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Abstract

The notion of vanishing-moment recovery (VMR) functions is introduced in this paper for the
construction of compactly supported tight frames with two generators having the maximum order
of vanishing moments as determined by the given refinable function, such as themth order cardinal
B-splineNm. Tight frames are also extended to “sibling frames” to allow additional properties,
such as symmetry (or antisymmetry), minimum support, “shift-invariance,” and inter-orthogonality.
ForNm, it turns out that symmetry can be achieved for evenm and antisymmetry for oddm, that
minimum support and shift-invariance can be attained by considering the frame generators with two-
scale symbols 2−m(1− z)m and 2−mz(1− z)m, and that inter-orthogonality is always achievable,
but sometimes at the sacrifice of symmetry. The results in this paper are valid for all compactly
supported refinable functions that are reasonably smooth, such as piecewise Lipα for someα > 0, as
long as the corresponding two-scale Laurent polynomial symbols vanish atz=−1. Furthermore, the
methods developed here can be extended to the more general setting, such as arbitrary integer scaling
factors, multi-wavelets, and certainly biframes (i.e., allowing the dual frames to be associated with a
different refinable function).
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

It is well known that symmetric or antisymmetric compactly supported real-valued
orthonormal wavelets with dilation factor equal to 2 are integer translates of±H , where
H denotes the Haar function [12]. In addition, again with the exception of these Haar
functions±H(· − k), compactly supported orthonormal wavelets do not have explicit
analytic formulation. However, in applications where certain function classes are needed
to guarantee accuracy to be within certain range, such as 10−8 to 10−12 in representation
of objects, or more importantly, to be compliant with certain industry standards, it is highly
desirable to construct wavelets within the class of analytically representable functions.
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For instance, in the CAD/CAM (computer-aided design and manufacturing) industry,
(polynomial) splines, and more generally NURBS, are used to represent curves and sur-
faces [26]. Therefore, when the wavelet approach is used to add features for such applica-
tions as editing, rendering, and oscillation measurement/correction to the spline tool-box
of the CAD/CAM/CAE industry standards, particularly IGES and STEPS [26], it is more
suitable to apply those wavelets that can be expressed as finite linear combinations of
translates of theB-splines in the same parametric curve/surface representation space [34].
Semi-orthogonal spline wavelets [4,5] and biorthogonal spline wavelets [9,10,12] are the
most natural candidates. However, both of these wavelets have undesirable duals. While the
duals of semi-orthogonal spline wavelets have full support in the parametric domain [5],
those of the biorthogonal spline wavelets are not in the same spline spaces.

Another option is to allow more than one wavelet generators. For example, compactly
supported tight frames ofmth order cardinal splines withm generators were introduced
in [31]. In [6], it was shown that independent of the orderm, two generators always suf-
fice. The proof in [6] is constructive, and it is clear from the construction that the two
filter lengths, or equivalently the degrees of the two-scale Laurent polynomial symbols as-
sociated with themth order cardinalB-splines, are at mostm. It was also shown in [6]
that, again independent ofm, at most three generators are sufficient to achieve symme-
try/antisymmetry. With practical applications in mind, we strove to construct the minimum
number of frame generators to meet such important requirements as compact support (or
finite filter length), symmetry/antisymmetry (for linear-phase filtering), etc. Although it
may be argued that more frame generators are perhaps desirable for yielding higher redun-
dancy, yet in practical applications, when a (hardware/software) system is already built, it
is no longer possible to reduce redundancy, when less redundancy is needed. By using a
minimum number of (compactly supported) tight frame generators to design the system,
arbitrarily higher redundancy can be easily achieved by adjusting the oversampling rate
according to the specification of the second oversampling theorem of Chui and Shi [7],
without the need of building a new (hardware/software) system. Recall that the second
oversampling theorem guarantees preservation of tight frames.

However, regardless of the number of wavelet frame generators to be used, the “matrix
extension” approach in [6,31] limits the order of vanishing moments to one, for at least one
of the tight frame generators associated with themth order cardinalB-spline, form � 2.
For applications that benefit from effective extraction of details, the order of vanishing mo-
ments is a key feature for the success of (analyzing) wavelets. In this paper, we introduce
the notion of vanishing-moment recovery (VMR) functions for the construction of com-
pactly supported tight wavelet frames to achieve the maximum order of vanishing moments
as allowed by the order of (local) polynomial reproduction of the associated compactly
supported refinable function. We again show that two frame generators always suffice. For
example, with a VMR function, two compactly supported tight (spline-wavelet) frame gen-
erators associated with themth order cardinalB-spline do indeed have the maximummth
order of vanishing moments. The work in this paper was motivated by the interesting paper
[29] of Ron and Shen, where a complete characterization of tight frame (generators) is de-
rived in terms of the so-called “fundamental function of multiresolution,” again associated
with some refinable function (see Theorem 6.5 in [29]). In fact, after the two-scale symbols
of the tight frame generators have been constructed by using a VMR function, the VMR
function indeed agrees with the fundamental function of Ron and Shen, which is defined
in [29] in terms of the two-scale symbol of the refinable function as well as the two-scale
symbols of the tight frame generators (that are to be constructed). The important distinc-
tion is that VMR functions are introduced in the present paper to construct the two-scale
symbols of the frame generators.

When two compactly supported tight frame generators with the maximum number of
vanishing moments (as allowed by the associated compactly supported refinable function)
are constructed, there is no guarantee of symmetry (or antisymmetry). Another main ob-
jective of this paper is to introduce the notion of sibling frames. While tight frames may
be considered as a natural generalization of orthonormal wavelets, the notion of sibling
frames is introduced as a natural generalization of semiorthogonal wavelets in order to al-
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low construction of compactly supported dual spline-wavelet frames. The additional flex-
ibility provided by sibling non-tight frames is indeed sufficient to guarantee compact sup-
port, maximum order of vanishing moments, and symmetry (or antisymmetry), provided
that the associated refinable function is compactly supported and symmetric. For certain
applications, the sacrifice of tightness is worthwhile since on one hand, sibling frames are
(finite) linear combinations of translates of the same refinable function, such as the same
mth order cardinalB-splines, while on the other hand, their support can be made signifi-
cantly smaller. Another important feature of sibling frames is that the two frame generators
could be designed to be simply a shift of each other by 1/2. This is significant in that the
shift-variant defect of the standard wavelet decomposition procedure can be removed, even
with downsampling. Recall that in a different context, Kingsbury [20,21] considered a dual
tree of wavelet filters, where all the sampling rates of the fully decimated wavelet trans-
form are doubled by eliminating the downsampling operation in the first decomposition
step and where the filters of the subsequent decomposition steps are chosen with alternat-
ing parity, in order to achieve almost shift-invariant effect, with noticeable improvement in
image denoising and texture analysis.

Another property that sibling frames can achieve is that the two frame generators can be
designed to allow minimum correlation at the same (scale) level, in the sense that the two
subspaces obtained by their integer shifts are orthogonal to each other. We call this prop-
erty “inter-orthogonality.” In applications to signal processing, a signalf is partitioned
into “frequency bands” as identified by the different scale levels. The wavelet coefficients
dj,k,� for each level, say levelj = j0, are the continuous (or integral) wavelet transforms
of the signalf at the time-scale location(k/2j0,2−j0), where the third subscript� for
dj,k,� specifies that the waveletψ� is used as the analysis wavelet. Hence, ifψ1 andψ2 are
inter-orthogonal frame generators, then the time-scale information{dj0,k,1} and{dj0,m,2},
k,m ∈ Z, of f separates the signal contentgj0,1 + gj0,2 of f on the levelj = j0 most
efficiently, wheregj0,� is generated byψj0,k,�, k ∈ Z, for �= 1,2.

We remark that while the results in this paper are valid for biframes (i.e., by using
two different refinable functions), we restrict our discussion to sibling and particularly
tight frames, since we are particularly interested in compactly supported wavelets and dual
wavelets of cardinal splines. In addition, our point of view is that if one allows two multires-
olution analyses (or two refinable functions), one already has the well-known compactly
supported symmetric/antisymmetric biorthogonal wavelets of Cohen et al. [9]; and again,
oversampling can be applied to generate as much redundancy as desired [7]. On the other
hand, although we use cardinalB-splines as a prototype quite frequently in our discussion,
our results are more general. In fact, what is needed is only a compactly supported refinable
function with unit integral and a very mild smoothness assumption, such as piecewise Lipα

for someα > 0, and such that its two-scale Laurent polynomial symbol has a factor
(1+ z)m, m� 1. In particular, as in [29,30], the Riesz (or stability) condition is not re-
quired.

The following describes some of the main results obtained in this paper. Theorem 1
is devoted to the analysis of the VMR functions, with certain explicit formulations. In
Theorem 2, particularly formth order cardinal splines, existence of compactly supported
sibling frames with two generators havingmth order of vanishing moments and being
symmetric or antisymmetric, depending on even or oddm, is established. In addition, the
choice of frame generators with two-scale symbols(

1− z
2

)m
and z

(
1− z

2

)m
is allowed. Note that this choice achieves minimum support and the “shift-invariance”
property as mentioned above. The existence of sibling frames with two generators whose
integer-translates constitute inter-orthogonal subspaces is established in Theorem 3. In
addition, auxiliary and related results concerning sibling frames with one generator
(Theorems 8 and 9), the matrix-valued Riesz Lemma (Theorem 4), and application of this
lemma to establishing tight frames associated with stable refinable functions (Theorems 5
and 7) are also presented in this paper.
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Related work concerning wavelet frames with higher vanishing moments has been
carried out independently in parallel to our development by Daubechies et al. [14]. This
article gives many interesting results on tight frames with several generators that are
derived from a refinable function. They also give a refined proof of telescoping of the
frame decomposition in [12], define a new notion of approximation order of tight frames,
and describe how the fundamental function (i.e., the VMR function in our paper) affects
the decomposition and reconstruction algorithms of tight frames. Moreover, they prove
the existence of tight frames with two generators which are finite linear combinations of
cardinalB-splines of arbitrary order. The fundamental function (or VMR function in our
article) is used to achieve higher order of vanishing moments of all generators of the tight
frame in [14]. A question raised in [14], that whether or not tight frames with several
generators exist for any MRA, is answered affirmatively in our paper (see Theorems 5
and 7 for the univariate case with dilation factor 2), and we show that two generators are
sufficient.

Two positivity conditions for the VMR functionsS (or fundamental functions in [14])
are introduced, one in our present paper, and the other in the independent work [14]. The
positivity condition in our paper is a linear formulation in 1/S which describes a necessary
and sufficient condition forS to be a VMR function for all two-scale symbols. On the
other hand, the positivity condition forS in [14] is only a sufficient condition, with linear
formulation in S that does not apply to certain refinable functions (see Remark 8 and
Example 4 in Section 5). An advantage of the positivity condition in [14] is that it is easy
to apply to the two-scale symbols((1+ z)/2)m of cardinalB-splines, which is discussed in
[14], but not completely settled in our paper, except for low order splines and case-by-case
verification for higher order ones by using the positivity condition in our paper. Finally, it
is worthwhile to point out that our construction procedure only relies on methods of linear
algebra and univariate spectral factorization (see Remark 6 in Section 5), whereas other
methods usually require solution of a system of quadratic equations, which is often done by
Computer Algebra systems such as Singular (www.mathematik.uni-kl.de/~zca/Singular).

2. Notations

Throughout this paper we will consider a compactly supported real-valued refinable
functionφ :R→R with finite mask and real mask coefficients; i.e.,φ satisfies a two-scale
relation

φ(x)=
N2∑
k=N1

pkφ(2x − k), a.e.x ∈R, (2.1)

for some real numberspk . We assume that the corresponding two-scale Laurent
polynomial

P(z) := 1

2

N2∑
k=N1

pkz
k (2.2)

satisfies

P(z)=
(

1+ z
2

)m
P0(z), (2.3a)

for somem� 1, with a Laurent polynomialP0 that satisfiesP0(−1) �= 0. By adopting the
definition of Fourier transform

f̂ (ω)=
∞∫

−∞
f (x)e−ixω dx,

we further require thatφ satisfies

φ̂(0)= 1 (2.3b)
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and, for convenience, we assume that

φ is piecewiseLipα, for someα > 0. (2.3c)

Note that Eq. (2.3b) differs from the condition̂φ(0) �= 0 only by a normalization. The
smoothness condition (2.3c) can be further weakened (see, e.g., [7]), and is sufficient to
conclude that every finite linear combination of integer translates ofφ, whose coefficients
sum to zero, generates a Bessel sequence (see [7, Theorem 1]). However, stability or Riesz
condition for the spanning sets of the nested subspaces

Vj := closL2 span
{
φj,k := 2j/2φ

(
2j · −k): k ∈ Z

}
,

whereL2 := L2(R), is not required in this paper. Properties (2.3b) and (2.2) imply
respectively the density and trivial intersection property of the nested sequence

{0}← · · · ⊂ V−2⊂ V−1⊂ V0⊂ V1⊂ V2⊂ · · ·→L2 (2.4)

(see, for example [3] and [4, p. 121]).
With z= e−iω/2 on the (complex) unit circleT, Eq. (2.1) is equivalent to

φ̂(ω)= P(z)φ̂(ω/2), a.e.ω ∈R. (2.5)

We then study two finite families{ψi}, {ψ̃i} ∈ L2, defined by scaling relations

ψ̂i (ω)=Qi(z)φ̂(ω/2); ˆ̃
ψi(ω)= Q̃i(z)φ̂(ω/2), i = 1, . . . ,N, (2.6)

whereQi , Q̃i are Laurent polynomials that have real coefficients and vanish atz = 1. In
other words,

Qi(z)=
(

1− z
2

)mi
qi(z), Q̃i (z)=

(
1− z

2

)m̃i
q̃i(z),

wheremi, m̃i � 1. Hence, the functionsψi andψ̃i have compact support and at least one
vanishing moment.

Our study of affine frames involves the two families of shifts and dilates,

Ψ := {
ψi;j,k = 2j/2ψ

(
2j · −k): 1 � i �N, j, k ∈ Z

}
,

Ψ̃ := {
ψ̃i;j,k = 2j/2ψ̃(2j · −k): 1 � i �N, j, k ∈ Z

}
. (2.7)

As mentioned above, condition (2.3c) ensures that both sets are Bessel families inL2 (see
[7, Theorem 1]).

Our objective is the study of Bessel families that satisfy duality relations of the
following form.

Definition 1. The two familiesΨ andΨ̃ in (2.6)–(2.7) are calledsibling frames, if they are
Bessel families and if the duality relation

〈f,g〉 =
N∑
i=1

∑
j,k∈Z

〈f,ψi;j,k〉 〈ψ̃i;j,k, g〉 (2.8)

is satisfied for allf,g ∈ L2.

We note that both families are indeed frames ofL2. As usual, the frame condition for
Ψ is defined by

A‖f ‖2 �
N∑
i=1

∑
j,k∈Z

∣∣〈f,ψi;j,k〉∣∣2 � B‖f ‖2, f ∈L2,

whereA, B are positive constants. The upper frame boundB exists, becauseΨ is a Bessel
family. The lower frame boundA results from the duality (2.8) with the Bessel familỹΨ .
For ease of notation, we will call the families{ψi} and{ψ̃i} of frame generators sibling
frames as well.
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Note that sibling frames are generated by functionsψi, ψ̃i ∈ V1; i.e., both families are
derived from the same refinable functionφ. Thus, our present development describes a
more general framework than orthonormal wavelet bases or tight frames. They also provide
much more freedom than the initial definition of MRA-frames by Benedetto and Li [2]
where orthogonality between scaling levels was required and where the family{φ(· − k)}
was supposed to be a frame ofV0. Sibling frames can also be viewed as biframes (or dual
frames, see [1,30]) with the same refinable function. We will show that this new concept
gives enough flexibility for the realization of important properties such as symmetry, small
support, and a high order of vanishing moments. These can be achieved when using only
two generators for each of the two familiesΨ andΨ̃ .

The following result gives a precise characterization of duality of two frames (see [15,
18,19,29,30]). Note that no reference is made to an underlying refinable function.

Theorem A. If the affine familiesΨ and Ψ̃ are Bessel families, then the duality relation
(2.8)holds, if and only if∑

j∈Z

N∑
i=1

ψ̂i
(
2jω

) ˆ̃
ψi

(
2jω

)= 1 (2.9)

and
∞∑
j=0

N∑
i=1

ψ̂i
(
2jω

) ˆ̃
ψi

(
2j (ω+ 2kπ)

)= 0 (2.10)

a.e. inR, where(2.10)holds for all odd integersk.

The assumption onΨ being a Bessel family is not needed for tight frames.

3. Characterization of sibling frames and VMR functions

The results in this section are extensions of earlier work by Weiss et al. [15,19],
Han [18], and Ron and Shen [29,30], who have developed a characterization of tight
affine frames and results on dual pairs of affine frames (so-called biframes), in that the
wavelet frames are associated with certain multiresolution analysis. Parallel investigations
by Daubechies et al. [14] are currently done.

Our first goal is to obtain a complete characterization of sibling frames generated
from a compactly supported refinable function. This characterization will be useful for
constructions of frames with maximal order of vanishing moments. An essential role is
played by a certain parameter functionS(z), which can be characterized as the quotient
of two Laurent polynomials. This function will provide a tool for the design of frames
with vanishing moments, and hence, will be called avanishing-moment recovery(VMR)
function.

Theorem 1. Let φ be a refinable function with compact support and two-scale Laurent
polynomial symbolP with real coefficients such that(2.3a)–(2.3c)are satisfied. LetQi and
Q̃i be Laurent polynomials with real coefficients vanishing atz= 1. Then the functionsψi
and ψ̃i defined in(2.6) generate sibling frames ofL2, if and only if there exists a VMR
functionS, defined a.e. inC, that satisfies the following properties:

(i) S is the quotient of two Laurent polynomials with real coefficients,S(z)=R(z)/T (z);
(ii) S is continuous atz= 1, andS(1)= 1;
(iii) for almost allz ∈ T the following two equations hold:

S
(
z2)∣∣P(z)∣∣2+∑

i

Qi(z)Q̃i(z)= S(z), (3.1)

S
(
z2)P(z)P (−z)+∑

i

Qi(z)Q̃i(−z)= 0. (3.2)



230 C.K. Chui et al. / Appl. Comput. Harmon. Anal. 13 (2002) 224–262

As pointed out in the introduction, the fundamental function

Θ(ω) := 1

|φ̂(ω)|2
∞∑
j=1

N∑
i=1

ψ̂i
(
2jω

) ˆ̃
ψi

(
2jω

)

=
∞∑
j=1

N∑
i=1

Qi
(
z2j )Q̃i(z2j

) j−1∏
k=1

∣∣P (
z2k)∣∣2 (3.3)

in [29], defined in terms of bothP andQi , Q̃i , agrees with the VMR functionS(z), where
z= e−iω/2, and hence satisfies (3.1). Our point of view in the following sections is that the
VMR functionS should be defined independently ofQi andQ̃i , and Eqs. (3.1) and (3.2)
provide a vehicle for findingQi andQ̃i .

Proof. We borrow from and extend an idea in [29] by defining the auxiliary function
Θ(ω) in (3.3). Since both families are Bessel (see [7, Theorem 1]), the series in the first
line of (3.3) converges absolutely almost everywhere. Furthermore,φ̂ is nonzero almost
everywhere due to analyticity. Hence,Θ is a measurable function, which can be defined
by the series of Laurent polynomials in the second line of (3.3). This shows thatΘ is
2π -periodic.

We use this function when employing the characterizing equations of Theorem A.
Eq. (2.9) gives

1=
∑
j∈Z

∑
i

ψ̂i
(
2jω

) ˆ̃
ψi

(
2jω

)= lim
J→−∞

∞∑
j=J

∑
i

ψ̂i
(
2jω

) ˆ̃
ψi

(
2jω

)
= lim
J→−∞

[
Θ

(
2Jω

)∣∣φ̂(
2J−1ω

)∣∣2].
The continuity (in fact, analyticity) of̂φ atω = 0 shows that Eq. (2.9) is equivalent to the
relation

lim
J→−∞Θ

(
2Jω

)= 1 (3.4)

for almost everyω ∈ R. In a similar manner, we obtain an equivalent representation of
equation (2.10) by considering

0=
∑
j�0

∑
i

ψ̂i
(
2jω

) ˆ̃
ψi

(
2j (ω+ 2kπ)

)
= φ̂(ω/2)φ̂(ω/2+ kπ)

[∑
i

Qi(z)Q̃i(−z)+ P(z)P (−z)Θ(ω)
]
,

for almost everyω ∈R and every odd integerk. Then, the analyticity of̂φ leads to

0=
∑
i∈I
Qi(z)Q̃i(−z)+ P(z)P (−z)Θ(ω), a.e.z ∈ T. (3.5)

Let us now prove both directions of the equivalence in Theorem 1. First we assume
that the families{ψi} and{ψ̃i} satisfy the duality relation (2.8). We show that the function
S(z) = Θ(ω/2), wherez = e−iω/2, has the properties (i)–(iii) stated in Theorem 1. As a
result of (3.5), we have

P(z)P (−z)S(z2)=−∑
i∈I
Qi(z)Q̃i(−z), |z| = 1.

Since the coefficients of all two-scale symbols are real, we can infer that

P(−z)= P(−1/z) and Q̃i(−z)= Q̃i(−1/z).

Hence,S(z2)=X(z)/Y (z) is a quotient of two Laurent polynomials with real coefficients.
RewritingS(z2) as an average(X(z)/Y (z)+X(−z)/Y (−z))/2 gives a representation of
the form

S
(
z2)=R(

z2)/T (
z2),
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thus showing property (i). Property (ii) follows from Eq. (3.4) and the fact thatS, as a
rational function inC, is continuous everywhere except for a finite number of singularities.
The second relation of property (iii) was already established above, while the first relation
in (iii) is an immediate consequence of (3.3).

Let us now assume that there is a rational functionS that satisfies conditions (i)–(iii) in
the theorem. We will derive Eqs. (2.9) and (2.10) from here. Note that the first equation in
(iii) implies, by multiplication of both sides by|φ̂(ω/2)|2, that

S(z)
∣∣φ̂(ω/2)∣∣2= S(z2)∣∣φ̂(ω)∣∣2+∑

i

ψ̂i (ω)
ˆ̃
ψi(ω).

For the proof of (2.9), we apply the above relation recursively, and obtain for anyr < s in
Z that

S
(
z2r )∣∣φ̂(

2r−1ω
)∣∣2= s−1∑

j=r

∑
i

ψ̂i
(
2jω

) ˆ̃
ψi

(
2jω

)+ S(z2s )∣∣φ̂(
2s−1ω

)∣∣2.
Property (ii) and the continuity of̂φ at zero assure that the limit on the left-hand side is
1, asr tends to−∞. Furthermore, we already know that the series on the right-hand side
converges absolutely a.e., by the assumption that both families are Bessel. Hence, we can
conclude that

lim
s→∞S

(
z2s )∣∣φ̂(

2s−1ω
)∣∣2= a(ω)

exists a.e. Now, assume, on the contrary, that this limit is nonzero on a setE of
positive measure. Then appealing to the Riemann–Lebesgue Theorem for the functionφ

necessitates the condition

lim
s→∞

∣∣S(z2s )∣∣=∞
for all z = e−iω/2, ω ∈ E. But this is impossible for a rational functionS. We have thus
established thata(ω)= 0, and therefore (2.9) is valid.

Similarly, we find, from the second equation of property (iii), that for any odd integerk

and anys > 0,

0=
s−1∑
j=0

∑
i

ψ̂i
(
2jω

) ˆ̃
ψi

(
2j (ω+ 2kπ)

)+ S(z2s )φ̂(
2s−1ω

)
φ̂
(
2s−1(ω+ 2kπ)

)
.

The same considerations as above lead to

lim
s→∞S

(
z2s )φ̂(

2s−1ω
)
φ̂
(
2s−1(ω+ 2kπ)

)= 0,

and this gives Eq. (2.10). Thus, we have shown thatΨ and Ψ̃ satisfy the duality
relation (2.8). ✷
Remark 1. Existing constructions of tight frames in the literature only consider the special
VMR functionS ≡ 1 in conditions (3.1) and (3.2). Theorem 1 shows that these conditions
(with S ≡ 1 andQ̃i = Qi ) are sufficient, but not necessary for the construction of tight
frames. A different proof for the sufficiency in this special case can be derived by using a
telescoping argument applied to∑

k∈Z

∣∣〈f,φj+1,k〉
∣∣2=∑

k∈Z

∣∣〈f,φj,k〉∣∣2+∑
i

∑
k∈Z

∣∣〈f,ψi;j+1,k〉
∣∣2,

which follows from (3.1) and (3.2), see [6,12, p. 264]. Limits of the series on the
left-hand side forj → ±∞ exist by virtue of the assumptions (2.3a)–(2.3c). There is
a straightforward generalization of this method of proof to Laurent polynomial VMR
functionsS and sibling frames. We were unable, however, to use the same argument for
rational VMR functionsS.
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It will be useful to draw stronger conclusions about the functionS. Typically we will
use Laurent polynomialsS in our constructions. The possibility of non-polynomialS
is rather restricted, as we will see next. For this purpose we recall some notation from
univariate wavelet theory. A set{z1, z2, . . . , zn} ⊂ T, n� 2, of distinct complex numbers
is a nontrivial “cycle” ifzk = z2

k−1 for 2 � k � n andz1 = z2
n. Cycles play an important role

in characterizing stability of integer translates of a refinable functionφ, typically denoted
as Cohen’s condition (see [11,17]). The following result was obtained in [11].

Theorem B. Let P be a Laurent polynomial that satisfiesP(1) = 1, P(−1) = 0, for
which no pair of symmetric roots ofP (i.e.,P(z)= P(−z)= 0) exists onT, and that the
associated scaling functionφ is in L2. Then the integer shifts ofφ are stable if and only if
there exists no nontrivial cycle{z1, z2, . . . , zn} ⊂ T so thatP(−zk)= 0 for 1 � k � n.

Thus, it follows from the following result that non-polynomialS can only occur when
the integer shifts ofφ are not stable. In this case, the denominatorT of the rational VMR
functionS can be further analyzed.

Proposition 1. With the same notations as in Theorem1, letS =R/T be the quotient of two
Laurent polynomials with real coefficients that have no common roots inC \ {0}. Assume
thatS satisfies properties(i)–(iii) in Theorem1. LetZ(T ) denote the set of complex roots
of T different from0. Then the following statements hold:

(a) Z(T )⊂ T \ {zj,� := ei2π�/2
j
: 0 � � < 2j , j � 0}.

(b) If Z(T ) is non-empty, then it contains at least one non-trivial cycle.
(c) If Z(T ) is non-empty, andP(z) andP(−z) have no common roots onT, thenZ(T )

is the union of a finite number of non-trivial cycles and each root in a given cycle has
the same multiplicity.

(d) P(−w) = 0 for all w ∈ Z(T ). In particular, if the integer shifts ofφ are stable, then
Z(T ) is empty, andS must be a Laurent polynomial.

Proof. Let S = R/T be given as described in the proposition, and assume thatT is not a
monomial, so thatZ(T ) is non-empty. Forw ∈Z(T ), we introduce the notation

Ew :=
{
w2k : k � 0

}
.

By using the fact thatP , Qi , and Q̃i are Laurent polynomials with real coefficients,
Eqs. (3.1) and (3.2) can be written as

R(z2)

T (z2)
P (z)P (1/z)+

∑
i

Qi(z)Q̃i(1/z)= R(z)

T (z)
, (3.6)

R(z2)

T (z2)
P (z)P (−1/z)+

∑
i

Qi(z)Q̃i(−1/z)= 0, (3.7)

for all z ∈C \ {0}. The rootw ∈Z(T ) defines a pole of the function on the right-hand side
of Eq. (3.6). Consequently,w2 must be a root ofT as well. By repeating this argument,
we can show that all elements ofEw are roots ofT . SinceT is a Laurent polynomial,Ew
must be finite. Hence,w must lie on the unit circle. SinceS(1)= 1, we know that 1/∈Ew.
This is enough for establishing parts (a) and (b) of the proposition; indeed,w cannot be
any of the numberszj,� in part (a), andEw contains a nontrivial cycle.

We next prove part (d) of the proposition. If we insert Eq. (3.7) into (3.6), we obtain

R(z)

T (z)
=

∑
i

Qi(z)Q̃i(1/z)− P(1/z)

P (−1/z)

∑
i

Qi(z)Q̃i(−1/z).

This implies thatP(−1/w)= 0 for all w ∈ Z(T ). On the other hand, we know from part
(a) that all of the roots lie onT. Hence, we obtain 0= P(−1/w) = P(−1/w)= P(−w)
for everyw ∈ Z(T ). Together with part (b), we have thus shown thatP cannot satisfy
Cohen’s criterion unlessZ(T ) is empty.
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Finally, we assume, in addition, thatP(z) andP(−z) have no common roots onT.
We will show that for everyw ∈ Z(T ) the setEw is a non-trivial cycle, and that every
root y ∈ Ew has the same multiplicity. (For part (a), we only showed thatEw contains a
non-trivial cycle, which means that there are integersm > n � 0 so thatw2m = w2n and
w2n+1 �=w2n .) Let u ∈ T be given so thatw = u2 ∈Z(T ) is a root of multiplicitym. Then
we obtain

T
(
z2)= (

z2−w)m
T0

(
z2)= (z− u)m(z+ u)mT0

(
z2),

with a Laurent polynomialT0 that does not vanish atw. By assumption, eitherP(u) �= 0 or
P(−u) �= 0. If P(u) �= 0, thenP(1/u) = P(u) �= 0 as well, and the common multiplicity
of poles in Eq. (3.6) implies that

T (z)= (z− u)mT̃0(z), T̃0(u) �= 0.

Alternatively, ifP(−u) �= 0, we obtain

T (z)= (z+ u)mT̃0(z), T̃0(−u) �= 0.

Thus, we have shown that ifw= u2 is a root ofT of multiplicity m, then eitheru or−u is
a root with the same multiplicity. This enables us to define a set

Fw := {w =w0,w1,w2, . . .} ⊂Z(T ),

where eachwk is a root ofT with the same multiplicitym, andw2k
k = w. Finiteness of

Fw implies that this set is a non-trivial cycle that containsw = w0. This givesw = wk
for somek > 0, and it follows immediately thatFw = Ew. This completes the proof of
Proposition 1. ✷

In the following sections we will employ the VMR functionS as a means to construct
sibling frames with certain desirable properties. In most practical examples, we restrict
ourselves to the use of Laurent polynomialsS. The previous result shows that this is not
a restriction at all, if we deal with compactly supported scaling functions whose integer
shifts are stable.

For later use, we state another simplification of the rational Laurent polynomialS.

Lemma 1. Let T be a Laurent polynomial with real coefficients, whose roots lie on
T \ {−1,1}. ThenT has the form

T (z)= t0z�T0(z), (3.8)

wheret0 ∈R, � is an integer, andT0 is a Laurent polynomial that is real onT and has real
coefficients.

Proof. All roots of T are pairs of complex conjugate numbersw andw̄ = 1/w. Therefore,
T has a representation

T (z)= t0z�
r∏
j=1

(
z+ 1/z− 2 Re(wk)

)= t0z�T0(z),

wheret0 ∈R and� is an integer.T0(z) has real coefficients and is real onT. ✷

4. Sibling frames with two generators

It was observed by several authors that the construction of tight affine frames based on
“unitary matrix extension” [29] has certain restrictions. For example, in [6] it was pointed
out that the method can be used only if∣∣P(z)∣∣2+ ∣∣P(−z)∣∣2 � 1, z ∈ T. (4.1)
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Furthermore, the construction of frames fromB-spline multiresolution using unitary
matrix extension necessarily leads to frames where at least one generatorψi has only one
vanishing moment. Indeed, if the Laurent polynomial symbolsQi satisfy∑

i

∣∣Qi(z)∣∣2= 1− ∣∣P(z)∣∣2, z ∈ T,

whereP(z) = 2−m(1+ z)m is the two-scale Laurent polynomial symbol of the cardinal
B-spline of orderm, then the highest power of(1− z) that can be factored out on both
sides of this equation is(1− z)2.

In this section we present a method that makes use of the VMR functionS in Theorem 1
for the design of new sibling framesΨ , Ψ̃ . This method neither underlies restriction
(4.1), nor imposes restrictions on the order of vanishing moments ofψi and ψ̃i , other
than the order ofz = −1 as a root of the Laurent polynomialP . Further properties such
as orthogonality between spaces generated by integer translates of each ofψ1 andψ2
and construction schemes of tight frames will be studied in the remaining sections of this
article.

Our main concern is the study of sibling frames with two generators, namely:Ψ =
{ψ1,ψ2}, Ψ̃ = {ψ̃1, ψ̃2}. Certain negative results on existence of sibling frames with only
one generator will be given in the last section.

The important identities in Theorem 1, part (iii), can be stated as

M(z) :=
[
S(z)− S(z2)P (z)P (1/z) −S(z2)P (1/z)P (−z)
−S(z2)P (z)P (−1/z) S(−z)− S(z2)P (−z)P (−1/z)

]
=

∑
i

[
Q̃i(1/z)
Q̃i(−1/z)

][
Qi(z) Qi(−z)

]
, (4.2)

whereS is the VMR function described in Theorem 1. The last identity can be rewritten as
a matrix factorization, which in the case of only two generators takes on the form

M(z)=
[
Q̃1(1/z) Q̃2(1/z)
Q̃1(−1/z) Q̃2(−1/z)

][
Q1(z) Q1(−z)
Q2(z) Q2(−z)

]
. (4.3)

The essential step consists of defining such a functionS which is a Laurent polynomial
or the quotient of two Laurent polynomials with real coefficients, such thatS(1)= 1 and

S(z)− 1

Bφ(z)
=O

(|z− 1|2m)
nearz= 1. (4.4)

Here, Bφ denotes the generalized Euler–Frobenius polynomial associated with the
refinable functionφ defined by

Bφ(z)=
∑
k∈Z

bkz
k, wherebk =

∫
R

φ(x)φ(x + k)dx.

Let us recall from [4, Theorem 5.10] thatBφ is a Laurent polynomial with real coefficients,
non-negative onT, andBφ(1)= 1, and that the relation

P(z)P (1/z)Bφ(z)+ P(−z)P (−1/z)Bφ(−z)= Bφ
(
z2) (4.5)

holds for all complexz �= 0.
We will see in Section 4.1 that (4.4) governs the vanishing-moment recovery property of

frames. Note that property (ii) in Theorem 1, namely thatS is continuous at 1 andS(1)= 1,
is a direct consequence of (4.4). There are many ways to define a Laurent polynomialS that
satisfies (4.4). One particular choice is the Taylor polynomial of degree 2k − 1 of 1/Bφ ,
with centerz0= 1. Another, more symmetric, choice is

S(z)=
m−1∑
k=0

sk(2− z− 1/z)k,

where the real coefficientssk are determined by a linear system of equations. Consistency
of this system is assured by the fact thatBφ has an expansion in powers of(2− z− 1/z),
due to the symmetry relationbk = b−k for its coefficient sequence.
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4.1. Vanishing moments

Our main result in this section is that there always exist sibling frames with two
generators and with the maximal number of vanishing moments. Moreover, these frames
can be chosen to be symmetric or antisymmetric as governed by the order of the root
z=−1 of the two-scale symbol ofφ, provided thatφ is symmetric.

Theorem 2. For any compactly supported refinable functionφ that satisfies(2.3a)–(2.3c),
there exist compactly supported sibling frames{ψ1,ψ2}, {ψ̃1, ψ̃2}with the property that all
of the four functions havem vanishing moments, wherem is the order of the rootz=−1
of the two-scale Laurent polynomialP . Furthermore, ifφ is symmetric, then all of the four
functions can be chosen to be symmetric for evenm, and antisymmetric for oddm.

Proof. Our proof is constructive. Since it is similar to the proof of an independent but
earlier result in [13], we only give an outline in the following. (We thank one of the
reviewers for pointing out the reference [13] which allows us to shorten our original
presentation.) We can chooseS to be any Laurent polynomial that has real coefficients
and satisfies property (4.4). LetV be a neighborhood ofz= 1 whereBφ(z) andBφ(z2) are
non-zero. For allz ∈ V , we infer from (4.4) and (4.5) that

S(z)− S(z2)P(z)P (1/z)= P(−z)P (−1/z)Bφ(−z)
Bφ(z)Bφ(z2)

+O
(|z− 1|2m)

=O
(|z− 1|2m)

.

Hence, the matrix (4.2) can be factored in the form of

M(z)=Dm(1/z)
[

A(z) −S(z2)P0(1/z)P0(−z)
−S(z2)P0(z)P0(−1/z) A(−z)

]
Dm(z), (4.6)

whereDm is the diagonal matrixDm(z) := diag(((1− z)/2)m, ((1+ z)/2)m) andA is
some symmetric Laurent polynomial with real coefficients. The matrix relation (4.3) can
be satisfied by taking

Q1(z)=
(
(1− z)/2)m(

A(z)− S(z2)P0(z)P0(−1/z)
)
/2,

Q̃1(z)=
(
(1− z)/2)m

,

Q2(z)= z
(
(1− z)/2)m(

A(z)+ S(z2)P0(z)P0(−1/z)
)
/2,

Q̃2(z)= z
(
(1− z)/2)m

. (4.7)

This completes the first part of the proof of Theorem 2.
Observe thatP0(z)P0(−1/z)= P0(1/z)P0(−z), provided thatP is symmetric. Hence,

Q1 andQ2 in (4.7) are symmetric (respectively, antisymmetric) aboutm/2 andm/2+ 1,
respectively, ifm is even (respectively, odd). Symmetry or antisymmetry of the coefficient
sequences of̃Q1 andQ̃2 is obvious. These symmetry properties of the Laurent polyno-
mials directly relate to the analogous symmetry properties of the functionsψ1, ψ2 and
ψ̃1, ψ̃2. ✷
Remark 2. It is not difficult to show that the maximal number of vanishing moments of
sibling frames cannot exceedm, wherem is the order of the rootz=−1 of the two-scale
symbolP in (2.3a). In other words, there is at least one functionψi and one corresponding
functionψ̃i that have at mostm vanishing moments. Indeed, Eq. (3.2) gives∑

i

Qi(z)Q̃i(−z)=−S
(
z2)P(z)P (−z)

=−
(

1− z
2

)m[
S(1)P (1)P0(−1)+O

(|z− 1|m+1)]
by applying (2.3a) and considering the Taylor expansion aroundz= 1. The first term inside
the brackets is non-zero. This shows that not allQi can have zeros of order greater than
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m at z = 1. In other words, at least oneψi has at mostm vanishing moments. The same
method, using Taylor expansion of the same term aroundz =−1, shows that at least one
ψ̃i has at mostm vanishing moments.

Remark 3. The pair of sibling frames constructed in (4.7) results from a trivial
factorization

M0(z)=
[

1 1/z
1 −1/z

][
q1(z) q1(−z)
zq2(z) −zq2(−z)

]
, (4.8)

whereq1,2(z)= (A(z)± S(z2)P0(z)P0(−1/z))/2, of the reduced matrix

M0(z)=
[

A(z) −S(z2)P0(1/z)P0(−z)
−S(z2)P0(z)P0(−1/z) A(−z)

]
, (4.9)

which is obtained after cancellation of the factorsDm(z) andDm(1/z) in (4.6). The
resulting frame generators{ψ̃1, ψ̃2} are chosen to satisfy

ψ̃2(x)= ψ̃1(x − 1/2).

This is significant in that the shift-variant defect of the standard wavelet decomposition
procedure (of discrete convolution followed by down-sampling) can be eliminated. In a
different context, Kingsbury [20,21] considered a dual tree of wavelet filters, where all
the sampling rates of the fully decimated wavelet transform are doubled by eliminating
the downsampling operation in the first decomposition step and where the filters of the
subsequent decomposition steps are chosen with alternating parity, in order to achieve the
almost shift-invariant effect, with noticeable improvement in image denoising and texture
analysis. In Fig. 1, we show graphs of the four generators of the pair of sibling frames
with four vanishing moments that are linear combinations of cubic cardinalB-splines. The
trivial factorization (4.8) is employed here. The aforementioned exact shift invariance of
{ψ̃1, ψ̃2} can be recognized in Fig. 1b. Approximate shift-invariance of their dual{ψ1,ψ2}
can be seen in Fig. 1a.

Remark 4. The construction based on (4.8) may result in unbalanced supports for the two
generators and their duals: the length of the coefficient sequences ofQ̃i , i = 1,2, ism+1,
while the length ofQi ism+ �i where�i is the length of the coefficient sequence ofqi in
(4.8). More “balanced” factorizations

M0(z)=
[
q̃1(1/z) q̃2(1/z)
q̃1(−1/z) q̃2(−1/z)

][
q1(z) q1(−z)
q2(z) q2(−z)

]
(4.10)

can be constructed for special cases where the determinant of the matrixM0 has low
degree. This can occur, of course, even if the entries ofM0 have higher degree. As a rule of
thumb, we will obtain a factorization where all coefficient sequences have half the length of
the sequencesq1 andq2 in the trivial factorization (4.8). Ingredients of our construction are
a polyphase decomposition and degree reduction using the Euclidean algorithm. A precise
description of this result is given in the appendix. The following examples can serve as an
explanation of this method.

Example 1. The refinable functionφ is chosen to be the cardinalB-splineNm of orderm
(or degreem − 1) with integer knots, and supported on the interval[0,m]. Its two-scale
symbol isP(z)= ((1+ z)/2)m. We choose the vanishing-moment recovery functionS(z)

to be the symmetric Laurent polynomial

S(z)=
m−1∑
j=0

sj

(
2− z− z−1

4

)j
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(a)

(b)

Fig. 1. Cubic spline sibling frames{ψ1,ψ2} (a) and{ψ̃1, ψ̃2} (b); exact shift-invariance for̃ψ2= ψ̃1(· − 1/2).

of lowest degree for which (4.4) is satisfied. An explicit form of the coefficientssk is given
by

s0 = 1, sk = 1

4k − 1

k−1∑
�=0

(−1)k−1−�4�s�
(
m+ �
k − �

)
. (4.11)

For eachm= 2,3,4, we may easily write downS and the factorization of the matrixM
in (4.3) which defines either a tight frame, or a sibling frame. Details for obtaining these
factorizations are given in Appendix A.

(i) For the linear cardinalB-splineN2(x) = (1− |x − 1|)+, the vanishing-moment
recovery functionS(z) = 1+ 1

6(2− z − z−1) reveals two vanishing moments. We ob-
tain a tight frame with two symmetric generatorsψ1 and ψ2 from the factorization
M(z)=Q(z−1)QT(z), where

Q(z)=
[(1−z

2

)2 0

0
(1+z

2

)2

][
1 z

1 −z
][

1 1+z2

4
0 1

][
1 0
0

√
8/3

]
=

[(1−z
2

)2 0

0
(1+z

2

)2

][
1

(
1+ 4z+ z2

)
/
√

6
1

(
1− 4z+ z2

)
/
√

6

]
.

Hence, the two-scale symbols forψ1, ψ2 are given by

Q1(z)=
(
(1− z)/2)2

, Q2(z)=
(
(1− z)/2)2(

1+ 4z+ z2)/√6.
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Fig. 2. Linear spline tight frame generatorsψ1 (solid line) andψ2 (dashed line) with two vanishing moments.

The graphs are shown in Fig. 2. Note that the construction in [29] gives a tight frame with
two generators, one symmetric and the other antisymmetric, where the symmetric genera-
tor has only one vanishing moment.

(ii) The construction for quadratic cardinalB-splineN3 makes use ofS(z) = 1 +
1
4(2− z − z−1) + 13

240(2− z − z−1)2 to reveal three vanishing moments. The factoriza-
tion M(z)=R(z−1)D(z)RT(z) can be formulated with

R(z)=
[( 1−z

2

)3
0

0
( 1+z

2

)3

][
1 z

1 −z
][

1 1+z2

6
0 1

][
1 0

52(1+z−2)
103 1

]
and

D(z)=
[ 103

15 0

0 5438+247(z2+z−2)
1236

]
.

In order to obtain a tight frame(ψ1,ψ2), the diagonal matrixD is factored out by applying
the Riesz Lemma for the second diagonal entry. The factorization

5438+ 247
(
z2+ z−2)= 247

λ

(
λ+ z2)(λ+ z−2),

λ= 2719+ 4
√

458247

247
≈ 22,

gives

Q1(z)= 1

3
√

1545

(
1− z

2

)3(
361+ 156

(
z+ z−1)+ 26

(
z2+ z−2)),

Q2(z)= 1

12

√
247

309λ

(
1− z

2

)3(
z−2+ 6z−1+ (1+ λ)+ 6λz+ λz2).

It can be seen immediately thatψ1 is antisymmetric, butψ2 is neither symmetric nor anti-
symmetric (see Fig. 3). Several other choices of frame generators can be made. If symmetry
is of no concern, tight frame generators with shorter masks can be found by multiplication
of the vector(Q1,Q2) by an orthogonal matrix that eliminates two coefficients in either
Q1 or Q2 with highest (or lowest) powers ofz. A construction of frame elements with
such short masks (6-tap and 8-tap) was first considered in [14]. Conversely, if symmetry or
antisymmetry of both generators is required, a pair of sibling frames{ψ1,ψ2} and{ψ̃1, ψ̃2}
of antisymmetric functions can be defined, whereψ1 = ψ̃1 is as above, andψ2, ψ̃2 have
two-scale symbols

Q2(z)= 1

6

√
2719

618

(
1− z

2

)3(
1+ 6z+ z2),

Q̃2(z)=
(

1+ 247

5438

(
z2+ z−2))Q2(z).
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Fig. 3. Quadratic spline tight frame generatorsψ1 (solid line) andψ2 (dashed line) with three vanishing moments.

Fig. 4. Quadratic spline sibling frame generatorsψ1 = ψ̃1 (dotted line),ψ2 (solid line), andψ̃2 (dashed line),
with three vanishing moments.

These generators are shown in Fig. 4, where the dotted line depicts the generatorψ1= ψ̃1,
the solid line showsψ2, and the dashed line depicts̃ψ2. The supports are suppψ1 =
[−1,4], suppψ2 = [0,4], and supp̃ψ2 = [−1,5]. Note thatψ̃2 is a linear combination
of integer shifts ofψ2. The graphs ofψ2 andψ̃2 look almost identical. Furthermore, the
approximate shift-invarianceψ2 ≈ψ1(· − 1/2) is clearly shown in Fig. 4.

(iii) For the cubic cardinalB-splineN4, we make use of the VMR function

S(z)= 1+ 1

3

(
2− z− z−1)+ 31

360

(
2− z− z−1)2+ 311

15120

(
2− z− z−1)3

in order to reveal four vanishing moments. The factorizationM(z)=R(z−1)C(z)RT(z)

can be formulated with

R(z)=
[(1−z

2

)4 0

0
( 1+z

2

)4

][
1 z

1 −z
][

1 1+z2

8
0 1

][
1 0

2(1+z−2)
5 1

]
and

C(z)=
[

27247+7775(z2+z−2)
945

48346(1+z−2)
4725

48346(1+z2)
4725

416856+2828(z2+z−2)
23625

]
.

A pair of sibling frames{ψ1,ψ2} and{ψ̃1, ψ̃2} of symmetric functions is obtained by using
a simple factorization ofC. This gives two-scale symbols
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(a)

(b)

Fig. 5. Cubic spline sibling frame generators{ψ1,ψ2} (a) and{ψ̃1, ψ̃2} (b) with four vanishing moments.

Q1(z)= 1

4

(
1− z

2

)4(
22+ 8

(
z+ z−1)+ z2+ z−2),

Q2(z)= 1
2

(
1− z

2

)4(
1+ 8z+ z2),

Q̃1(z)= 1

18900

(
1− z

2

)4(
132666+ 94712

(
z+ z−1)+ 44494

(
z2+ z−2)

+ 12440
(
z3+ z−3)+ 1555

(
z4+ z−4)),

Q̃2(z)= 1

9450

(
1− z

2

)4(
61024z+ 33045

(
1+ z2)+ 9952

(
z−1+ z3)

+ 1244
(
z−2+ z4)).

The sibling frame constructed here is shown in Fig. 5. A tight frame construction is con-
sidered in Section 5 where a new method for matrix factorization is presented.✷

4.2. Inter-orthogonality

In addition to the maximum number of vanishing moments, we can require sibling
frames to satisfy certain orthogonality relations.



C.K. Chui et al. / Appl. Comput. Harmon. Anal. 13 (2002) 224–262 241

Definition 2. The familyΨ = {ψ1, . . . ,ψn} ⊂ L2 is inter-orthogonalif Wi ⊥Wj , i �= j ,
whereWi = closL2 span{ψi(x − k): k ∈ Z}.

We will study this property for generatorsψi of a sibling frame. Standard computations
using the Fourier transform ofψi show thatWi ⊥Wj is equivalent to

Qi(z)Qj (z)Bφ(z)+Qi(−z)Qj (−z)Bφ(−z)= 0, |z| = 1. (4.12)

We first show that inter-orthogonality requires that the number of generators ben= 2.

Proposition 2. If ψi ∈ V1, 1 � i � n, are non-trivial and inter-orthogonal, thenn= 2.

Proof. Eq. (4.12) can be written in matrix form as[
Q1(z) . . . Qn(z)

Q1(−z) . . . Qn(−z)
]∗ [

Bφ(z) 0
0 Bφ(−z)

][
Q1(z) . . . Qn(z)

Q1(−z) . . . Qn(−z)
]

= diag
((∣∣Qi(z)∣∣2Bφ(z)+ ∣∣Qi(−z)∣∣2Bφ(−z)): 1 � i � n

)
.

The matrix on the right has full rankn for somez ∈ T, while the matrix on the left has rank
at most 2. ✷

The existence of inter-orthogonal sibling frames with two generators (where inter-
orthogonality is valid for one family) is assured by the next result.

Theorem 3. For any compactly supported refinable functionφ that satisfies(2.3a)–(2.3c),
there exists a pair of sibling frames(ψ1,ψ2) and (ψ̃1, ψ̃2) such that all of the four
functions have compact support and the maximum numberm of vanishing moments, and
that (ψ1,ψ2) is inter-orthogonal.

For the proof we make use of the following result in [24, Theorem 1.2].

Lemma 2. Let u1 and u2 be Laurent polynomials that are nonnegative onT and have
no common zeros inC \ {0}. There exist Laurent polynomialsv1 and v2 which are also
nonnegative onT, such that

u1(z)v1(z)+ u2(z)v2(z)= 1, for all z ∈C \ {0}. (4.13)

We also need the following lemma whose proof will be given later.

Lemma 3. LetE be a Laurent polynomial with real coefficients andE � 0 on T. ThenE
can be decomposed into Laurent polynomials with real coefficients,

E(z)=D(
z2)E0(z), (4.14)

such thatE0 � 0 on T, and thatE0(z) andE0(−z) have no common zeros.

Proof of Theorem 3. Let S be a VMR Laurent polynomial with real coefficients and real-
valued onT, as in Theorem 2, such that the matrixM has the factorization

M(z)=Dm(1/z)M0(z)Dm(z).

The objective is to find a suitable factorization

M0(z)=
[
q̃1(z) q̃2(z)

q̃1(−z) q̃2(−z)
][
q1(z) q1(−z)
q2(z) q2(−z)

]
(4.15)

so that the Laurent polynomialsQi(z)= ((1− z)/2)mqi(z) satisfy Eq. (4.12).
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Assuming real coefficients for all Laurent polynomials, (4.12) can be expressed as(
1− z

2

)m(
1− 1/z

2

)m
q1(z)q2(1/z)Bφ(z)

+
(

1+ z
2

)m(
1+ 1/z

2

)m
q1(−z)q2(−1/z)Bφ(−z)= 0, z �= 0. (4.16)

Next we will show that there are solutionsq1 andq2 of this equation so that

det

[
q1(z) q1(−z)
q2(z) q2(−z)

]
=−z. (4.17)

For this purpose, we use the fact that the Laurent polynomial

E(z) :=
(

1− z
2

)m(
1− 1/z

2

)m
Bφ(z)

in (4.16) has real coefficients and is non-negative onT. By Lemma 3 we find a factorization

E(z)= d(z2)E0(z),

whereE0 has the same properties asE, and, in addition,E0(z) andE0(−z) have no
common roots inC \ {0}. The orthogonality relation (4.16) is automatically satisfied if
we choose

q1(z)= q0(z)E1(−z) and q2(z)= zq0(−1/z)E2(−z),
where q0 is an arbitrary Laurent polynomial with real coefficients andE1(z)E2(z) =
E0(z). The factorsE1 andE2 can be chosen to be non-negative onT and that none of
the four functionsEi(z),Ei(−z), 1� i � 2, have any common roots. Eq. (4.17) expressed
for this choice ofq1, q2 is equivalent to∣∣q0(z)

∣∣2E1(z)E2(−z)+
∣∣q0(−z)

∣∣2E1(−z)E2(z)= 1, z ∈ T.

Lemma 2 allows us to find a Laurent polynomialr = |q0|2 which satisfies this equation,
and the Riesz Lemma gives a solutionq0.

The Laurent polynomialsq1, q2 constructed so far define the familyΨ = {ψ1,ψ2}
which is inter-orthogonal, due to (4.16). Eq. (4.17) implies that[

q̃1(z) q̃2(z)

q̃1(−z) q̃2(−z)
]
=M0(z)

[
q1(z) q1(−z)
q2(z) q2(−z)

]−1

defines Laurent polynomials̃q1, q̃2 so that the factorization (4.15) ofM0 is valid. Hence,
we have found a sibling frame withm vanishing moments whereΨ is inter-orthogonal. ✷

We now give the proof of Lemma 3.

Proof of Lemma 3. SinceE is a Laurent polynomial with real coefficients and is real onT,
it can be written as an algebraic polynomiale of the real variableu = z+ z−1 ∈ [−1,1]
with real coefficients. By assumptione is non-negative on[−1,1]. Hence, we can find an
integerk � 0 and an algebraic polynomiale0 such that

e(u)= u2ke0(u), e0(0) > 0.

Obviously,e0 is non-negative on[−1,1] as well.
Letd0(u) denote the greatest common divisor ofe0(u) ande0(−u), which is normalized

such thatd0(0) = 1. Sincee0 is non-negative on[−1,1], all roots ofd0 in (−1,1) must
have even multiplicity. Therefore,d0 is also non-negative on[−1,1]. Moreover, it is easy to
see thatd0(−u) is a common divisor ofe0(u) ande0(−u) as well. Hence,d0(u) must be a
constant multiple ofd0(−u), and the positivity at 0 givesd0(u)= d0(−u). This implies that
d0 is an algebraic polynomial in even powers ofu. In other words, we obtain a factorization

E(z)= e(u)= u2kd1
(
u2)e1(u),
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with algebraic polynomialsd1 and e1 that are non-negative on[−1,1], such thate1(u)
ande1(−u) have no common zeros inC. The factorization in the lemma is then obtained
by definingD(z2) := u2kd1(u

2) and E0(z) := e1(u). By construction, these Laurent
polynomials have real coefficients andE0 is non-negative onT. Due to the algebraic
relationE0(−z)= e1(−u), the Laurent polynomialsE0(z) andE0(−z) have no common
zeros. ✷
Example 2. For the linear cardinalB-splineN2 with integer knots, we use the same VMR
Laurent polynomialS(z) = 1+ (2− z − z−1)/6 as in the example in Section 4.1. The
two-scale symbols of the inter-orthogonal frame generatorsψ1 andψ2 are formulated as
Qi(z)= ((1− z)/2)2qi(z), i = 1,2, where

q1(z)=
(

2+ z+ z−1

4

)2

q0(z), q2(z)= z(4− z− z−1)

6
q0(−1/z).

The polynomialq0 has the formq0(z)= az2+ bz+ c with coefficients

a = 1/4+ 1

12

√
57− 1

12

√
42+ 6

√
57≈ 0.1005,

c= 1/4+ 1

12

√
57+ 1

12

√
42+ 6

√
57≈ 1.6578,

b= 1/2− 1

6

√
57≈−0.7583.

The two-scale symbols for the dual pair are obtained in the form ofQ̃i(z) = ((1 −
z)/2)2q̃i(z), i = 1,2, where

q̃1(z) :=−zS
(
z2)q2(1/z)− zA(z)q2(−1/z),

q̃2(z) := zA(z)q1(−1/z)+ zS(z2)q1(1/z),

andA(z) = (24+ 8(z + z−1) + z2 + z−2)/24 is the first diagonal entry of the reduced
matrixM0. Fig. 6 depicts the graphs of the generators{ψ1,ψ2} (a) and{ψ̃1, ψ̃2} (b). ✷

5. Tight frames with two generators

In this section we show that tight affine frames with two compactly supported generators
ψ1,ψ2 ∈ V1 exist for any refinable functionφ whose integer shifts are stable, such that
both generators have the maximal orderm of vanishing moments, wherem is the order of
the zeroz = −1 of the two-scale polynomialP . We include the detailed description of a
constructive procedure for the tight frame generatorsψ1 andψ2.

One part of this procedure consists of extending the spectral factorization of trigonomet-
ric polynomials, as described in [28, pp. 117–118], to matrix-valued Laurent polynomials

M(z)=
N∑

k=−N
Akz

k

that are positive semidefinite onT and whose coefficientsAk are 2× 2 matrices with
real entries. The underlying theoretical result is a well-known generalization of the Fejér–
Riesz Theorem which was obtained by Rosenblatt [32]. The following version of the result
together with a generalization to operator-valued polynomials as well as several useful
historical remarks can be found in the monograph [33, Section 6.6].

Theorem C. Let M(z) = ∑N
k=−N Akzk be a trigonometric polynomial with coefficients

Ak ∈ Cn×n such thatM is positive semidefinite onT. Then there exists an outer function
R(z)=∑N

k=0Bkz
k with coefficientsBk ∈Cn×n, such that

M(z)=R∗(z)R(z), z ∈ T. (5.1)
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(a)

(b)

Fig. 6. Linear spline sibling frames with two vanishing moments; interorthogonal generators{ψ1,ψ2} (a), dual
generators (b).

The notion of inner and outer operator-valued functions is explained in [33]. Several
numerical procedures for the construction of the factorization (5.1) are described in [8,25].
Some of these methods employ an equivalent representation of the matrix polynomialM
as a biinfinite block Toeplitz matrix and use a Wiener–Hopf type method computing the
Cholesky factors of finite compressions of this matrix, see [25]. Another method described
in [25] uses a relatively complex spectral factorization technique in order to obtain an
LDU-decomposition ofM. Its simplification for the case of symmetry, definiteness, and
low dimension of the matrix polynomial are not obvious to us. For this reason we include a
simpler construction of a spectral factorization (5.1) whereM is a 2×2 matrix polynomial
that is positive semidefinite onT. Our construction requires only the spectral factorization
of univariate trigonometric polynomials and linear algebra techniques.

Our construction is based on a reduced form of the matrix polynomial that is obtained
from the following lemma.

Lemma 4. Let

M(z)=
[
A(z) B(z)

B(1/z) C(z)

]
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be a matrix of Laurent polynomials with real coefficients. IfM is positive semidefinite
on T, then there exists a Laurent polynomiald with real coefficients, such that

M(z)=
[
d(z) 0

0 1

][
A0(z) B0(z)

B0(1/z) C(z)

][
d(1/z) 0

0 1

]
,

whereA0 andB0 are Laurent polynomials with no common roots inC \ {0}. Moreover, the
matrix in the middle of the above equation is positive semidefinite onT and, in particular,
A0(z)=∑N

k=0ak(z+ z−1)k is strictly positive onT.

Proof. If A andB have no common roots inC \ {0}, the factorization in the lemma is
valid for d ≡ 1. Otherwise, let us denote byZ the collection of all common roots ofA
andB, counting each root with the minimum of both multiplicities as a root ofA and
B, respectively. Note that bothA andB have real coefficients. Furthermore,A must be
non-negative onT by virtue of our assumptions onM, and thatA(z)=A(1/z), |z| = 1, is
satisfied.

For anyw ∈Z, we will find a factord̃w in each of the following three cases such that

A(z)= d̃w(z)d̃w(1/z)A1(z), B(z)= d̃w(z)B1(z). (5.2)

Here d̃w, A1, andB1 are Laurent polynomials with real coefficients andd̃w(w) = 0. By
construction,A1 is non-negative onT. By proceeding in this manner all common zeros of
A andB can be eliminated:

(a) If w is not real and|w| �= 1, thend̃w(z) = (z − w)(z − w̄) is a Laurent polynomial
with real coefficients which divides bothA andB. Moreover,d̃w(1/z) is a factor ofA
having zeros 1/w and 1/w̄ which are distinct fromw, w̄. This gives (5.2).

(b) If w ∈ R \ {−1,1} we haveA(w) = A(1/w) = 0. This gives (5.2), wherẽdw(z) =
(z−w).

(c) If w ∈ T, the multiplicitykA of the rootw of A is even, sinceA is non-negative onT.
If w /∈ {−1,1}, we let

d̃w(z)= z−1(z−w)(z− w̄)= (
z+ 1/z− (w+ w̄)).

Obviously,d̃w has real coefficients, and̃d2
w(z)= d̃w(z)d̃w(1/z) is a factor ofA. This gives

(5.2). For the remaining casew ∈ {−1,1}, we make use ofw = 1/w in the formulation

A(z)= (1−wz)(1−wz−1)A1(z), B(z)= (1−wz)B1(z).

Again, (5.2) is established for this case.
After applying this procedure finitely many times we obtain a factorization

A(z)= d(z)d(1/z)A0(z), B(z)= d(z)B0(z),

where all Laurent polynomials have real coefficients, andA0 andB0 have no common
roots inC \ {0}. Obviously,

B(1/z)= d(1/z)B0(1/z)

is also valid. The last two equations give the factorization in Lemma 4. It is also obvious
that the matrix in the middle of this factorization is positive semidefinite. Hence, its
diagonal entryA0 is non-negative onT, and this implies that it is an algebraic polynomial
in u := z+ z−1. Moreover, ifw ∈ T were a root ofA0, the definiteness of the matrix would
imply thatB0(w)B0(1/w) = 0. This would give a common root (w or w̄) of A0 andB0
which does not exist. This completes the proof of the lemma.✷

The next theorem gives a new construction based on univariate spectral factorization
for the matrix decomposition (5.1). Moreover, we establish a one-to-one correspondence
between all factorizations of the form (5.1) whose polynomial degree is restricted with the
set of all solutions of alinear homogeneous system of equations (5.4)–(5.5) and a simple
quadratic side condition (5.6). Therefore, the matrix factorization (5.1) can be determined
using methods of linear algebra.
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We define the degree of a Laurent polynomial
∑N2
k=N1

ckz
k, with N1 �N2 andcNk �= 0

for k = 1,2, to beN2−N1.

Theorem 4. Let

M(z)=
[
A(z) B(z)

B(1/z) C(z)

]
be a matrix of Laurent polynomials with real coefficients which is positive semidefinite
onT, and suppose thatA(z)=∑N

k=0ak(z+z−1)k andB have no common roots inC\{0},
andaN �= 0. Then there exist four Laurent polynomialsu1, u2, v1, v2 with real coefficients,
with u1 andu2 of degree at mostN , such that

M(z)=
[
u1(1/z) u2(1/z)
v1(1/z) v2(1/z)

][
u1(z) v1(z)

u2(z) v2(z)

]
=:RT(1/z)R(z). (5.3)

The quadruple(u1, u2, v1, v2) is a solution of the linear homogeneous system

B(z)u1(z)− d(z)u2(1/z)−A(z)v1(z)= 0, (5.4)

d(1/z)u1(z)+B(1/z)u2(1/z)−A(z)v2(1/z)= 0 (5.5)

and

u2
1(1)+ u2

2(1)=A(1), (5.6)

whered is a Laurent polynomial such that

d(z)d(1/z)= detM(z). (5.7)

Conversely, any Laurent polynomial solution(u1, u2, v1, v2) of (5.4)–(5.6), with u1 and
u2 of degree at mostN andd as in(5.7), defines a factorization(5.3)of M.

Proof. The existence of algebraic polynomials(u1, u2, v1, v2) that define a factorization
(5.3) is part of the general result of Theorem C. The assertion of Theorem 4 is slightly
stronger as far as the degree of the polynomialsu1 and u2 is concerned. The proof is
organized as follows. First, we show the equivalence of the matrix factorization (5.3) and
the system of equations (5.4)–(5.6) under the assumption thatu1 andu2 have degree at
mostN . Then, we prove existence of solutions(u1, u2, v1, v2) of (5.4)–(5.6) that meet the
assumption on the degree ofu1 andu2. We frequently use the fact thatA has no zeros on
T, which follows from Lemma 4 and our assumptions onM.

Let us assume that a factorization ofM in (5.3), with

R=
[
u1 v1
u2 v2

]
,

is defined whereu1 andu2 have degree at mostN . Thend = detR= u1v2−u2v1 satisfies
(5.7), and the equation

u1(z)u1(1/z)+ u2(z)u2(1/z)=A(z)
implies (5.6). In order to prove (5.4)–(5.5), we let

α(z) := B(z)u1(z)− d(z)u2(1/z)−A(z)v1(z),

β(z) := d(z)u1(1/z)+B(z)u2(z)−A(z)v2(z). (5.8)

It follows from (5.3) and (5.7) that

α(z)u1(1/z)+ β(z)u2(1/z)= 0, α(z)v1(1/z)+ β(z)v2(1/z)= 0. (5.9)

This is a homogeneous system of linear equations forα andβ , whose determinantd(1/z)
is non-zero for almost allz ∈ T. Therefore,α = β = 0 is the only Laurent polynomial
solution, and (5.4)–(5.5) must be satisfied.

Conversely, letd be any Laurent polynomial with real coefficients that satisfies
(5.7). Moreover, let Laurent polynomials(u1, u2, v1, v2) with real coefficients be given,
with u1 and u2 of degree at mostN , such that (5.4)–(5.6) is satisfied. Hence, the
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Laurent polynomialsα andβ , as defined in (5.8), are zero. After reordering the terms
u1(1/z)α(z)+ u2(1/z)β(z) we obtain

B(z)
[
u1(z)u1(1/z)+ u2(z)u2(1/z)

]=A(z)[v1(z)u1(1/z)+ v2(z)u2(1/z)
]
. (5.10)

Since A and B have no common roots inC \ {0}, by assumption, this shows that
[u1(z)u1(1/z)+ u2(z)u2(1/z)] is divisible byA(z); in other words

u1(z)u1(1/z)+ u2(z)u2(1/z)= p(z)A(z), (5.11)

for some Laurent polynomialp. By the assumption that the degree ofu1 andu2 cannot
exceedN , the left hand side of (5.11) is a Laurent polynomial of the form

∑N
k=0 ck(z +

1/z)k with real coefficientsck , 0 � k � N . Consequently,p must be constant, and (5.6)
implies thatp = 1. By combining (5.10) and (5.11) we obtain

u1(z)u1(1/z)+ u2(z)u2(1/z)=A(z),
v1(z)u1(1/z)+ v2(z)u2(1/z)= B(z), (5.12)

which yields one part of the matrix factorization (5.3). If we operate analogously onα and
β in (5.8) by taking the combinationv2α− v1β , we obtain

B(z)
[
u1(z)v2(z)− u2(z)v1(z)

]= d(z)[v1(z)u1(1/z)+ v2(z)u2(1/z)
]= d(z)B(z),

where the last equation follows from the second relation in (5.12). Hence, we have

u1(z)v2(z)− u2(z)v1(z)= d(z). (5.13)

Furthermore, the combinationv1(1/z)α+ v2(1/z)β gives

A(z)
[
v1(z)v1(1/z)+ v2(z)v2(1/z)

]= B(z)B(1/z)+ d(z)d(1/z)= A(z)C(z).
Here we used the second relation in (5.12) and (5.13), withz replaced by 1/z, together
with the fact thatd satisfies (5.7). Now, we can conclude that

v1(z)v1(1/z)+ v2(z)v2(1/z)= C(z). (5.14)

Eqs. (5.12) and (5.14) give the matrix factorization (5.3).
In the remaining part of the proof, we show that Laurent polynomials(u1, u2, v1, v2)

with real coefficients exist, withu1 and u2 of degree at mostN , which satisfy (5.4)–
(5.6). We begin by constructing algebraic polynomialsu1 andu2 such that the Laurent
polynomial

B(z)u1(z)− d(z)u2(1/z) (5.15)

is divisible byA. Note thatzNA(z) is an algebraic polynomial of exact degree 2N . All its
roots lie inC \ {0}. Letw be a root ofA of multiplicity k. Then(z−w)k is a factor of the
Laurent polynomial (5.15) if and only if

dν

dzν

[
B(z)u1(z)− d(z)u2(1/z)

]
z=w = 0 for all 0� ν � k − 1. (5.16)

If w is real, (5.16) specifiesk real and homogeneous equations for the unknown coefficients
of u1 andu2. If w is not real, the real and imaginary parts of (5.16) give 2k real and
homogeneous equations for the unknown coefficients ofu1 andu2 which are equivalent to
the fact that[(z − w)(z − w̄)]k is a factor of the Laurent polynomial (5.15). The total
number of equations in (5.16), taking into consideration all of the roots ofA, is 2N .
Therefore, non-trivial algebraic polynomialsu1 andu2 of degree at mostN exist such that
A divides the Laurent polynomial in (5.15); in other words, there exist Laurent polynomials
u1, u2, v1 with real coefficients, withu1 andu2 of degree at mostN , such that

B(z)u1(z)− d(z)u2(1/z)−A(z)v1(z)= 0.

The triple(u1, u2, v1) defines a solution of Eq. (5.4).
Let us note here that any multiple of(u1, u2, v1) provides a solution of (5.4) as well.

Furthermore, any common roots ofu1(z) andu2(1/z) which lie onT can be dropped,
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becauseA does not vanish onT. Hence, we can find a normalized solution(u1, u2, v1) of
(5.4) which also satisfies (5.6).

Finally, we show that this choice of(u1, u2, v1) leads to a solution(u1, u2, v2) of
Eq. (5.5). Indeed, multiplication byd(1/z) on both sides of (5.4) and Eq. (5.7) gives

B(z)d(1/z)u1(z)− detM(z)u2(1/z)=A(z)d(1/z)v1(z).

Thus, we obtain

B(z)
[
d(1/z)u1(z)+B(1/z)u2(1/z)

]=A(z)[d(1/z)v1(z)+C(z)u2(1/z)
]
. (5.17)

Now, by the assumption thatA andB have no common roots, the factor inside the brackets
on the left-hand side of (5.17) must be divisible byA. We can conclude that (5.4) implies
(5.5), with a suitable choice of the Laurent polynomialv2. This shows the existence of
Laurent polynomials(u1, u2, v1, v2) that satisfy (5.4)–(5.6) and, by the equivalence that
we proved before, the existence of the matrix factorization (5.3).

Thus we have completed the proof of Theorem 4.✷
Remark 5. Construction of the factorR in (5.3) is based on knowledge of a factorization
(5.7) of the positive Laurent polynomial detM. The additional steps can be carried out
by using methods of elementary linear algebra. In this regard, the complexity of the
method is comparable to the univariate spectral factorization technique that is based on
the fundamental theorem of algebra, see [28]. In particular, the construction circumvents
the use of Gröbner basis methods which, at a first glance, appear to be necessary to solve
equations (5.12). No claim is made that the factorR in Theorem 4 is an outer function as
in the abstract Theorem C. A more general construction for all matrix polynomials of any
(finite) size is currently under investigation by the authors.

In the following, we demonstrate the effective procedure by revisiting Example 1 in
Section 4.

Example 3. As in Section 4, the refinable functionφ is chosen to be the cardinalB-spline
Nm of orderm with integer knots, and supported on the interval[0,m]. The vanishing-
moment recovery functionS(z) in (4.11) exhibits a positive definite matrixM0 that
satisfies the assumptions of Theorem 4. Form = 2 andm = 3, the matrixM0 can be
reduced to a diagonal matrix by using the Euclidean algorithm described in Appendix A.
Hence, a factorization (5.3) can even be found without appealing to the constructive
method of Theorem 4. Form = 4, however, the reduction by the Euclidean algorithm in
Appendix A leaves a non-diagonal matrix

C(z)=
[ 27247+7775(z2+z−2)

945
48346(1+z−2)

4725

48346(1+z2)
4725

416856+2828(z2+z−2)
23625

]
.

Instead of defining a pair of symmetric sibling frames as in Section 4, the method of
Theorem 4 can be employed for the construction of non-symmetric tight frame generators
(ψ1,ψ2). If we substitutex for z2 in C(z), the parameterN in Theorem 4 is 1. Solutions
(u1, u2, v1) of Eq. (5.4), which are algebraic polynomials of degree at most 1, can be
chosen to have the form

u1(x)= c
[
7775

(
d2− d1(1+ x)+ d0x

)+ 19472(d0+ d2x)
]

= 3.15315x+ 2.60930,

u2(x)= c[26928722x/225]= 3.47592x,

v1(x)= c
[
48346(d0− d1+ d2)/5

]= 4.12182.

Their coefficient sequences (a total of 6 unknowns foru1, u2, andv1) are chosen from
the null space of a system of four linear equations. Here, the coefficients(d0, d1, d2) =
(−2.07544,−17.2278,−0.474532) stem from the univariate factorization

detC(z)= (
d0+ d1x + d2x

2)(d0+ d1x
−1+ d2x

−2)
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Fig. 7. Cubic spline tight frame generatorsψ1 (solid line) andψ2 (dashed line) with four vanishing moments.

and can be computed using a separate procedure. The constantc = 2.90427× 10−5 is
used to guarantee condition (5.6). Finally, the Laurent polynomialv2(x)=−0.150495x−
0.795400 is computed using the relation

B(x)− u1(1/x)v1(x)= u2(1/x)v2(x).

This gives the factorization (5.3) ofC. If we combine this new factorization with the
previous steps (factorization of moments, Euclidean algorithm) that were performed in
Section 4, the two-scale Laurent polynomials of non-symmetric tight frame generators
(ψ1,ψ2) become

Qi(z)=
(

1− z
2

)4

qi(z), i = 1,2,

and the coefficient sequences ofqi are as follows:

k −2 −1 0 1 2 3 4

q1 0.130465 1.04372 3.54312 6.42680 4.11416 1.26126 0.157657
q2 0.074371 0.594967 3.70527 1.23987 0.154984

This example of minimally supported tight frame generators(ψ1,ψ2) was first
considered in [14]. Graphs ofψ1 andψ2 are depicted in Fig. 7. ✷
Remark 6. We like to point out that our linear algebra approach was already described in
the first draft of the manuscript. In fact, the manuscript submitted to ACHA for publication
contained only minor modifications of the draft distributed to others. The only significant
change occurs in the above example, where the degrees of the polynomialsq1 andq2 were
reduced from 13,11 to 11,9 after we had a chance to see the manuscript [14]. We thank the
authors of [14] for providing us their manuscript before it was submitted for publication.

Remark 7. Example 3 demonstrates a general procedure that Theorem 4 makes available.
It explains how the spectral factorization of detM and the solution of the linear system
(5.4) can be decoupled. The actual coefficients of the Laurent polynomiald(z) in (5.4) are
only needed for the normalization in (5.6).

In order to use the result of Theorem 4 for our construction of tight frames, we first need
to find a positive semidefinite matrix

M(z) :=
[
S(z)− S(z2)P (z)P (1/z) −S(z2)P (1/z)P (−z)
−S(z2)P (z)P (−1/z) S(−z)− S(z2)P (−z)P (−1/z)

]
,
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as in (4.2), by a suitable choice of the VMR functionS. Note that the matrixM is positive
semidefinite onT if and only if

S(z)− S(z2)
∣∣P(z)∣∣2 � 0 (5.18)

and

∆
(
z2) := S(z)S(−z)− S(z2)[S(−z)∣∣P(z)∣∣2+ S(z)∣∣P(−z)∣∣2] � 0. (5.19)

However, for nonnegativeS, the condition in (5.19) already implies (5.18). Therefore, it is
sufficient to find a Laurent polynomialS that is nonnegative onT and satisfies (5.19), in
order to construct a positive semidefinite matrixM in (4.2). By rewriting (5.19) as

∆
(
z2)= S(z)S(−z)S(z2)[ 1

S(z2)
− |P(z)|2

S(z)
− |P(−z)|2

S(−z)
]
,

we see that forS � 0, the positivity condition in (5.19) is equivalent to the positivity
condition

1

S(z2)
− |P(z)|2

S(z)
− |P(−z)|2

S(−z) � 0,

which is linear in 1/S.

Corollary 1. Letφ be a compactly supported refinable function that satisfies(2.3a)–(2.3c),
andS a Laurent polynomial with real coefficients that satisfiesS(1)= 1 andS(z) > 0 for
all z ∈ T. Then(5.19)is a necessary and sufficient condition forS to be a VMR function.

Remark 8. A different positivity condition forS is established in [14] for the existence of
compactly supported wavelet tight frames associated withφ, namely

A(z) := S(z)− S(z2)(∣∣P(z)∣∣2+ ∣∣P(−z)∣∣2) � 0. (5.20)

We remark that this (linear) condition (inS) is a sufficient but not a necessary condition.
In fact, there is a large class of compactly supported refinable functions with two-scale
symbolsP(z) that allow the construction of tight frames with compactly supported frame
generators, for which there are no Laurent polynomialsS(z) that satisfy (5.20), with
S(1) = 1 andS(z) � 0, z ∈ T. As a clarification of this point, we include the following
example.

Example 4. Let φ be a refinable function with two-scale symbolP(z) that satisfies∣∣P(z)∣∣2+ ∣∣P(−z)∣∣2 � 1, z ∈ T, (5.21)

and not identically equal to one on the unit circleT. Examples of such refinable functions
include those provided by the dual scaling functionsφm,n which are biorthogonal to the
cardinalB-splineNm of orderm� 2 and haven vanishing moments, 1� n�m. Indeed,
if P denotes the two-scale symbol ofφm,n, then

P(z)P̃ (1/z)+ P(−z)P̃ (−1/z)≡ 1, z ∈ T,

whereP̃ := (1+ z/2)m, so that∣∣P(z)∣∣2+ ∣∣P(−z)∣∣2> 1, z ∈ T \ {1,−1},
since|P̃ (z)|2+ |P̃ (−z)|2= cos2m(ω/2)+ sin2m(ω/2) < 1, z ∈ T \ {1,−1}.

We claim that under condition (5.21), condition (5.20) can never be satisfied for any
Laurent polynomialS satisfyingS(1) = 1 andS(z) > 0 on T. This statement can be
justified in two steps, as follows:

(i) First we show that (5.20) and (5.21) imply thatS � 1 on the unit circle. To see this, we
note, by continuity, that it is sufficient to verify thatS(z)� 1 for all z ∈ T for which
there is ann ∈N ∪ {0} such thatz2n = 1. We prove this by induction onn. Forn= 0,
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the conditionS(1) = 1 gives the desired inequality. Assume thatS(z) � 1 for all z
such thatz2n = 1. Then, for anyw with w2n+1 = 1, we have, by applying (5.20) and
(5.21),

S(w)� S
(
w2) (∣∣P(w)∣∣2+ ∣∣P(−w)∣∣2)︸ ︷︷ ︸

�1

� S
(
w2) � 1.

This shows that the inequalityS(z) � 1 holds for all “dyadic” roots of unity. By
continuity ofS, we findS(z)� 1 onT.

(ii) Let z be a dyadic root of unity such that|P(z)|2 + |P(−z)|2 > 1. Clearly,z cannot
be 1. We choose a sequence(wn)n�1 such thatw2

n = wn−1, . . . ,w
2
1 = z =: w0, and

limn→∞wn = 1. The positivity ofA andS � 1 imply that

S(wn)�
n∏
k=0

(∣∣P(wk)∣∣2+ ∣∣P(−wk)∣∣2)S(z2) �
∣∣P(z)∣∣2+ ∣∣P(−z)∣∣2=: c0> 1,

and, therefore, the sequence{S(wn)}, n = 1,2, . . . , which is bounded below byc0,
cannot converge to 1.

This shows that the conditions (5.20),S(1) = 1, and the continuity ofS cannot hold
simultaneously. In other words, no Laurent polynomialS, which is non-negative onT,
exists, such thatA(z) in (5.20) is non-negative forz ∈ T. ✷

However, there does exist some Laurent polynomialS with S(1)= 1 andS(z) > 0 onT,
such that condition (5.19) holds forφm,n according to the following theorem.

One possible way for finding such anS is described in the following.

Theorem 5. Letφ be a compactly supported refinable function that satisfies(2.3a)–(2.3c).
If the Laurent polynomialsP(z) andP(−z), withP in (2.2), have no common roots andP
satisfies Cohen’s condition, then there is a Laurent polynomialS with real coefficients that
satisfiesS(1)= 1, S(z) > 0 for all z ∈ T, and Eqs.(4.4)and (5.19). In other words,S is a
VMR Laurent polynomial function such that the matrixM in (4.2) is positive semidefinite.

The construction ofS is based on properties of the transfer operator

T|P |2(f )
(
z2)= ∣∣P(z)∣∣2f (z)+ ∣∣P(−z)∣∣2f (−z), (5.22)

which is a positive operator acting on certain finite-dimensional subspaces of Laurent
polynomials. (Here, we restrict the variablez to T; hence, all Laurent polynomials can
be identified with trigonometric polynomials.) The transfer operator was analyzed in
connection with the study of smoothness and stability properties of refinable functions
(see [22,23]). It is easy to see that

EN :=
{
N∑
j=0

fj
(
zj + z−j ): fj ∈R

}
is an invariant subspace ofT|P |2, whereN =N2−N1 refers to the degree of the symmetric
Laurent polynomial|P |2 (see (2.2)). Moreover, the subspaces

EN,k :=
{
f ∈EN : f (z)=O

(|z− 1|k) nearz= 1
}
, 1 � k � 2m, (5.23)

are invariant subspaces.
The notion of positive cones naturally restricts to the spacesEN,2k , 0 � k � m, with

topology defined by the norm

‖f ‖2k :=max
z∈T

∣∣f (z)(1− z)−2k
∣∣, f ∈EN,2k.

The cone of non-negative functions inEN,2k , denoted byPN,2k := {f ∈ EN,2k: f �
0 on T}, is closed, convex, and generatesEN,2k in the usual sense thatPN,2k − PN,2k
is the full space. Its interior consists of all functionsf (z) ∈EN,2k that are strictly positive
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on T \ {1} and have a zero of exact order 2k at 1. A well drafted extension of notions of
irreducibility and Perron–Frobenius theory of positive matrices in [16] to positive linear
operators on finite-dimensional vector spaces can be found in [27,35].

The aforementioned notions are essential in order to discuss the existence of positive
eigenfunctions of the transfer operatorT = T|P |2 acting onEN,2k, where positivityf > 0
means thatf is an interior point of the positive conePN,2k . Let us first analyze the
irreducibility of the transfer operator. According to [27], irreducibility is defined as the
following property: ifTf � αf for some positive numberα and somef � 0, f �≡ 0, then
f > 0. We need the following.

Lemma 5. The operatorT|P |2, restricted to its invariant subspaceEN,2k , is irreducible
with respect to the conePN,2k of positivity, if and only ifP(z) andP(−z) have no common
roots onT andP satisfies Cohen’s condition.

Proof. Let us assume thatP(z) andP(−z) have no common roots onT and thatP satisfies
Cohen’s condition. Since the arguments are similar to those in the proof of Proposition 1,
we only give a short outline here. Letf ∈ EN,2k , f � 0 andf �≡ 0 be given, such that
T|P |2f � αf holds for someα > 0. Assume that there existsz0 ∈ T, z0 �= 1, where
f (z0) = 0. Then the assumptions onf imply that T|P |2f (z0) = 0, which can only be
satisfied, due to positivity constraints and assumptions onP , if there existsz1 ∈ T with
z2

1 = z0 andf (z1)= 0. By repeating this argument, we obtain a sequence{zj } of zeros of
f , which must form a nontrivial cycle (see Proposition 1). We then show thatP(−zj )= 0
follows for all elements of this cycle, which is a contradiction to Cohen’s condition. This
contradicts to the assumption thatf has a zero.

Conversely, letP(z) andP(−z) have a common zeroz0 ∈ T. It is clear thatz0 �= ±1.
The function

f (z) := (2− z− 1/z)k
(
z− z2

0

)(
1/z− z2

0

)(
z− 1/z2

0

)(
1/z− 1/z2

0

)
is in PN,2k and has double zeros atz2

0 and its complex conjugate 1/z2
0. It is relatively

simple to find a constantα > 0 such thatT|P |2f � αf . Similarly, the construction of
f ∈ PN,2k with double zeros in a nontrivial cycle can be performed in the case, where
Cohen’s condition is not satisfied.✷

Based on the Perron–Frobenius theory, but with stronger assumptions onP regarding
common zeros inC \ {0}, the following result is shown in [23].

Theorem D. Let the assumptions of Theorem5 be satisfied. Then the spectral radius of the
transfer operatorT|P |2 restricted toEN is 1, andλ= 1 is a simple eigenvalue ofT|P |2 with
strictly positive eigenfunctionBφ ∈EN . All other eigenvalues ofT|P |2 have absolute value
less than one.

We need the following modification to this result which is a direct consequence of the
irreducibility of the transfer operator and Theorem D.

Theorem 6. Let the assumptions in Theorem5 be satisfied. For each1 � k � m, there
exists an eigenfunctionfk of the transfer operatorT|P |2 which is strictly positive onT\ {1}
and has a zero of exact order2k at 1. Furthermore, the corresponding eigenvalue is simple,
positive and less than one.

Proof. The existence of an eigenfunction in the interior of the conePN,2k follows from
[24, Theorem 6]. The corresponding eigenvalue is the spectral radius of the restriction
of T|P |2 to the subspaceEN,2k . It is strictly positive, as stated in the same theorem.
Theorem 4.3 in [35] assures that the spectral radius is a simple eigenvalue. (We point out
even more is true: any other eigenvalue of the same modulus is also simple.) Finally, we
infer from Theorem D that the spectral radius must be less than 1, as any eigenfunction of
T|P |2 for eigenvalue 1 is non-zero atz= 1. ✷
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We are now ready to complete the proof of Theorem 5.

Proof of Theorem 5. By Lemma 5, we can select an eigenfunctionFm ∈ EN,2m of T|P |2
with associated eigenvalue 0< λ< 1 which is strictly positive onT \ {1} and has a zero of
exact order 2m at 1. The conditions onP also assure thatBφ > 0 onT. For anyβ > 1 we
can choose a Laurent polynomialS, by trigonometric approximation, so that

1

Bφ + βFm � S � 1

Bφ + Fm onT. (5.24)

Obviously,S is strictly positive, and the inequalities in (5.24) can be rewritten as

βFm � 1

S
−Bφ � Fm.

SinceFm is an element ofEN,2m, this shows that

1

S(z)
−Bφ(z)=O

(|z− 1|2m)
nearz= 1.

We have thus found a Laurent polynomialS that is strictly positive onT and satisfies (4.4).
Moreover, the monotonicity of the operatorT|P |2 and the fact thatBφ is an eigenfunction
of T|P |2 for the eigenvalue 1 lead to

(id− T|P |2)
(

1

S

)
= (id− T|P |2)

(
1

S
−Bφ

)
� Fm − T|P |2(βFm)= (1− λβ)Fm.

The last expression is non-negative for all values of 1< β < 1/λ. Therefore, we obtain

1

S(z2)
� |P(z)|2

S(z)
+ |P(−z)|2

S(−z) , z ∈ T.

Multiplication by the factorS(z)S(−z)S(z2) gives (5.19). This completes the proof of
Theorem 5. ✷
Remark 9. In all of the examples in Section 4, straightforward computation of the function
S by solving (4.4) with linear algebra methods leads to a matrixM0 which is positive
definite onT. No examination of the spectrum ofT|P |2 is needed in these cases. The
construction of tight frames with two generators for the cardinalB-splines of orderm,
2 � m � 4, relies on this definiteness ofM0. In [14] it is shown that the functionS in
(4.11) leads to a positive definite matrixM0 for all m� 1.

Both results in Theorems 4 and 5 can be combined to give the following general result.

Theorem 7. Letφ be a compactly supported refinable function that satisfies(2.3a)–(2.3c).
If the Laurent polynomialsP(z) andP(−z), with P in (2.2), have no common roots and
P satisfies Cohen’s condition, then there exists a tight frame ofL2 with two generators
ψ1,ψ2 ∈ V1 that have compact support andm vanishing moments.

Proof. We summarize the steps of the construction of the tight frame briefly. Theorem 5
gives a VMR Laurent polynomial functionS such thatM in (4.2) is positive semidefinite
on T. The reduced matrixM0 in (4.9) and its polyphase decomposition

Q(z2) :=
[

1 1

z −z
]
M0(z)

[
1 1/z

1 −1/z

]
are positive semidefinite as well. The matrix coefficients are Laurent polynomials inz2, as
indicated by the above notation. The matrix Riesz Lemma, namely Theorem 4, provides a
factorization

Q
(
z2)=R

(
1/z2)R(

z2).
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Combination of these steps leads to the two-scale symbols

Q1(z) := 1

2

(
1− z

2

)m[
R11

(
z2)+ zR12

(
z2)],

Q2(z) := 1

2

(
1− z

2

)m[
R21

(
z2)+ zR22

(
z2)],

which define the two generatorsψ1 andψ2 of a tight frame withm vanishing moments. ✷
It should be noted that the result in Theorem 7 does not include assertions about

symmetry or inter-orthogonality ofψ1 andψ2. The sibling frames in Theorems 2 and 3
may provide an alternative for situations where any of these properties is required.

6. Sibling and tight frames with one generator

In this section, we consider the particular case of a pair of sibling frames{ψ}, {ψ̃}
with only one generator inV1. We will show that under certain assumptions onφ (stability
of integer shifts) sibling frames with one generator can be renormalized to provide tight
frames derived from a quadrature mirror filterP̃ , see Theorem 8. In particular, ifφ is a
cardinalB-spline of orderm � 2, we show that there do not exist compactly supported
sibling frames with one generator.

For an arbitrary pair of generators{ψ} and{ψ̃}, the matrix relation (4.2) becomes

M(z)=
[
Q̃(1/z)
Q̃(−1/z)

] [
Q(z) Q(−z)]. (6.1)

Here,S(z)=R(z)/T (z) is the quotient of two Laurent polynomials with real coefficients,
as in Theorem 1, such thatS(1)= 1.

The rank ofM in (6.1) is at most 1. Therefore, its determinant must vanish identically.
This gives

∆
(
z2)= S(z)S(−z)− S(z2)[S(−z)∣∣P(z)∣∣2+ S(z)∣∣P(−z)∣∣2]= 0 (6.2)

for all z ∈C \ {0}. This simple observation leads to the following result.

Lemma 6. Let S be the VMR function of a pair of compactly supported sibling frames
{ψ}, {ψ̃}. If S is a Laurent polynomial, then the equations

S(−z)∣∣P(z)∣∣2+ S(z)∣∣P(−z)∣∣2= S(−1), (6.3)

S(z)S(−z)= S(−1)S
(
z2), (6.4)

are satisfied for allz ∈C \ {0}. In particular,S(−1) �= 0.

Proof. If S(z) is a Laurent polynomial, thenR(z) := zjS(z) is an algebraic polynomial
for somej ∈ Z, andR(0) �= 0. Multiplication of (6.2) byz2j gives an identity where
the degrees of the polynomialsz2j S(z)S(−z) and z2jS(z2) agree. Hence, the Laurent
polynomial inside the brackets in (6.2) must be constant. Forz = 1, Eq. (6.2) shows that
this constant isS(−1), and we have established (6.3) and (6.4). SinceS is non-trivial,
S(−1) cannot be zero by virtue of (6.4).✷

The following conclusion about the structure ofS can be drawn from Lemma 6.

Lemma 7. Let S be a Laurent polynomial with real coefficients andS(1) = 1, such that
(6.3)and (6.4)are satisfied. Then the following statements hold:

(a) All roots ofS lie onT. The set of all roots is a finite disjoint union of nontrivial cycles.
Moreover, all roots in a specific cycle have the same multiplicity.

(b) S is real and nonnegative onT; in particular, all roots ofS have even multiplicity.
Moreover,S(−1) is positive.
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Proof. We use similar arguments as in the proof of Proposition 1. LetS satisfy the
assumptions of the lemma. IfS is constant inC, we haveS ≡ 1, and properties (a) and
(b) follow immediately.

Let us assume thatS is not constant. We haveS(−1) �= 0; otherwiseS would be the
zero constant by (6.4). For the proof of part (a), letw ∈C \ {0} be a root ofS. If we insert
z2 = w into the right-hand side of (6.4), we may conclude that there existsw1 ∈ C such
thatw2

1 =w andS(w1)= 0. By repeating this argument we obtain a set of roots

Fw :=
{
wk: S(wk)= 0, w2k

k =w, k � 0
}
.

This set must be finite and does not contain 1, due to the assumption thatS is a Laurent po-
lynomial andS(1)= 1. Therefore, there is a non-trivial cycle{wk,wk−1, . . . ,wk−m} ⊂ Fw .
This cycle containsw, becausew = w2k

k , and therefore the cycle agrees with the setFw .
Hence, we have shown that every root ofS is the member of a nontrivial cycle onT.
Clearly, there can only be a finite number of such cycles, and distinct cycles must be
disjoint. This confirms the first two assertions of part (a).

In order to analyze the multiplicity of all the roots ofS in a fixed cycleF , letw ∈ F be a
root with maximal multiplicity among all elements ofF . It is a simple fact that−w cannot
be an element of any nontrivial cycle onT. Therefore, equation (6.4) implies thatw2 has
the same multiplicity asw. This argument can be repeated and assures that all elements of
the cycleF have the same multiplicity asw. This completes the proof of part (a).

For part (b) of the lemma, we first show thatS is real onT. By assumption,S has real
coefficients and all its roots lie onT. Furthermore, as a consequence of part (a), neither 1
nor−1 is a root ofS. By Lemma 1,S has a factorization

S(z)= s0z�S0(z),

wheres0 ∈C, � is an integer, andS0 is a Laurent polynomial with real coefficients which
is real onT. Eq. (6.3) can be written as

s0z
�
(
(−1)�

∣∣P(z)∣∣2S0(−z)+
∣∣P(−z)∣∣2S0(z)

)= s0(−1)�S0(−1).

It follows thatz� must be real for allz ∈ T, so that�= 0, andS(z)/s0 is real-valued onT.
Finally, our assumption thatS(1)= 1 implies thatS is real-valued onT.

It remains to show thatS is nonnegative onT, because the roots ofS must then have
even multiplicity andS(−1) > 0 holds. By continuity ofS, it is sufficient to prove thatS
is strictly positive on the dense set of points

zj,� := ei2π�/2
j

, j � 1, 0 � �� 2j − 1. (6.5)

We first consider the valueS(−1). Let w be the zero ofS with the smallest positive
argument, andu = √

w be the element on the smaller circular arc connecting 1 andw.
Continuity of the real-valued functionS on this arc andS(1)= 1 giveS(u) > 0. Eq. (6.4)
requires that

S(u)S(−u)= S(w)S(−1)= 0, henceS(−u)= 0.

Inserting this into equation (6.3) gives

S(−1)= S(u)∣∣P(−u)∣∣2> 0. (6.6)

The strict inequality is justified sinceS(−1) is nonzero by (6.4).
The positivity ofS at all points of the form (6.5) is shown by mathematical induction.

We already showed that the assertion is true forj = 1; in other words,S(1) > 0 and
S(−1) > 0. Let us assume that all of the valuesS(zj,�) are positive, 0� � < 2j . We
take anyu := zj+1,� with 0 � � < 2j ; this is a complex number on the upper half circle.
Eq. (6.4) gives

S(u)S(−u)= S(−1)S
(
u2)= S(−1)S(zj,�) > 0.

The last inequality follows from the induction hypothesis and (6.6). Therefore,S(u) and
S(−u) have the same sign. In order to satisfy equation (6.3) both cannot be negative, so
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that S(u) > 0 andS(−u) > 0. This proves the positivity ofS at all zj+1,�, and by the
induction hypothesis we have positivity at all points (6.5). This completes the proof of the
lemma. ✷

We will next discuss certain consequences of the previous results. Lemma 6 can be used
to rewrite the matrixM in (4.2). First observe that, based on Lemma 6, we have

S(z)− S(z2)∣∣P(z)∣∣2= S(z)− S(z)S(−z)|P(z)|2
S(−1)

= 1

S(−1)
S(z)

(
S(−1)− S(−z)∣∣P(z)∣∣2)

= 1

S(−1)
S(z)2

∣∣P(−z)∣∣2,
and

−S(z2)P(z)P (−z)=− 1

S(−1)
S(z)S(−z)P (z)P (−z).

This gives

M(z)= 1

S(−1)

[
S(z)2

∣∣P(−z)∣∣2 −S(z)S(−z)P (z)P (−z)
−S(z)S(−z)P (z)P (−z) S(−z)2∣∣P(z)∣∣2

]
= 1

S(−1)

[
z−1S(z)P (−z)
−z−1S(−z)P (z)

] [
zS(z)P (−z) − zS(−z)P (z)].

SinceS is real andS(−1) > 0, we may choose the symbol

Qt(z)= z√
S(−1)

S(z)P (−1/z) (6.7)

in order to obtain a symmetric factorization ofM. Therefore we can replace the
factorization (6.1) that defines the pair of sibling frames{ψ}, {ψ̃} with a symmetric
factorization that, in turn, defines a tight frame. This is summarized as follows.

Theorem 8. Let {ψ}, {ψ̃} be a pair of compactly supported sibling frames associated with
a VMR functionS. If S is a Laurent polynomial, then the functionψt ∈ V1 with two-scale
symbolQt in (6.7) defines a tight frame ofL2 which is associated with the same VMR
functionS.

Remark 10. The result of Theorem 8 can also be expressed in terms of a “renormalization”
of the refinable functionφ. If S is non-negative onT and satisfies (6.3) and (6.4),
Lemma 7 can be used to define the Laurent polynomialU such thatU(z) = U(1/z) and
U(z)2 = S(z). (We take half of the multiplicity of all the zeros ofS to define the zeros of
U .) The new refinable functionφU , defined by

φ̂U (ξ) :=U
(
z2)φ̂(ξ), z= e−iξ/2,

is a finite linear combination of integer shifts ofφ. Its two-scale symbol takes on the form

PU (z)= U(z2)

U(z)
P (z)= U(−z)√

S(−1)
P (z).

Eq. (6.3) implies thatPU is a QMF; i.e., we have∣∣PU (z)∣∣2+ ∣∣PU(−z)∣∣2= 1, z ∈ T.

The tight frameψt in Theorem 8 results from the typical construction based on the QMF;
the two-scale symbol ofψt relative to the refinable functionφU isQU(z)= zPU(−1/z).
In other words, compactly supported sibling frames with one generator and VMR Laurent
polynomialS are essentially tight frames defined for a refinable functionφU whose two-
scale symbol is a quadrature mirror filter.
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Let us end this section by including a discussion of the case where the integer shifts of
φ form a Riesz basis ofV0. Recall from Proposition 1 thatS must be a Laurent polynomial
in this case. Therefore, as a consequence of Theorem 8, we have the following.

Corollary 2. Suppose that the integer shifts ofφ form a Riesz basis ofV0. Then there exists
a pair of compactly supported sibling frames with one generator inV1 if and only if there
exists a compactly supported tight frame with one generator inV1.

Hence, it is reasonable to say that compactly supported sibling frames with one
generator associated with stable refinable functions are essentially tight frames.

A simple, but important negative conclusion can also be drawn from Theorem 8 as
follows.

Theorem 9. Suppose that the integer shifts ofφ form a Riesz basis ofV0 and |P(i)| �=√
2/2. Then there does not exist a pair of compactly supported sibling frames, and

particularly, a tight frame, with one generator inV1.

Proof. If there exists a pair of compactly supported sibling frames{ψ}, {ψ̃} with
generators inV1, then there must be a Laurent polynomialS which satisfies Eqs. (6.3)
and (6.4). Note thatP and S have real coefficients, andS is real onT. Therefore,
S(i)= S(−i) and Eq. (6.4) give

S(i)S(−i)= S(i)2= S(−1)2.

By Lemma 7,S is non-negative. We thus haveS(i) = S(−i) = S(−1). Inserting these
values into (6.3) leads to∣∣P(i)∣∣2+ ∣∣P(−i)∣∣2= 2

∣∣P(i)∣∣2= 1.

This confirms the result of Theorem 9.✷
Note that the value|P(i)| = √

2/2 is compulsory for every quadrature mirror filterP .
On the other hand, there are many examples of stable refinable functions for which|P(i)|
does not have this precise value. Any cardinalB-splineNm of orderm� 2, for example,
has the property|P(i)| = 2−m/2. Therefore, Theorem 9 shows that there do not exist pairs
of compactly supported sibling frames and particularly tight frames with one generator
which are finite linear combinations ofB-splinesNm(2.− k) for m� 2.
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Appendix A

In the following, we give a precise description of the matrix factorization technique used
for matricesM0 in (4.9) whose determinant has low degree.

Proposition 3. Assume thatφ is a refinable function with two-scale Laurent polynomial
symbolP(z) = ((1+ z)/2)mP0(z) and P0(z) = P0(−z). Let S be a vanishing-moment
recovery function that is real-valued onT. Suppose that the matrixM0 in (4.9) is positive
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definite for allz ∈ T. Let � denote the maximal length of the coefficient sequences of the
entriesA andB in this matrix, and

∆0(z)=
r∆∑
k=0

dk(z+ 1/z)2k, r∆ � 0,

be its determinant.

(a) If r∆ = 0 or 1, then there exists a tight affine frame generated by two compactly
supported functions{ψ1,ψ2} ∈ V1 that have vanishing moments of orderm. The
lengths of their symbolsQi , i = 1,2, is bounded above bym+ !�/2" + 2r∆ + 1. If
r∆ = 0, both generators can be chosen to be symmetric( for evenm) or antisymmetric
( for oddm), provided thatφ is symmetric.

(b) If r∆ = 1, then there exists a pair of compactly supported sibling frames{ψ1,ψ2} and
{ψ̃1, ψ̃2} such that all of the four generators have vanishing moments of orderm. The
lengths of their symbolsQi andQ̃i , i = 1,2, are bounded above bym+ !�/2" + 5.
All generatorsψi and ψ̃i , i = 1,2, can be chosen to be symmetric( for evenm) or
antisymmetric( for oddm), provided thatφ is symmetric.

Proof. We first note that the assumptions on the two-scale symbolP imply that the matrix
M0 in (4.9) has the form

M0(z)=
[
A(z) B(z)

B(z) A(−z)
]
,

where we defineB(z)=−S(z2)P0(1/z)P0(z). Moreover, all the entries of this matrix are
real-valued onT, by virtue of our assumption onS and the factorization in (4.6). Therefore,
A andB can be written as polynomials inu = (z + z−1)/2 (which is a real variable in
[−1,1]), yielding the form

A(z)=
rA∑
k=0

aku
k, B(z)=

rB∑
k=0

bku
k, rA, rB ∈N. (A.1)

Furthermore, all odd coefficientsb2k+1 are zero due to the assumptions onP0. This shows
that the determinant∆0(z) is a polynomial inu2.

The polyphase decomposition for the wavelet symbols in (4.10) is achieved by matrix
multiplication

M̃0(z) := 1

2

[
1 1
z −z

]
M0(z)

[
1 1/z
1 −1/z

]
= 1

4

[
A(z)+A(−z)+ 2B(z) z−1

(
A(z)−A(−z))

z
(
A(z)−A(−z)) A(z)+A(−z)− 2B(z)

]
= 1

2

[
α
(
z2

)
β
(
z2

)
z2β

(
z2

)
γ
(
z2

)]
.

The symmetric form (A.1) leads to the representations

α
(
z2)= ra∑

k=0

(a2k + b2k)u
2k =: a(u2),

γ
(
z2)= rc∑

k=0

(a2k − b2k)u
2k =: c(u2), and

β
(
z2)= u

z

rb∑
k=0

a2k+1u
2k =: u

z
b
(
u2),

where the leading coefficients with indexra , rb, andrc , respectively, are supposed to be
non-zero. By usingt = u2 we obtain

M̃0(z)= 1

2

[
a(t) (u/z)b(t)

(uz)b(t) c(t)

]
.
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Note thatu/z = 1+ 1/z2 anduz = 1+ z2 are Laurent polynomials in even powers ofz,
and one is obtained from the other by substitution of 1/z for z. This substitution leaves all
the other entriesa, b, andc unchanged, so that we havẽM0(z)= M̃0(1/z)T.

The determinant of the matrix product is

a(t)c(t)− tb2(t)=∆0
(
z2). (A.2)

It is a positive polynomial in the real variablet ∈ [0,1], by the assumptions of the
proposition, and its degreer∆ is either 0 or 1 depending on cases (a) or (b) in the
proposition. We will apply the Euclidean algorithm to reduce the sum of degreesra + rc of
the diagonal entries ofM0 to matchr∆ and to make the non-diagonal entries zero. (Note
that the positivity of the determinant excludes the possibility of having zero polynomialsa

or c in the diagonal.) Assume that

ra + rc > r∆ and rb � 0.

Then the leading coefficients in the expansion of the determinant must cancel, which gives

ra + rc = 2rb + 1.

This shows that eitherra � rb < rc or rc � rb < ra must be satisfied. Let us consider the
first case. (The second case can be treated analogously.) There is a polynomialk1 so that

b(t)= k1(t)a(t)+ b1(t), rb1 := deg(b1) < ra,

where deg:=degree of. Elementary computations lead to

M̃1(z) :=
[

1 0
−(uz)k1(t) 1

]
M̃0(z)

[
1 −(u/z)k1(t)

0 1

]
=

[
a(t) (u/z)b1(t)

(uz)b1(t) c1(t)

]
,

wherec1= c− 2k1tb+ k2
1ta. Note that the structure of the new matrix̃M1 is the same as

before. Moreover, the matrixK1 on the left ofM̃0 and the factor on the right are related
by transposition and substitution of 1/z for z. In particular,c1 is a polynomial oft = u2 of
degreerc1, and the determinant has not changed. Ifb1≡ 0, we have reached a situation of
a diagonal matrix and proceed to the last step of the construction. Ifb1 �≡ 0, we can show
that

rc1 < ra < rc. (A.3)

This means that the sum of the degrees,ra + rc, was reduced, and an inductive argument
will follow. Relation (A.3) is a consequence of the properties

r∆ = deg
(
ac1− tb2

1

)
� 1, 0� rb1 < ra.

In the next step, a further reduction is obtained by finding a polynomialk2(t) so that

b1(t)= k2(t)c1(t)+ b2(t), rb2 := deg(b2) < rc1.

In this case, the matrix product

M̃2(z) :=
[

1 −(u/z)k2(t)

0 1

]
M̃1(z)

[
1 0

−(uz)k2(t) 1

]
=

[
a2(t) (u/z)b2(t)

(uz)b2(t) c1(t)

]
has the diagonal entrya2= a − 2k2tb1+ tk2

2c1 has deg(ra2), with

ra2 < rc1 < ra.

By repeating this procedure finitely many times, we obtain a diagonal matrix

M̃ν(t)=
[
aν(t) 0

0 cν(t)

]
. (A.4)
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The matrices in the Euclidean algorithm which appear on the left ofM̃0 andM̃1, etc.,
constitute a matrix

R
(
z2)=Kν(t) · · ·K1(t)=

[
R11(t) (u/z)R12(t)

(uz)R21(t) R22(t)

]
.

This is clearly a matrix with determinant 1 whose entriesRik are Laurent polynomials
of z2. All matrices with this particular structure define a ring, and the factorsKj that
constituteR are invertible elements of this ring. Therefore,R is invertible and

R−1(z2)= [
R22(t) −(u/z)R12(t)

−(uz)R21(t) R11(t)

]
.

For degree considerations, we define

λ :=max
{
deg(R11),deg(R12),deg(R21),deg(R22)

}
,

where the polynomials are considered in the variablet = u2= (z+ 1/z)2. It can be shown
thatλ� 1/2max{ra, rc}where these two numbers denote the degree of the diagonal entries
of M̃0. Hence,

4λ� 2 max{ra, rc}� !�/2",
with � as in the proposition.

Let us now consider the final decomposition step. The determinant of the diagonal
matrix M̃ν is ∆0, and the matrix is positive definite for allt ∈ [0,1]. If ∆0 is constant,
then both diagonal elements are positive constants. The trivial factorization

M̃ν(t)=
[√

aν 0
0

√
cν

]2

is used to find a symmetric factorization

M̃0(z)=R−1(z2)[√
aν 0
0

√
cν

]2

R−1(1/z2)T. (A.5)

The generators for the tight frame can thus be defined through their two-scale symbols

Q1(z)=√aν
(
(1− z)/2)m[

R22(t)− (z+ 1/z)R21(t)
]
,

Q2(z)=√cνz
(
(1− z)/2)m[

R11(t)− (z+ 1/z)R12(t)
]
,

with t = (z+ 1/z)2. These symbols are even or odd depending on the parity ofm. Hence,
the symmetry or antisymmetry of the functionsψ1 andψ2 is assured, provided thatφ
is symmetric. The length of the coefficient sequences for the symbols is bounded by
m+4λ+1. This number is bounded above bym+!�/2"+1, as claimed in the proposition.

If r∆ = 1, then one diagonal entry of̃Mν is constant and the other is a linear polynomial
in t . Let us assume thataν(t) has degree 1. By the Riesz Lemma, we can find a factorization

aν(t)= c0+ c1
(
z2+ 1/z2)= (

γ0+ γ1z
2)(γ0+ γ1/z

2).
Using the same matrixR(z2) as above, this gives rise to the definition of tight frames with
the two-scale symbols

Q1(z)=
(
γ0+ γ1z

2)((1− z)/2)m[
R22(t)− (z+ 1/z)R21(t)

]
,

Q2(z)=√cνz
(
(1− z)/2)m[

R11(t)− (z+ 1/z)R12(t)
]
.

While the functionψ2 has the same symmetry properties as outlined before, only special
circumstances (such as even multiplicity of the roots of∆0) would make the symbolQ1
symmetric or antisymmetric. The length of the coefficient sequences is seen to be bounded
bym+ [�/2]+ 1 forQ2 andm+ [�/2]+ 3 forQ1. This completes the proof of part (a) of
the proposition.

In order to achieve symmetry for all generators of the frame, the non-symmetric
factorization

M̃ν(z)=
[

1 0
0

√
cν

][
aν(t) 0

0
√
cν

]
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can be used instead. This leads to the definition of sibling frames{ψ1,ψ2}, {ψ̃1, ψ̃2} where
ψ2 = ψ̃2 is defined with a two-scale symbolQ2 as above. The functionsψ1 and ψ̃1,
however, are determined by their two-scale symbols

Q1(z)=
(
(1− z)/2)m[

R11(t)+ (z+ 1/z)R21(t)
]
,

Q̃1(z)= aν(t)Q1(z).

From this definition, it is clear that the two-scale symbols ofψ1 andψ̃1 differ only by a
factor that is a Laurent polynomial inz2. Symmetry of the Laurent polynomialsQ1 and
Q̃1 is seen exactly as in the previous cases. The lengths of the coefficient sequences are
m+ [�/2]+1 forQ1,Q2, andQ̃2, andm+ [�/2]+ 5 for Q̃1. This concludes the proof of
the second part of the proposition.✷

This type of factorization is used in the examples of Section 4.1.
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