eq a where
  (==), (/=) :: a -> a -> Bool

  x /= y    = not (x == y)
  x == y    = not (x /= y)
```

http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq

Type Class Definition.

- Specifies a **name**.
- **Required operations** (+ types!)
- **Default implementations**.
Defining a Type Class

Type Class Definition.

- Specifies a name.
- Required operations (+ types!)
- Default implementations.

```
-- Minimal complete definition: either '==' or '/='.  
--

class Eq a where
    (==), (=/=) :: a -> a -> Bool

    x /= y = not (x == y)
    x == y = not (x /= y)
```

Define name.
Defining a Type Class

-- Minimal complete definition: either '==' or '/='.
--

class Eq a where

(==), (/=) :: a -> a -> Bool

x /= y = not (x == y)
x == y = not (x /= y)

http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq

Type Class Definition.
- Specifies a name.
- Required operations (+ type constraints)

Required operations and associated types.
Default Implementations:
User can specify either function, the missing one uses the default implementation. If user provides both, then default is overruled.

```
class Eq a where
  (==), (/=) :: a -> a -> Bool

  x /= y = not (x == y)
  x == y = not (x /= y)
```

http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq

Type Class Definition.

- Specifies a **name**.
- **Required operations** (+ types!)
- **Default implementations**.
Declaring a Type Class Instance

adding a type to a type class

```haskell
data Reply = Yes | No | Maybe

repl_equal :: Reply -> Reply -> Bool
repl_equal Yes Yes   = True
repl_equal No No     = True
repl_equal Maybe Maybe = True
repl_equal _ _       = False

instance Eq Reply where
  (==) = repl_equal
```

Define functions + instance.

- Define appropriate functions like any other function.
- Add an instance declaration to overload type class symbols.
Declaring a Type Class Instance

adding a type to a type class

```haskell
data Reply = Yes | No | Maybe

repl_equal :: Reply -> Reply -> Bool
repl_equal Yes Yes  = True
repl_equal No No    = True
repl_equal Maybe Maybe = True
repl_equal _ _      = False

instance Eq Reply where
  (==) = repl_equal
```

Define functions + instance.

- Define appropriate functions like any other function.
- Add an instance declaration to overload type class symbols.

Simple Algebraic Type (works for any type)
Declaring a Type Class Instance

adding a type to a type class

data Reply = Yes | No | Maybe

repl_equal :: Reply -> Reply -> Bool
repl_equal Yes Yes = True
repl_equal No No = True
repl_equal Maybe Maybe = True
repl_equal _ _ = False

instance Eq Reply where
 (==) = repl_equal

Define functions + instance.

➡ Define appropriate functions like any other function.
➡ Add an instance declaration to overload type class symbols.
instance declaration
add equations to standard operations
missing symbols will use default impl.

```haskell
data Reply = Yes | No | Maybe

repl_equal :: Reply -> Reply -> Bool
repl_equal Yes Yes  = True
repl_equal No No    = True
repl_equal Maybe Maybe = True
repl_equal _ _      = False

instance Eq Reply where
  (==) = repl_equal
```

Define functions + instance.

- Define appropriate functions like any other function.
- Add an instance declaration to overload type class symbols.
Deriving Standard Classes

compiler-generated instances

Repetition.

➤ Some type class instances almost always look the same.

➤ E.g., **Eq**, **Show**, **Read**, …

➤ Defining such instances over and over is tedious.

Derived instances.

➤ Built-in support for some **special** type classes.

➤ Tell compiler to generate appropriate code.

```haskell
data Reply = Yes | No | Maybe deriving (Eq)
```
Generalizations.

- Some type classes have a hierarchical relationship.
- E.g., an \texttt{Integral} type should also be a \texttt{Num} type.
- This can be required in the type class definition.
 - Enforced by compiler.

```haskell
class (Eq a) => Ord a where
  compare :: a -> a -> Ordering
  (\langle\rangle, \langle=\rangle, \langle>\rangle, \langle>=\rangle) :: a -> a -> Bool
  max, min :: a -> a -> a
```
Generalizations.

- Some type class relationship.
- E.g., an `Integral` type should also be a `Num` type.

```haskell
class (Eq a) => Ord a where
  compare :: a -> a -> Ordering
  (<), (<=), (>), (>=) :: a -> a -> Bool
  max, min :: a -> a -> a
```

Hierarchy:
Every ordered type must also have a concept of equality.
Polymorphic Instances

How to declare instances for polymorphic types?

```
data Tree a = Nil
  | Node { val :: a, left :: Tree a, right :: Tree a}
```

Tree node equality.

➔ Nil equals nil.

➔ Node equals node if values are equal and subtrees are equal.

› What if \(a\) is not actually in \(\text{Eq}\)?

```
instance (Eq a) => Eq (Tree a) where
  Nil       == Nil       = True
  Node v1 l1 r1 == Node v2 l2 r2 = v1 == v2 && l1 == l2 && r1 == r2
  _          == _        = False
```
Polymorphic Instances

How to declare instances for polymorphic types?

```haskell
data Tree a = Nil
  | Node { val :: a, left :: Tree a, right :: Tree a }
```

Tree node equality.

- Nil equals nil.
- Node equals node if values are equal and subtrees are equal.
 - What if \(a \) is not actually in \(\text{Eq} \)?

```
instance (Eq a) => Eq (Tree a) where
  Nil == Nil = True
  Node v1 l1 r1 == Node v2 l2 r2 = v1 == v2 && l1 == l2 && r1 == r2
  _ == _ = False
```

Polymorphic Instance:
Instance only defined for types with equality; undefined otherwise.