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Abstract

The notion of vanishing-moment recovery (VMR) functions is introduced in this paper for the
construction of compactly supported tight frames with two generators having the maximum order
of vanishing moments as determined by the given refinable function, such asrtloeder cardinal
B-spline N,,. Tight frames are also extended to “sibling frames” to allow additional properties,
such as symmetry (or antisymmetry), minimum support, “shift-invariance,” and inter-orthogonality.
For Ny, it turns out that symmetry can be achieved for eveand antisymmetry for odeh, that
minimum support and shift-invariance can be attained by considering the frame generators with two-
scale symbols 2" (1 — z)™ and 27" z(1 — z)™, and that inter-orthogonality is always achievable,
but sometimes at the sacrifice of symmetry. The results in this paper are valid for all compactly
supported refinable functions that are reasonably smooth, such as piecewideilspmex > 0, as
long as the corresponding two-scale Laurent polynomial symbols vanish atl. Furthermore, the
methods developed here can be extended to the more general setting, such as arbitrary integer scaling
factors, multi-wavelets, and certainly biframes (i.e., allowing the dual frames to be associated with a
different refinable function).
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1. Introduction

It is well known that symmetric or antisymmetric compactly supported real-valued
orthonormal wavelets with dilation factor equal to 2 are integer translatesshfwhere
H denotes the Haar function [12]. In addition, again with the exception of these Haar
functions+H (- — k), compactly supported orthonormal wavelets do not have explicit
analytic formulation. However, in applications where certain function classes are needed
to guarantee accuracy to be within certain range, such @& tb010-12 in representation
of objects, or more importantly, to be compliant with certain industry standards, it is highly
desirable to construct wavelets within the class of analytically representable functions.
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For instance, in the CAD/CAM (computer-aided design and manufacturing) industry,
(polynomial) splines, and more generally NURBS, are used to represent curves and sur-
faces [26]. Therefore, when the wavelet approach is used to add features for such applica-
tions as editing, rendering, and oscillation measurement/correction to the spline tool-box
of the CAD/CAM/CAE industry standards, particularly IGES and STEPS [26], it is more
suitable to apply those wavelets that can be expressed as finite linear combinations of
translates of th&-splines in the same parametric curve/surface representation space [34].
Semi-orthogonal spline wavelets [4,5] and biorthogonal spline wavelets [9,10,12] are the
most natural candidates. However, both of these wavelets have undesirable duals. While the
duals of semi-orthogonal spline wavelets have full support in the parametric domain [5],
those of the biorthogonal spline wavelets are not in the same spline spaces.

Another option is to allow more than one wavelet generators. For example, compactly
supported tight frames ofith order cardinal splines witlk generators were introduced
in [31]. In [6], it was shown that independent of the ordertwo generators always suf-
fice. The proof in [6] is constructive, and it is clear from the construction that the two
filter lengths, or equivalently the degrees of the two-scale Laurent polynomial symbols as-
sociated with thenth order cardinaB-splines, are at most. It was also shown in [6]
that, again independent ef, at most three generators are sufficient to achieve symme-
try/antisymmetry. With practical applications in mind, we strove to construct the minimum
number of frame generators to meet such important requirements as compact support (or
finite filter length), symmetry/antisymmetry (for linear-phase filtering), etc. Although it
may be argued that more frame generators are perhaps desirable for yielding higher redun-
dancy, yet in practical applications, when a (hardware/software) system is already built, it
is no longer possible to reduce redundancy, when less redundancy is needed. By using a
minimum number of (compactly supported) tight frame generators to design the system,
arbitrarily higher redundancy can be easily achieved by adjusting the oversampling rate
according to the specification of the second oversampling theorem of Chui and Shi [7],
without the need of building a new (hardware/software) system. Recall that the second
oversampling theorem guarantees preservation of tight frames.

However, regardless of the number of wavelet frame generators to be used, the “matrix
extension” approach in [6,31] limits the order of vanishing moments to one, for at least one
of the tight frame generators associated withtth order cardinaB-spline, form > 2.

For applications that benefit from effective extraction of details, the order of vanishing mo-
ments is a key feature for the success of (analyzing) wavelets. In this paper, we introduce
the notion of vanishing-moment recovery (VMR) functions for the construction of com-
pactly supported tight wavelet frames to achieve the maximum order of vanishing moments
as allowed by the order of (local) polynomial reproduction of the associated compactly
supported refinable function. We again show that two frame generators always suffice. For
example, with a VMR function, two compactly supported tight (spline-wavelet) frame gen-
erators associated with theth order cardinaB-spline do indeed have the maximuith

order of vanishing moments. The work in this paper was motivated by the interesting paper
[29] of Ron and Shen, where a complete characterization of tight frame (generators) is de-
rived in terms of the so-called “fundamental function of multiresolution,” again associated
with some refinable function (see Theorem 6.5 in [29]). In fact, after the two-scale symbols
of the tight frame generators have been constructed by using a VMR function, the VMR
function indeed agrees with the fundamental function of Ron and Shen, which is defined
in [29] in terms of the two-scale symbol of the refinable function as well as the two-scale
symbols of the tight frame generators (that are to be constructed). The important distinc-
tion is that VMR functions are introduced in the present paper to construct the two-scale
symbols of the frame generators.

When two compactly supported tight frame generators with the maximum number of
vanishing moments (as allowed by the associated compactly supported refinable function)
are constructed, there is no guarantee of symmetry (or antisymmetry). Another main ob-
jective of this paper is to introduce the notion of sibling frames. While tight frames may
be considered as a natural generalization of orthonormal wavelets, the notion of sibling
frames is introduced as a natural generalization of semiorthogonal wavelets in order to al-
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low construction of compactly supported dual spline-wavelet frames. The additional flex-
ibility provided by sibling non-tight frames is indeed sufficient to guarantee compact sup-
port, maximum order of vanishing moments, and symmetry (or antisymmetry), provided
that the associated refinable function is compactly supported and symmetric. For certain
applications, the sacrifice of tightness is worthwhile since on one hand, sibling frames are
(finite) linear combinations of translates of the same refinable function, such as the same
mth order cardinaB-splines, while on the other hand, their support can be made signifi-
cantly smaller. Another important feature of sibling frames is that the two frame generators
could be designed to be simply a shift of each other %. This is significant in that the
shift-variant defect of the standard wavelet decomposition procedure can be removed, even
with downsampling. Recall that in a different context, Kingsbury [20,21] considered a dual
tree of wavelet filters, where all the sampling rates of the fully decimated wavelet trans-
form are doubled by eliminating the downsampling operation in the first decomposition
step and where the filters of the subsequent decomposition steps are chosen with alternat-
ing parity, in order to achieve almost shift-invariant effect, with noticeable improvementin
image denoising and texture analysis.

Another property that sibling frames can achieve is that the two frame generators can be
designed to allow minimum correlation at the same (scale) level, in the sense that the two
subspaces obtained by their integer shifts are orthogonal to each other. We call this prop-
erty “inter-orthogonality.” In applications to signal processing, a sighas partitioned
into “frequency bands” as identified by the different scale levels. The wavelet coefficients
dj k¢ for each level, say level = jo, are the continuous (or integral) wavelet transforms
of the signalf at the time-scale locatiotk/2/0, 2=/0), where the third subscript for
dj k¢ Specifies that the wavelgt, is used as the analysis wavelet. Hencgpifandy, are
inter-orthogonal frame generators, then the time-scale informéfign 1} and{d, 2},

k,m e Z, of f separates the signal conteft 1 + gj,,2 of f on the levelj = jo most
efficiently, whereg , ¢ is generated by, «¢, k € Z, for£ =1, 2.

We remark that while the results in this paper are valid for biframes (i.e., by using
two different refinable functions), we restrict our discussion to sibling and particularly
tight frames, since we are particularly interested in compactly supported wavelets and dual
wavelets of cardinal splines. In addition, our point of view is that if one allows two multires-
olution analyses (or two refinable functions), one already has the well-known compactly
supported symmetric/antisymmetric biorthogonal wavelets of Cohen et al. [9]; and again,
oversampling can be applied to generate as much redundancy as desired [7]. On the other
hand, although we use cardingdsplines as a prototype quite frequently in our discussion,
our results are more general. In fact, what is needed is only a compactly supported refinable
function with unit integral and a very mild smoothness assumption, such as piecewise Lip
for somewa > 0, and such that its two-scale Laurent polynomial symbol has a factor
1+ 2)™, m = 1. In particular, as in [29,30], the Riesz (or stability) condition is not re-
quired.

The following describes some of the main results obtained in this paper. Theorem 1
is devoted to the analysis of the VMR functions, with certain explicit formulations. In
Theorem 2, particularly fomth order cardinal splines, existence of compactly supported
sibling frames with two generators havimgth order of vanishing moments and being
symmetric or antisymmetric, depending on even or edds established. In addition, the
choice of frame generators with two-scale symbols

1-—z\" d 1—z\"
() = (%)
is allowed. Note that this choice achieves minimum support and the “shift-invariance”
property as mentioned above. The existence of sibling frames with two generators whose
integer-translates constitute inter-orthogonal subspaces is established in Theorem 3. In
addition, auxiliary and related results concerning sibling frames with one generator
(Theorems 8 and 9), the matrix-valued Riesz Lemma (Theorem 4), and application of this

lemma to establishing tight frames associated with stable refinable functions (Theorems 5
and 7) are also presented in this paper.
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Related work concerning wavelet frames with higher vanishing moments has been
carried out independently in parallel to our development by Daubechies et al. [14]. This
article gives many interesting results on tight frames with several generators that are
derived from a refinable function. They also give a refined proof of telescoping of the
frame decomposition in [12], define a new notion of approximation order of tight frames,
and describe how the fundamental function (i.e., the VMR function in our paper) affects
the decomposition and reconstruction algorithms of tight frames. Moreover, they prove
the existence of tight frames with two generators which are finite linear combinations of
cardinal B-splines of arbitrary order. The fundamental function (or VMR function in our
article) is used to achieve higher order of vanishing moments of all generators of the tight
frame in [14]. A question raised in [14], that whether or not tight frames with several
generators exist for any MRA, is answered affirmatively in our paper (see Theorems 5
and 7 for the univariate case with dilation factor 2), and we show that two generators are
sufficient.

Two positivity conditions for the VMR function§ (or fundamental functions in [14])
are introduced, one in our present paper, and the other in the independent work [14]. The
positivity condition in our paper is a linear formulation inSlwhich describes a necessary
and sufficient condition fotS to be a VMR function for all two-scale symbols. On the
other hand, the positivity condition fdt in [14] is only a sufficient condition, with linear
formulation in S that does not apply to certain refinable functions (see Remark 8 and
Example 4 in Section 5). An advantage of the positivity condition in [14] is that it is easy
to apply to the two-scale symbalél + z) /2)™ of cardinalB-splines, which is discussed in
[14], but not completely settled in our paper, except for low order splines and case-by-case
verification for higher order ones by using the positivity condition in our paper. Finally, it
is worthwhile to point out that our construction procedure only relies on methods of linear
algebra and univariate spectral factorization (see Remark 6 in Section 5), whereas other
methods usually require solution of a system of quadratic equations, which is often done by
Computer Algebra systems such as Singular (www.mathematik.uni-kl.de/~zca/Singular).

2. Notations

Throughout this paper we will consider a compactly supported real-valued refinable
function¢ : R — R with finite mask and real mask coefficients; i¢ satisfies a two-scale
relation

No
p(x)= > pp2x—k), aexeR, (2.1)
k=N1
for some real numberg,. We assume that the corresponding two-scale Laurent
polynomial

1
P@) =5 > it (2.2)
k=N1
satisfies
1 m
P(2) =< erz) Po(z), (2.3a)

for somem > 1, with a Laurent polynomiabPy that satisfiesPg(—1) # 0. By adopting the
definition of Fourier transform

flw) = f fx)e @ dx,

we further require thap satisfies
$0) =1 (2.3b)
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and, for convenience, we assume that
¢ is piecewise Lipr, for somex > 0. (2.3c)

Note that Eq. (2.3b) differs from the conditigr(0) = 0 only by a normalization. The
smoothness condition (2.3c) can be further weakened (see, e.g., [7]), and is sufficient to
conclude that every finite linear combination of integer translates wfhose coefficients
sum to zero, generates a Bessel sequence (see [7, Theorem 1]). However, stability or Riesz
condition for the spanning sets of the nested subspaces

V; 1= clos 2 spar{¢; « 1= 2//2¢(2/ - —k): k € Z},

where L2 := L2(R), is not required in this paper. Properties (2.3b) and (2.2) imply
respectively the density and trivial intersection property of the nested sequence
{0} «<---cVaocVicVocVicVaC---— L? (2.4)

(see, for example [3] and [4, p. 121]).
With z = e7®/2 on the (complex) unit circl&, Eq. (2.1) is equivalent to

d(w) = P()p(w/2), aeweR. (2.5)
We then study two finite familiegy; }, {;} € L2, defined by scaling relations
Ui = 0i@d@/2; i@ =01/, i=1....N, (2.6)

whereQ;, éi are Laurent polynomials that have real coefficients and vanigh=at. In
other words,

(e (5
0Qi(z) = 2 qi(2), Qi(z) = 2 qi(2),

wherem;, i; > 1. Hence, the functions; and+; have compact support and at least one
vanishing moment.
Our study of affine frames involves the two families of shifts and dilates,

W= {0 =22y (2 - —k): 1<i <N, j.kel),

= {Jrju=2/20@ - —k): 1<i <N, j.keZ). 2.7)
As mentioned above, condition (2.3c) ensures that both sets are Bessel familfesee
[7, Theorem 1]).

Our objective is the study of Bessel families that satisfy duality relations of the
following form.

Definition 1. The two families¥ and¥ in (2.6)—(2.7) are calledibling framesif they are
Bessel families and if the duality relation

N
(fr8) =D Y (fiviju) Wik &) (2.8)

i=1jkeZ

is satisfied for allf, g € L2.

We note that both families are indeed framed.8f As usual, the frame condition for
¥ is defined by

N
ALFIZY ST [ v P <BISIR fel?

i=1jkeZ

whereA, B are positive constants. The upper frame boBrekists, becaus¢ is a Bessel
family. The lower frame bound results from the duality (2.8) with the Bessel family
For ease of notation, we will call the famili¢sg;;} and{y;} of frame generators sibling
frames as well.
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Note that sibling frames are generated by functignsy; € V1; i.e., both families are
derived from the same refinable functign Thus, our present development describes a
more general framework than orthonormal wavelet bases or tight frames. They also provide
much more freedom than the initial definition of MRA-frames by Benedetto and Li [2]
where orthogonality between scaling levels was required and where the fagnily &)}
was supposed to be a framely. Sibling frames can also be viewed as biframes (or dual
frames, see [1,30]) with the same refinable function. We will show that this new concept
gives enough flexibility for the realization of important properties such as symmetry, small
support, and a high order of vanishing moments. These can be achieved when using only
two generators for each of the two familigsand @ .

The following result gives a precise characterization of duality of two frames (see [15,
18,19,29,30]). Note that no reference is made to an underlying refinable function.

Theorem A. If the affine families? and & are Bessel families, then the duality relation
(2.8)holds, if and only if

N A
D Vi(2ew)gi(2e) =1 (2.9)

JjeZ i=1

and
N

o
2
j=0

a.e. inR, where(2.10)holds for all odd integers.

(20 )1 (20 (e + 2km)) = 0 (2.10)
1

The assumption o being a Bessel family is not needed for tight frames.

3. Characterization of sibling framesand VMR functions

The results in this section are extensions of earlier work by Weiss et al. [15,19],
Han [18], and Ron and Shen [29,30], who have developed a characterization of tight
affine frames and results on dual pairs of affine frames (so-called biframes), in that the
wavelet frames are associated with certain multiresolution analysis. Parallel investigations
by Daubechies et al. [14] are currently done.

Our first goal is to obtain a complete characterization of sibling frames generated
from a compactly supported refinable function. This characterization will be useful for
constructions of frames with maximal order of vanishing moments. An essential role is
played by a certain parameter functiSiz), which can be characterized as the quotient
of two Laurent polynomials. This function will provide a tool for the design of frames
with vanishing moments, and hence, will be calledaaishing-moment recove(yYMR)
function.

Theorem 1. Let ¢ be a refinable function with compact support and two-scale Laurent
polynomial symboP with real coefficients such thé2.3a)}+(2.3c)are satisfied. LeQ; and

0, be Laurent polynomials with real coefficients vanishing at1. Then the functions;

and ¢, defined in(2.6) generate sibling frames df?, if and only if there exists a VMR
functionsS, defined a.e. itTC, that satisfies the following properties

(i) Sisthe quotientof two Laurent polynomials with real coefficiefits) = R(z)/ T (2);

(i) Siscontinuousat=1,andS(1) =1,
(i) for almost allz € T the following two equations haold

()| PP+ 0:i)0i) = 5@, (3.1)

S(z2)P@P(=2) + Y _ 0i(2)Qi(—2) =0. (3.2)
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As pointed out in the introduction, the fundamental function

O(w) = Z Z Vi (2w 2/a))

|¢>(w>|2, et

—ZZQ, (%) 0i(?) H|P 2| (3.3)

j=1i=1

in [29], defined in terms of bot® and Q;, 0i, agrees with the VMR functiofi(z), where
z=e"/2 and hence satisfies (3.1). Our point of view in the following sections is that the
VMR function S should be defined independently @f and 0;, and Egs. (3.1) and (3.2)
provide a vehicle for finding); and éi.

Proof. We borrow from and extend an idea in [29] by defining the auxiliary function
O (w) in (3.3). Since both families are Bessel (see [7, Theorem 1]), the series in the first
line of (3.3) converges absolutely almost everywhere. Furtherngoi® nonzero almost
everywhere due to analyticity. Heno®@, is a measurable function, which can be defined
by the series of Laurent polynomials in the second line of (3.3). This shows=hiat
27 -periodic.

We use this function when employing the characterizing equations of Theorem A.
Eq. (2.9) gives

~

1= ZZw, (2w 2/a)) |imwi2¢,~(2/w)&i(2fw)

= Im [6(20)|$(2'1)[*].

J——00

The continuity (in fact, analyticity) of atw = 0 shows that Eq. (2.9) is equivalent to the
relation
lim ©2/w)=1 3.4
J——00 ( a)) ( )
for almost everyw € R. In a similar manner, we obtain an equivalent representation of
equation (2.10) by considering

~

0= ZZw (2 w) ¥ (27 (0 + 2kr))

j=0 i

=p(w/p(w/2+ kn)[z Qi(2)Qi(—2) + P(Z)P(—z)@(w)},

for almost every» € R and every odd integer. Then, the analyticity of leads to
0=) 0i()0i(-2)+ P()P(—2)O(w), aezeT. (3.5)

iel
Let us now prove both directions of the equivalence in Theorem 1. First we assume
that the familiegy;} and{v,} satisfy the duality relation (2.8). We show that the function
S(z) = O(w/2), wherez = e77“/2, has the properties (i)—(iii) stated in Theorem 1. As a
result of (3.5), we have

PQP0S() ==Y 0i(0i(-2), [z]=1

iel
Since the coefficients of all two-scale symbols are real, we can infer that

P(=2)=P(-1/2) and Qi(—2)= 0i(~1/z).
Hence,S(z%) = X (z)/ Y (z) is a quotient of two Laurent polynomials with real coefficients.

Rewriting S(z2) as an averageX (z)/Y (z) + X(—z)/Y(—z))/2 gives a representation of
the form

S(z%) = R(z%)/T(2?),
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thus showing property (i). Property (ii) follows from Eg. (3.4) and the fact thaas a
rational function inC, is continuous everywhere except for a finite number of singularities.
The second relation of property (iii) was already established above, while the first relation
in (iii) is an immediate consequence of (3.3).

Let us now assume that there is a rational funciaghat satisfies conditions (i)—(iii) in
the theorem. We will derive Eqgs. (2.9) and (2.10) from here. Note that the first equation in
(iii) implies, by multiplication of both sides bip(w/2)|?, that

S@)|¢@/2)[* = () |p@ [+ 3 i (@) ).

For the proof of (2.9), we apply the above relation recursively, and obtain for anyin
7 that

S(e*)l(

~

(2o ZZ% (2 w)y; (27 w) + S(z?)

j =r i

$(21w)|?.

Property (i) and the continuity of at zero assure that the limit on the left-hand side is

1, asr tends to—oco. Furthermore, we already know that the series on the right-hand side
converges absolutely a.e., by the assumption that both families are Bessel. Hence, we can
conclude that

Jim $(=)[$(2 )" =a@)

exists a.e. Now, assume, on the contrary, that this limit is nonzero on & st
positive measure. Then appealing to the Riemann—Lebesgue Theorem for the fgnction
necessitates the condition
Jim [$(z)] = o0

for all z = e7®/2, » € E. But this is impossible for a rational functigh We have thus
established that(w) = 0, and therefore (2.9) is valid.

Similarly, we find, from the second equation of property (iii), that for any odd integer
and anys > 0,

~

0= szp (2 0) (2 (0 + 2km)) + S(2)p (2 w) (2 L(w + 2k)).

j=0 i

The same considerations as above lead to

lim $(z%)¢(2 ' w)$ (21w + 2m)) =0,

and this gives Eq. (2.10). Thus, we have shown tratand ¥ satisfy the duality
relation (2.8). O

Remark 1. Existing constructions of tight frames in the literature only consider the special
VMR function § =1 in conditions (3.1) and (3.2). Theorem 1 shows that these conditions
(with § =1 and 0; = Q;) are sufficient, but not necessary for the construction of tight
frames. A different proof for the sufficiency in this special case can be derived by using a
telescoping argument applied to

S = Y g0 P+ S [ v

keZ keZ i keZ

which follows from (3.1) and (3.2), see [6,12, p. 264]. Limits of the series on the
left-hand side forj — 400 exist by virtue of the assumptions (2.3a)—(2.3c). There is

a straightforward generalization of this method of proof to Laurent polynomial VMR
functionsS and sibling frames. We were unable, however, to use the same argument for
rational VMR functionss.

’
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It will be useful to draw stronger conclusions about the functioypically we will
use Laurent polynomial§ in our constructions. The possibility of non-polynomigl
is rather restricted, as we will see next. For this purpose we recall some notation from
univariate wavelet theory. A sét1,z2,...,2,} C T, n > 2, of distinct complex numbers
is a nontrivial “cycle” if z; = z,f_l for 2 < k <n andzy = z2. Cycles play an important role
in characterizing stability of integer translates of a refinable funetiotypically denoted
as Cohen'’s condition (see [11,17]). The following result was obtained in [11].

Theorem B. Let P be a Laurent polynomial that satisfig®(1) = 1, P(—1) =0, for
which no pair of symmetric roots d@f (i.e., P(z) = P(—z) = 0) exists onl', and that the
associated scaling functiapis in L2. Then the integer shifts ¢f are stable if and only if
there exists no nontrivial cycle1, zo2, ..., z,} C T so thatP(—z;) = 0for 1 <k < n.

Thus, it follows from the following result that non-polynomigilcan only occur when
the integer shifts of are not stable. In this case, the denomindtaf the rational VMR
function S can be further analyzed.

Proposition 1. With the same notations as in Theorgéntet S = R/ T be the quotient of two
Laurent polynomials with real coefficients that have no common rods\ifi0}. Assume
that S satisfies propertie@)—(iii) in Theoremil. Let Z(7T) denote the set of complex roots
of T different from0. Then the following statements hold

(@) Z(T) CT\{zj¢:=€%Y?:0<t <2/, j>0).

(b) If Z(T) is non-empty, then it contains at least one non-trivial cycle.

(c) If Z(T) is non-empty, and(z) and P(—z) have no common roots dh, then Z(T)
is the union of a finite number of non-trivial cycles and each root in a given cycle has
the same multiplicity.

(d) P(—w)=0forall we Z(T). In particular, if the integer shifts op are stable, then
Z(T) is empty, ands must be a Laurent polynomial.

Proof. Let S = R/ T be given as described in the proposition, and assumetimnhot a
monomial, so tha (T is non-empty. Foiw € Z(T), we introduce the notation
E, = {wzk: k> O}.

By using the fact that?, Q;, and O, are Laurent polynomials with real coefficients,
Egs. (3.1) and (3.2) can be written as

R(z%) o R

T @PA/D+ Z 0:i2)0i(1/2) = 7 =, (3.6)
R(Z? ~

TZZ; P()P(=1/2)+)_ 0i(2)0i(~1/2) =0, 3.7)

forall z € C\ {0}. The rootw € Z(T) defines a pole of the function on the right-hand side
of Eq. (3.6). Consequentlyy?2 must be a root of” as well. By repeating this argument,
we can show that all elements 8f, are roots ofl'. SinceT is a Laurent polynomialf,,
must be finite. Hencey must lie on the unit circle. Sinc&(1) = 1, we know that ¥ E,,,.
This is enough for establishing parts (a) and (b) of the proposition; inde@@nnot be
any of the numbers; , in part (a), andt,, contains a nontrivial cycle.
We next prove part (d) of the proposition. If we insert Eq. (3.7) into (3.6), we obtain
R(2) ~ P(1/z) ~
o~ Z 0:i2)0i1/3) ~ 5= Z 0i(2)Qi(=1/2).
This implies thatP(—1/w) = 0 for all w € Z(T). On the other hand, we know from part
(a) that all of the roots lie off. Hence, we obtain & P(—1/w) = P(—1/w) = P(—w)
for everyw € Z(T). Together with part (b), we have thus shown tlfatannot satisfy
Cohen’s criterion unlesg(T) is empty.
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Finally, we assume, in addition, th#(z) and P(—z) have no common roots dii.
We will show that for everyw € Z(T) the setE,, is a non-trivial cycle, and that every
rooty € E,, has the same multiplicity. (For part (a), we only showed thatcontains a
non-trivial cycle, which means that there are integers n > 0 so thatw?" = w?' and
w2 £ w?" ) Letu e T be given so thai = u? € Z(T) is a root of multiplicitym. Then
we obtain

T(ZZ) = (z2 - w)mTo(zz) =@Z-uw"(z+ u)mTo(Zz),
with a Laurent polynomiglp that does not vanish at. By assumption, eitheP (u) # 0 or
P(—u) #0.If P(u) #0, thenP(1/u) = P(u) # 0 as well, and the common multiplicity
of poles in Eq. (3.6) implies that

T() =@ —w"Tok), To()#0,
Alternatively, if P(—u) # 0, we obtain

T(2) = +uw"To(z), To(—u)#0.
Thus, we have shown thatif = u? is a root of T’ of multiplicity m, then eithet: or —u is
a root with the same multiplicity. This enables us to define a set

Fw = {w = wo, w1, w2, } - Z(T)v

where eachwy is a root of T with the same multiplicityz, and w,fk = w. Finiteness of
F,, implies that this set is a non-trivial cycle that contains= wg. This givesw = wy
for somek > 0, and it follows immediately that’,, = E,,. This completes the proof of
Proposition 1. O

In the following sections we will employ the VMR functiohias a means to construct
sibling frames with certain desirable properties. In most practical examples, we restrict
ourselves to the use of Laurent polynomi&lsThe previous result shows that this is not
a restriction at all, if we deal with compactly supported scaling functions whose integer
shifts are stable.

For later use, we state another simplification of the rational Laurent polyndmial

Lemma 1. Let T be a Laurent polynomial with real coefficients, whose roots lie on
T\ {—1,1}. ThenT has the form

T (2) = 107" To(2), (3.8)
whererg € R, £ is an integer, andp is a Laurent polynomial that is real dii and has real
coefficients.

Proof. Allroots of T are pairs of complex conjugate numberandw = 1/w. Therefore,
T has a representation

T(z) = 1oz’ 1_[ (z+1/z—2Rewp)) = 102" To(2),
j=1

whererg € R and/ is an integerIp(z) has real coefficients and is real @h O

4. Sibling frameswith two generators

It was observed by several authors that the construction of tight affine frames based on
“unitary matrix extension” [29] has certain restrictions. For example, in [6] it was pointed
out that the method can be used only if

PO+ |P(—0)f <1 zeT. (4.1)
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Furthermore, the construction of frames fraBispline multiresolution using unitary
matrix extension necessarily leads to frames where at least one gengrats only one
vanishing moment. Indeed, if the Laurent polynomial symlggisatisfy

Z!Qi(z)|2=1— |P()|% zeT,

where P(z) = 27"(1+ z)™ is the two-scale Laurent polynomial symbol of the cardinal
B-spline of ordenn, then the highest power @i — z) that can be factored out on both
sides of this equation i€l — z)2.

In this section we present a method that makes use of the VMR fungfiomheorem 1
for the design of new sibling framesg, & . This method neither underlies restriction
(4.1), nor imposes restrictions on the order of vanishing momeni; afnd v;, other
than the order of = —1 as a root of the Laurent polynomi&l. Further properties such
as orthogonality between spaces generated by integer translates of eagchand v
and construction schemes of tight frames will be studied in the remaining sections of this
article.

Our main concern is the study of sibling frames with two generators, nanieby:
{1, Y2}, ¥ = {yr1, Yo} Certain negative results on existence of sibling frames with only
one generator will be given in the last section.

The important identities in Theorem 1, part (i), can be stated as

M) = S(z) — S(z°)P(z) P(1/2) —8(ZAP(1/z)P(—2)
T =SEHP@P(-1/2)  S(—z2)—SEZADP(—2)P(—1/z2)
0i1/2) 11, e
Z[Q( 1/)} 0ix) 0Qi(-2)]. (4.2)

whereS is the VMR function described in Theorem 1. The last identity can be rewritten as
a matrix factorization, which in the case of only two generators takes on the form

01(1/2)  Q2(1/2) } [Ql(z) Ql(—Z):|
M@=\ = < . 4.3
© [Ql(—l/z) 02(-1/9)] | 02()  0a(~2) (4:3)
The essential step consists of defining such a funciaich is a Laurent polynomial
or the quotient of two Laurent polynomials with real coefficients, such$kht= 1 and

S(z) — ——=0(lz—1/*") nearz=1. 4.4

5, ( ) ( ) (4.4)
Here, B, denotes the generalized Euler—Frobenius polynomial associated with the
refinable functiory defined by

By(z) =) biz*, whereb; = f ¢ (x)¢ (x + k) dx.

keZ

Let us recall from [4, Theorem 5.10] tth; is a Laurent polynomial with real coefficients,
non-negative off, andBy (1) = 1, and that the relation

P(2)P(1/2) By (2) + P(—2) P(—1/2) By(—2) = By (z?) (4.5)

holds for all complex # 0.
We will see in Section 4.1 that (4.4) governs the vanishing-momentrecovery property of
frames. Note that property (ii) in Theorem 1, namely thé continuous at 1 ansl(1) = 1
is a direct consequence of (4.4). There are many ways to define a Laurent polysidinaial
satisfies (4.4). One particular choice is the Taylor polynomial of degtee 2 of 1/By,
with centerzg = 1. Another, more symmetric, choice is
m—1
S =Y s—z-1/2),
k=0
where the real coefficients are determined by a linear system of equations. Consistency
of this system is assured by the fact tiBgthas an expansion in powers & — z — 1/z),
due to the symmetry relatidn, = b, for its coefficient sequence.
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4.1. Vanishing moments

Our main result in this section is that there always exist sibling frames with two
generators and with the maximal number of vanishing moments. Moreover, these frames
can be chosen to be symmetric or antisymmetric as governed by the order of the root
z = —1 of the two-scale symbol af, provided that is symmetric.

Theorem 2. For any compactly supported refinable functipithat satisfieg2.3a}«(2.3c),
there exist compactly supported sibling franigs, v}, {1, ¥2} with the property that all
of the four functions have vanishing moments, whene is the order of the root = —1
of the two-scale Laurent polynomi#l. Furthermore, ifp is symmetric, then all of the four
functions can be chosen to be symmetric for exeand antisymmetric for odek.

Proof. Our proof is constructive. Since it is similar to the proof of an independent but
earlier result in [13], we only give an outline in the following. (We thank one of the
reviewers for pointing out the reference [13] which allows us to shorten our original
presentation.) We can choos$eto be any Laurent polynomial that has real coefficients
and satisfies property (4.4). Letbe a neighborhood af= 1 whereBy(z) and By (z?) are
non-zero. For alt € V, we infer from (4.4) and (4.5) that

P(=2)P(=1/2)By(—2)

2 _ _112m
S(z) — S(z%)P(2) P(1/z) = TREYE +O(]z — 11°")
=0(lz - 1/*").
Hence, the matrix (4.2) can be factored in the form of
_ A2) —5(z%) Po(1/2) Po(—2)

where D,, is the diagonal matrixD,,(z) := diag(((1 — 2)/2)™, (1 + z)/2)™) and A is
some symmetric Laurent polynomial with real coefficients. The matrix relation (4.3) can
be satisfied by taking

01(2) = (1 - 2)/2)" (A(2) — S(z?) Po(z) Po(—1/2)) /2,

01(2) = (1-2)/2)",

02(2) =z((1—2)/2)" (A(z) + S(z%) Po(z) Po(—1/2)) /2,

02(2) =z((1—2)/2)". (4.7)

This completes the first part of the proof of Theorem 2.

Observe thaty(z) Po(—1/z) = Po(1/z) Po(—z), provided thatP is symmetric. Hence,
Q1 and Q> in (4.7) are symmetric (respectively, antisymmetric) abey® andm /2 + 1,
respectively, ifn is even (respectively, odd). Symmetry or antisymmetry of the coefficient
sequences oD1 and Q> is obvious. These symmetry properties of the Laurent polyno-
mials directly relate to the analogous symmetry properties of the functieng» and

Y1, Y. O

Remark 2. It is not difficult to show that the maximal number of vanishing moments of
sibling frames cannot exceed wherem is the order of the roaf = —1 of the two-scale
symbol P in (2.3a). In other words, there is at least one functlprand one corresponding
functiony; that have at most vanishing moments. Indeed, Eq. (3.2) gives

> 0i(2)0i(—2) = —5(z%) P()P(~2)

1_— m
- _< 5 Z) [S()P(D)Po(—1) + O(|z — 1™ 1)]

by applying (2.3a) and considering the Taylor expansion arquad. The first term inside
the brackets is non-zero. This shows that not@llcan have zeros of order greater than
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m atz = 1. In other words, at least onfg has at mostz vanishing moments. The same
method, using Taylor expansion of the same term araquad-1, shows that at least one
¥; has at mosiz vanishing moments.

Remark 3. The pair of sibling frames constructed in (4.7) results from a trivial
factorization

(1 vz [ qa(=2)
MO(Z)__l —1/1} [zqz(z) —zqz(—z)]’ (4.8)

whereg1 2(z) = (A(z) £ S(z%) Po(z) Po(—1/2)) /2, of the reduced matrix

[ A(2) —S(z%) Po(1/z) Po(—2)
Mo@@) = | —S(z%) Po(z) Po(—1/2) A(-2) } (4.9)

which is obtained after cgncgllation of the factdps, (z) and D,,(1/z) in (4.6). The
resulting frame generatofg1, ¥»} are chosen to satisfy

P2(x) = Ya(x — 1/2).

This is significant in that the shift-variant defect of the standard wavelet decomposition
procedure (of discrete convolution followed by down-sampling) can be eliminated. In a
different context, Kingsbury [20,21] considered a dual tree of wavelet filters, where all
the sampling rates of the fully decimated wavelet transform are doubled by eliminating
the downsampling operation in the first decomposition step and where the filters of the
subsequent decomposition steps are chosen with alternating parity, in order to achieve the
almost shift-invariant effect, with noticeable improvement in image denoising and texture
analysis. In Fig. 1, we show graphs of the four generators of the pair of sibling frames
with four vanishing moments that are linear combinations of cubic cardirggdlines. The
trivial factorization (4.8) is employed here. The aforementioned exact shift invariance of
{¥1, Y2} can be recognized in Fig. 1b. Approximate shift-invariance of their fifagly»}

can be seen in Fig. 1a.

Remark 4. The construction based on (4.8) may result in unbalanced supports for the two
generators and their duals: the length of the coefficient sequenéasm‘: 1,2,ism+1,

while the length ofQ; is m + ¢; where¢; is the length of the coefficient sequencepfn

(4.8). More “balanced” factorizations

[ @@ @0/ [ae a2
Mo(2) = [él<—1/z> éz(—l/Z)} [qz(z) 612(—2)} (4.10)

can be constructed for special cases where the determinant of the thégrixas low
degree. This can occur, of course, even if the entriestgthave higher degree. As arule of
thumb, we will obtain a factorization where all coefficient sequences have half the length of
the sequenceg andg: in the trivial factorization (4.8). Ingredients of our construction are

a polyphase decomposition and degree reduction using the Euclidean algorithm. A precise
description of this result is given in the appendix. The following examples can serve as an
explanation of this method.

Example 1. The refinable functiok is chosen to be the cardinBlspline N, of orderm
(or degreen — 1) with integer knots, and supported on the inteff@ain]. Its two-scale
symbolisP(z) = ((1+ z)/2)"™. We choose the vanishing-moment recovery funcon
to be the symmetric Laurent polynomial

m—1 N
2 _ .
w0 En(55)

j=0
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2.5
(b)
Fig. 1. Cubic spline sibling frames/1, 2} (a) and{v1, V2} (b); exact shift-invariance fofs = 1 (- — 1/2).

of lowest degree for which (4.4) is satisfied. An explicit form of the coefficignts given
by

k—1
_ 1 k—1-tq0. [(m+L
so=1, sk_m;)(—l) se( 7)) (4.11)

For eachm = 2, 3, 4, we may easily write dowl§ and the factorization of the matrix1
in (4.3) which defines either a tight frame, or a sibling frame. Details for obtaining these
factorizations are given in Appendix A.

(i) For the linear cardinaB-spline N2(x) = (1 — |x — 1)+, the vanishing-moment
recovery functionS(z) = 1+ %(2 — z —z 1) reveals two vanishing moments. We ob-
tain a tight frame with two symmetric generatofg and vy from the factorization
M(z) = Q(z7H QT (z), where

S N A g R

2
_[(1_;)2 0 Hl (1+4z+z2)/«/6}
Lo )Pl A-4+AN6]

Hence, the two-scale symbols fgi, y2 are given by

01 =(1-2/2°% 022 =(1-2)/2)*(1+4 +:2)/6.



238 C.K. Chui et al. / Appl. Comput. Harmon. Anal. 13 (2002) 224-262
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-0.5 0 0.5 1 15 2 25 3 35

Fig. 2. Linear spline tight frame generatafs (solid line) andy» (dashed line) with two vanishing moments.

The graphs are shown in Fig. 2. Note that the construction in [29] gives a tight frame with
two generators, one symmetric and the other antisymmetric, where the symmetric genera-
tor has only one vanishing moment.

(ii) The construction for quadratic cardin@-spline N3 makes use ofS(z) = 1 +
12—z-zYH+ 22—z - z7Y? to reveal three vanishing moments. The factoriza-
tion M(z) = R(z~HD(z)R7(z) can be formulated with

—z\3 2
[ 0 M 2 B2 1.0
s )| o | ==

103 0
)= 0 5438+247(z%+772) |-
— 1236

In order to obtain a tight frame/1, ¥»), the diagonal matri® is factored out by applying
the Riesz Lemma for the second diagonal entry. The factorization
5438+ 247(z% +z72) = 2 (L + 22) (A +272),

| _ 2719+ 4/458247

247 22

gives

1 1-z\° -1 2, -2
361+ 156(z +2 1) + 26(z° + ,
3\/1545< 2 >( heT)H 28 +)

1 [247 (1-2\° ., . 4 5
QZ(Z)—l—Z m( 5 )(Z +6z7"4+ 1+ 21)+6rz+ Az )

It can be seen immediately th@g is antisymmetric, but/» is neither symmetric nor anti-
symmetric (see Fig. 3). Several other choices of frame generators can be made. If symmetry
is of no concern, tight frame generators with shorter masks can be found by multiplication
of the vector(Q1, Q2) by an orthogonal matrix that eliminates two coefficients in either

Q1 or Q2 with highest (or lowest) powers af A construction of frame elements with

such short masks (6-tap and 8-tap) was first considered in [14]. Conversely, if symmetry or
antisymmetry of both generators is required, a pair of sibling framesy2} and{y1, ¥2}

of antisymmetric functions can be defined, whére= V1 is as above, ang», ¥» have
two-scale symbols

1 2719(1 -z

Q1(z) =

Q) =5\ %18\ 32

3
2
=15 ) (1462 + z°),

5oy = (14 22 (24 2
02(2) = <1+ 5438(Z +z )) 02(2).
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Fig. 3. Quadratic spline tight frame generatgrs(solid line) andy» (dashed line) with three vanishing moments.

0.8 T T T T T

0.6

021

-0.8 .
-1 0 1 2 3 4 5

Fig. 4. Quadratic spline sibling frame generatgrs= v/ (dotted line),y» (solid line), andy- (dashed line),
with three vanishing moments.

These generators are shown in Fig. 4, where the dotted line depicts the geteraten,
the solid line shows),, and the dashed line depicis. The supports are sugp =
[—1, 4], suppy2 = [0, 4], and supprz = [—1,5]. Note thaty» is a linear combination
of integer shifts ofy». The graphs ofy» and, look almost identical. Furthermore, the
approximate shift-invariancgz ~ 1(- — 1/2) is clearly shown in Fig. 4.

(i) For the cubic cardinaB-spline N4, we make use of the VMR function

S(Z)—1+3(2 z—2 )+ —=(2-z-z )+15120(2 z—277)

in order to reveal four vanishing moments. The factorizatliiz) = R(z~1H)C(z)R"(z)
can be formulated with

CTEDT 0 M [ &2 1 0
R(z)—[ 0 (ﬁ)4 1 —llo 1§ 2(1252) 1| @and

2
2724 7775z%+272) 4834G1+z79)
C(Z)Z 945 ) 4725 A .
4834G1+72) 416856+2828z2+72)
4725 23625

A pair of sibling framegy1, 2} and{v/1, Y2} of symmetric functions is obtained by using
a simple factorization of . This gives two-scale symbols
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1.2 T T T T
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Fig. 5. Cubic spline sibling frame generatdsy, v»} (a) and{y/1, ¥»} (b) with four vanishing moments.

1/1-z\* -1 2, -2
Q1(Z)=Z< 3 )(22+8(z+z )+z°+279),

(1-2\* 2
QZ(Z)=§< > )(1+8z+z),

1) = (12
1= 718900\ 2

+1244Q% + z73) + 1555 + %)),

4
) (132666+ 94719z + 2~ 1) + 44494:% + 7 7?)

3 _ 1 /12 N 2 -1, .3
Qz(z)—m( 5 )(6102¢+33045(1+z)+9952(z +29)

+1244z7% 4+ 2%).

The sibling frame constructed here is shown in Fig. 5. A tight frame construction is con-
sidered in Section 5 where a new method for matrix factorization is presented.

4.2. Inter-orthogonality

In addition to the maximum number of vanishing moments, we can require sibling
frames to satisfy certain orthogonality relations.
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Definition 2. The family ¥ = {yr1, ..., ¥,,} C L? is inter-orthogonalif Wi L W/, i # j,
whereW' = clos, 2 sparfy; (x — k): k € Z}.

We will study this property for generatoys of a sibling frame. Standard computations
using the Fourier transform af; show that' | W/ is equivalent to

Qi(2)Qj(2)By(2) + Qi(—2)Qj(=2)By(—=2) =0, [z|=1. (4.12)

We first show that inter-orthogonality requires that the number of generatars-tie
Proposition 2. If ¥; € V1, 1 <i < n, are non-trivial and inter-orthogonal, then= 2.

Proof. EqQ. (4.12) can be written in matrix form as

|:Ql(Z) cee On(2) ]*[qu(z) 0 ]|:Q1(Z) Qn(z)]
Qi1(=2) ... Qn(-2) 0 By(—2) || Q1(=2) ... Qn(-2)

= diag((| Qi (2)|*Bs(2) + | Qi (=) [ By(—2)): 1<i <n).
The matrix on the right has full rankfor somez € T, while the matrix on the left has rank

atmost2. O

The existence of inter-orthogonal sibling frames with two generators (where inter-
orthogonality is valid for one family) is assured by the next result.

Theorem 3. For any compactly supported refinable functigithat satisfie42.3a)—(2.3c)
there exists a pair of sibling frame@/1, ¥») and (Y1, ¥2) such that all of the four
functions have compact support and the maximum numbefr vanishing moments, and
that (1, ¥2) is inter-orthogonal.

For the proof we make use of the following result in [24, Theorem 1.2].

Lemma 2. Let u1 and up be Laurent polynomials that are nonnegative Brand have
no common zeros i \ {0}. There exist Laurent polynomialg and v> which are also
nonnegative off’, such that

u1(z)v1(z) +u2(z)v2(z) =1, forall z € C\ {0} (4.13)
We also need the following lemma whose proof will be given later.

Lemma 3. Let E be a Laurent polynomial with real coefficients aBd> 0 onT. ThenE
can be decomposed into Laurent polynomials with real coefficients,

E(2) = D(z%) Eo(2), (4.14)

such thatEg > 0onT, and thatEg(z) and Eq(—z) have no common zeros.

Proof of Theorem 3. Let S be a VMR Laurent polynomial with real coefficients and real-
valued onT, as in Theorem 2, such that the mati¥z has the factorization

M(z) = Dm(l/Z)MO(Z)Dm (2).

The objective is to find a suitable factorization

[ @@ 20 ([qak) CJ1(—Z):| 4.15
M0 =255 s L o e

so that the Laurent polynomiaf3; (z) = ((1 — z)/2)™q; (z) satisfy Eq. (4.12).
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Assuming real coefficients for all Laurent polynomials, (4.12) can be expressed as

1_ m 1_1 m
( Z) ( / Z) 01()42(1/2) By (2)

2 2
1+z\"/1+1/z\"
+ ( 5 ) ( > / ) q1(—2)q2(=1/2)By(=2) =0, z#0. (4.16)
Next we will show that there are solutionps andg2 of this equation so that
q1(z)  q1(=2)
et =—z. 4.17
[Clz(z) qz(—z)} ¢ (4.17)

For this purpose, we use the fact that the Laurent polynomial

1_ m 1_1 m
E(z)::( 21) ( 2/1) By(2)

in (4.16) has real coefficients and is non-negativ&oBy Lemma 3 we find a factorization
E(z) =d(2%) Eo().

where Eg has the same properties &s and, in addition,Eq(z) and Eo(—z) have no
common roots inC \ {0}. The orthogonality relation (4.16) is automatically satisfied if
we choose

q1(z) =qo(z) E1(—=z) and q2(z) =zq0(—1/2) E2(—2),

where gg is an arbitrary Laurent polynomial with real coefficients afigz) E2(z) =
Eo(z). The factorsE1 and E> can be chosen to be non-negative®rand that none of
the four functionE; (z), Ei(—z), 1 < i < 2, have any common roots. Eq. (4.17) expressed
for this choice ofy1, g2 is equivalent to

|90(2)|*E1(2) E2(=2) + |g0(—2)|*E1(—2) E2(z) =1, z€eT.

Lemma 2 allows us to find a Laurent polynomiak |¢o|2 which satisfies this equation,
and the Riesz Lemma gives a solutign

The Laurent polynomialg1, g2 constructed so far define the family = {yr1, ¥}
which is inter-orthogonal, due to (4.16). Eq. (4.17) implies that

0 0 -1
q1(z)  g2(z) | _ q1(z) gq1(—2)
[él(—z) éz(—z)} =Mo(@) [qz(z) qz(—z)]

defines Laurent polynomialg, g2 so that the factorization (4.15) d¥1g is valid. Hence,
we have found a sibling frame with vanishing moments whet is inter-orthogonal. O

We now give the proof of Lemma 3.

Proof of Lemma 3. SinceE is a Laurent polynomial with real coefficients and is reallon
it can be written as an algebraic polynoméadf the real variable: = z + z 71 € [—-1, 1]
with real coefficients. By assumptienis non-negative ofi—1, 1]. Hence, we can find an
integerk > 0 and an algebraic polynomiad such that

e(u) = u2keo(u), eo(0) > 0.

Obviously,eq is non-negative ofi—1, 1] as well.

Letdp(u) denote the greatest common divisoegfu) andeg(—u), which is normalized
such thatdp(0) = 1. Sinceeg is non-negative oif—1, 1], all roots ofdp in (—1, 1) must
have even multiplicity. Therefordyp is also non-negative dn-1, 1]. Moreover, itis easy to
see thatlp(—u) is a common divisor oég(1) andeg(—u) as well. Hencegdp(x) must be a
constant multiple oflg(—u), and the positivity at 0 givegy(«) = do(—u). This implies that
do is an algebraic polynomial in even powersoin other words, we obtain a factorization

E(R)=eu) = u2kd1(u2)e1(u),
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with algebraic polynomialg/y andes that are non-negative oir-1, 1], such thateq ()
ande1(—u) have no common zeros . The factorization in the lemma is then obtained
by defining D(z?) := u%*d1(u?) and Eo(z) := e1(u). By construction, these Laurent
polynomials have real coefficients arith is non-negative oril. Due to the algebraic
relation Eq(—z) = e1(—u), the Laurent polynomialgo(z) and Eg(—z) have no common
zeros. O

Example 2. For the linear cardinaB-spline N2 with integer knots, we use the same VMR
Laurent polynomialS(z) = 1+ (2 — z — z71)/6 as in the example in Section 4.1. The
two-scale symbols of the inter-orthogonal frame generatarand; are formulated as
0i(2) = (1~ 2)/2%gi(2), i = 1,2, where

2 —1\? 4—z—771
g1() = <$) 200G, q2(2) = %qo(—lm.

The polynomialg has the formyo(z) = az? + bz + ¢ with coefficients
1 1
a=1/4+ 1—2¢5—7— oV 42+ 6+/57~ 0.1005

1 1/
1
b=1/2- 257~ ~0.7583

The two-scale symbols for the dual pair are obtained in the fornDgak) = ((1 —
2)/2%i(2),i =1,2, where

41(2) == —28(2%)q2(1/2) — 2A(2)g2(~1/2),
§2(2) = 2A(2)q1(—1/2) + 28(z%)q1(1/2),

and A(z) = 24+ 8(z + z7 1) + 22 4+ 272 /24 is the first diagonal entry of the reduced
matrix Mo. Fig. 6 depicts the graphs of the generafars, v} (a) and{yr1, ¥2} (b). O

5. Tight frameswith two generators

In this section we show that tight affine frames with two compactly supported generators
Y1, Y2 € V1 exist for any refinable functiop whose integer shifts are stable, such that
both generators have the maximal orgeof vanishing moments, where is the order of
the zeroz = —1 of the two-scale polynomiaP. We include the detailed description of a
constructive procedure for the tight frame generagarand.

One part of this procedure consists of extending the spectral factorization of trigonomet-
ric polynomials, as described in [28, pp. 117-118], to matrix-valued Laurent polynomials

N
M@= > A

k=—N

that are positive semidefinite dii and whose coefficientd; are 2x 2 matrices with

real entries. The underlying theoretical result is a well-known generalization of the Fejér—
Riesz Theorem which was obtained by Rosenblatt [32]. The following version of the result
together with a generalization to operator-valued polynomials as well as several useful
historical remarks can be found in the monograph [33, Section 6.6].

A € C" such thatM is positive semidefinite dii. Then there exists an outer function
R(z) = lecv:o By z* with coefficientsB; € C"*", such that

M) =R*(2)R(z), zeT. (5.1)

Theorem C. Let M(z) = Z,iv: v Axz¥ be a trigonometric polynomial with coefficients
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Fig. 6. Linear spline sibling frames with two vanishing moments; interorthogonal genetatorg,} (a), dual
generators (b).

The notion of inner and outer operator-valued functions is explained in [33]. Several
numerical procedures for the construction of the factorization (5.1) are described in [8,25].
Some of these methods employ an equivalent representation of the matrix polyndmial
as a biinfinite block Toeplitz matrix and use a Wiener—Hopf type method computing the
Cholesky factors of finite compressions of this matrix, see [25]. Another method described
in [25] uses a relatively complex spectral factorization technique in order to obtain an
LDU-decomposition ofM. Its simplification for the case of symmetry, definiteness, and
low dimension of the matrix polynomial are not obvious to us. For this reason we include a
simpler construction of a spectral factorization (5.1) whetes a 2x 2 matrix polynomial
that is positive semidefinite df. Our construction requires only the spectral factorization
of univariate trigonometric polynomials and linear algebra techniques.

Our construction is based on a reduced form of the matrix polynomial that is obtained
from the following lemma.

Lemma4. Let

_ | A  B(2)
M(Z)_[B(l/z) C(z):|
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be a matrix of Laurent polynomials with real coefficientsMf is positive semidefinite
on T, then there exists a Laurent polynoméaith real coefficients, such that

_|d@) O Ao(z) Bo(z) ||d(l/z) O
M(Z)—[ 0 1“30(1/@ C(z)][ 0 1]

whereAq and By are Laurent polynomials with no common rootgdn {0}. Moreover, the
matrix in the middle of the above equation is positive semidefinité and, in particular,
Ao(z) = Z,ivzoak(z + z~ ¥ is strictly positive orfT.

Proof. If A and B have no common roots it \ {0}, the factorization in the lemma is
valid for d = 1. Otherwise, let us denote & the collection of all common roots of
and B, counting each root with the minimum of both multiplicities as a rootAo&nd
B, respectively. Note that both and B have real coefficients. Furthermor&,must be
non-negative off’ by virtue of our assumptions oM, and thatA(z) = A(1/z), |z| =1, is
satisfied.

For anyw € Z, we will find a factord,, in each of the following three cases such that

A(z) = dyw(2)dw(1/2)A1(2), B(z) = dy(2) B1(2). (5.2)

Hered,,, A1, and By are Laurent polynomials with real coefficients anhf(w) = 0. By
construction A1 is non-negative off. By proceeding in this manner all common zeros of
A andB can be eliminated:

(@) If wis not real andw| # 1, thend,,(z) = (z — w)(z — w) is a Laurent polynomial
with real coefficients which divides both andB. Moreoverdw(l/z) is a factor ofA
having zeros Aw and /w which are distinct fromw, w. This gives (5.2).

(b) If we R\ {—1,1} we haveA(w) = A(1/w) = 0. This gives (5.2), wheré,,(z) =
(z —w).

(c) If we T, the multiplicity k4 of the rootw of A is even, sincel is non-negative off.
If wé¢{—1,1}, we let

dy(@x) =771z —w)(z — ) = (z+ 1/z — (w +w)).

Obviously,d,, has real coefficients, antf (z) = d,,(z)d,,(1/z) is a factor ofA. This gives
(5.2). For the remaining case {—1, 1}, we make use oy = 1/w in the formulation

AR =1 —-wz)(1- wzfl)Al(z), B(z) = (1 — wz)B1(2).

Again, (5.2) is established for this case.
After applying this procedure finitely many times we obtain a factorization

A(z) =d(2)d(1/2) Ao(2), B(z) =d(z) Bo(2),

where all Laurent polynomials have real coefficients, apdand Bp have ho common
roots inC \ {0}. Obviously,

B(1/z) =d(1/z)Bo(1/z)

is also valid. The last two equations give the factorization in Lemma 4. It is also obvious
that the matrix in the middle of this factorization is positive semidefinite. Hence, its
diagonal entrydg is non-negative off', and this implies that it is an algebraic polynomial
inu:=z+z 1. Moreover, ifw € T were a root ofdg, the definiteness of the matrix would
imply that Bo(w) Bo(1/w) = 0. This would give a common rootor w) of Ag and By
which does not exist. This completes the proof of the lemnta.

The next theorem gives a new construction based on univariate spectral factorization
for the matrix decomposition (5.1). Moreover, we establish a one-to-one correspondence
between all factorizations of the form (5.1) whose polynomial degree is restricted with the
set of all solutions of dinear homogeneous system of equations (5.4)—(5.5) and a simple
quadratic side condition (5.6). Therefore, the matrix factorization (5.1) can be determined
using methods of linear algebra.
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We define the degree of a Laurent polynor@aﬁf’i[\,1 ckzZ*, with Ny < No andcy, #0
fork=1,2,to beN> — N1.

Theorem 4. Let
| A B
M(Z)_[B(l/z) C(z):|

be a matrix of Laurent polynomials with real coefficients which is positive semidefinite
onT, and suppose that(z) = Z,’fzoak(z +z~1% and B have no common roots i1\ {0},
anday # 0. Then there exist four Laurent polynomials uz, v1, vz with real coefficients,
with u1 anduy of degree at mos¥, such that

_ | u1@/2) u2(l/2) || uiz) vi@) | _ o7
SR e | bovsiens BACRLED ©-3

The quadrupléus, uz, v1, v2) is a solution of the linear homogeneous system

B(2)ui(z) — d(z)uz(1/z) — A(x)vi(z) =0, (5.4)

d(1/z2)u1(z) + B(1/2)u2(1/z) — A(z)v2(1/z) =0 (5.5)
and

u2(1) + ud(1) = AD), (5.6)
whered is a Laurent polynomial such that

d(z)d(1/z) = detM(z). (5.7)

Conversely, any Laurent polynomial soluti@m, u2, v1, v2) of (5.4)~(5.6), with u;1 and
u of degree at mosvV andd as in(5.7), defines a factorizatio(b.3) of M.

Proof. The existence of algebraic polynomidls, u2, v1, v2) that define a factorization
(5.3) is part of the general result of Theorem C. The assertion of Theorem 4 is slightly
stronger as far as the degree of the polynomialsand uz is concerned. The proof is
organized as follows. First, we show the equivalence of the matrix factorization (5.3) and
the system of equations (5.4)—(5.6) under the assumptiontthahdu, have degree at
mostN. Then, we prove existence of solutiofag, u2, v1, v2) of (5.4)—(5.6) that meet the
assumption on the degreewof anduy. We frequently use the fact thathas no zeros on

T, which follows from Lemma 4 and our assumptions/oh

Let us assume that a factorization®f in (5.3), with

|4 W
Clu2 w2’
is defined whera; anduy have degree at moat. Thend = detR = ujv2 — uovq satisfies
(5.7), and the equation
u1(z)u1(1/z) + uz(2x)u2(1/z) = A(z)
implies (5.6). In order to prove (5.4)—(5.5), we let

a(z) := B(2)u1(z) —d(2u2(1/z) — A(2)vi(z),

B(2) :=d(2)u1(1/z) + B(2)u2(z) — A(2)v2(2). (5.8)
It follows from (5.3) and (5.7) that
a(2)u1(1/z) + B(2)uz(l/z) =0, a(z2)v1(1/2) + B(z)v2(1/2) = 0. (5.9)

This is a homogeneous system of linear equations fand 8, whose determinarnt(1/z)
is non-zero for almost alf € T. Thereforex = 8 = 0 is the only Laurent polynomial
solution, and (5.4)—(5.5) must be satisfied.

Conversely, letd be any Laurent polynomial with real coefficients that satisfies
(5.7). Moreover, let Laurent polynomialg1, u2, v1, v2) with real coefficients be given,
with u#1 and up of degree at mostV, such that (5.4)—(5.6) is satisfied. Hence, the
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Laurent polynomialsx and 8, as defined in (5.8), are zero. After reordering the terms
u1(1/2)a(z) + uz2(1/z)B(z) we obtain

B()[u1(z)u1(1/z) + u2(z)uz(1/2)] = A(2)[v1(2)u1(1/z) + v2(z)u2(1/2)]. (5.10)

Since A and B have no common roots it© \ {0}, by assumption, this shows that
[u1(z)u1(1/z) + u2(z)u2(1/z)] is divisible by A(z); in other words

u1(2)u1(1/z) + u2(x)uz(1/z) = p(2)A(z), (5.11)

for some Laurent polynomigh. By the assumption that the degreemafanduz cannot
exceedV, the left hand side of (5.11) is a Laurent polynomial of the foﬁﬁ’zo cr(z +
1/z)* with real coefficients;;, 0 < k < N. Consequentlyp must be constant, and (5.6)
implies thatp = 1. By combining (5.10) and (5.11) we obtain

u1(z)ua(l/z) +uz(2)uz(l/z) = A(2),
v1(2)u1(1/z) + v2(2)u2(1/z) = B(2), (5.12)

which yields one part of the matrix factorization (5.3). If we operate analogouslyamd
B in (5.8) by taking the combinationpa — v18, we obtain

B(2)[u1(2)v2(z) — u2(2)v1(2) | = d(2)[v1(2)u1(1/z) + v2(2u2(1/2)| = d(2) B(z),

where the last equation follows from the second relation in (5.12). Hence, we have
u1(z)v2(z) —u2(z)vi(z) =d(2). (5.13)
Furthermore, the combinatian (1/z)x + v2(1/z)8 gives
A@)[v1(2)v1(1/2) + v2(2)v2(1/2)] = B(2) B(1/2) + d(2)d(1/2) = A(2)C(2).

Here we used the second relation in (5.12) and (5.13), witkplaced by 1z, together
with the fact that/ satisfies (5.7). Now, we can conclude that

v1(2)v1(1/2) + v2(2)v2(1/2) = C(2). (5.14)

Egs. (5.12) and (5.14) give the matrix factorization (5.3).

In the remaining part of the proof, we show that Laurent polynoni@asuz, v1, v2)
with real coefficients exist, withx1 andu, of degree at mosiV, which satisfy (5.4)—
(5.6). We begin by constructing algebraic polynomigisandu» such that the Laurent
polynomial

B(2)u1(z) —d(z)uz(1/z) (5.15)

is divisible by A. Note that:¥ A(z) is an algebraic polynomial of exact degre®.2All its
roots lie inC \ {0}. Let w be a root ofA of multiplicity k. Then(z — w)¥ is a factor of the
Laurent polynomial (5.15) if and only if

v

dz¥
If wisreal, (5.16) specifigsreal and homogeneous equations for the unknown coefficients
of u1 anduy. If w is not real, the real and imaginary parts of (5.16) giker€al and
homogeneous equations for the unknown coefficients @ndu which are equivalent to
the fact that[(z — w)(z — w)]¥ is a factor of the Laurent polynomial (5.15). The total
number of equations in (5.16), taking into consideration all of the rootd,of 2N.
Therefore, non-trivial algebraic polynomials andu» of degree at mosV exist such that
A divides the Laurent polynomialin (5.15); in other words, there exist Laurent polynomials
u1, uz, vy with real coefficients, withx; andu, of degree at mosv, such that

B(2)u1(z) —d(2)uz(1/z) — A(z)v1(z) =0.

The triple(u1, uz, v1) defines a solution of Eq. (5.4).
Let us note here that any multiple @f1, u2, v1) provides a solution of (5.4) as well.
Furthermore, any common roots of(z) andu2(1/z) which lie onT can be dropped,

[B(z)u1(z) — d(z)uz(l/z)]zzw =0 forallO<v<k—1 (5.16)



248 C.K. Chui et al. / Appl. Comput. Harmon. Anal. 13 (2002) 224-262

becaused does not vanish off. Hence, we can find a normalized solution, u», v1) of
(5.4) which also satisfies (5.6).

Finally, we show that this choice aft1, u2, v1) leads to a solutio(u1, uz, vo) of
Eq. (5.5). Indeed, multiplication by(1/z) on both sides of (5.4) and Eq. (5.7) gives

B(2)d(1/2)u1(z) — detM(2)u2(1/z) = A(z)d(1/2)v1(2).
Thus, we obtain
B(z2)[d(1/2)u1(z) + B(1/2)u2(1/z)] = A(2)[d(1/2)v1(z) + C(2)u2(1/2)]. (5.17)

Now, by the assumption that and B have no common roots, the factor inside the brackets
on the left-hand side of (5.17) must be divisible dyWe can conclude that (5.4) implies
(5.5), with a suitable choice of the Laurent polynomial This shows the existence of
Laurent polynomialgus, uz, v1, v2) that satisfy (5.4)—(5.6) and, by the equivalence that
we proved before, the existence of the matrix factorization (5.3).

Thus we have completed the proof of Theorem 41

Remark 5. Construction of the factaR in (5.3) is based on knowledge of a factorization

(5.7) of the positive Laurent polynomial d&t. The additional steps can be carried out

by using methods of elementary linear algebra. In this regard, the complexity of the
method is comparable to the univariate spectral factorization technique that is based on
the fundamental theorem of algebra, see [28]. In particular, the construction circumvents
the use of Grobner basis methods which, at a first glance, appear to be necessary to solve
equations (5.12). No claim is made that the fagtoin Theorem 4 is an outer function as

in the abstract Theorem C. A more general construction for all matrix polynomials of any
(finite) size is currently under investigation by the authors.

In the following, we demonstrate the effective procedure by revisiting Example 1 in
Section 4.

Example 3. As in Section 4, the refinable functi@nis chosen to be the cardinBtspline

N,, of orderm with integer knots, and supported on the interMln]. The vanishing-
moment recovery functior§(z) in (4.11) exhibits a positive definite matri¥o that
satisfies the assumptions of Theorem 4. o 2 andm = 3, the matrix Mg can be
reduced to a diagonal matrix by using the Euclidean algorithm described in Appendix A.
Hence, a factorization (5.3) can even be found without appealing to the constructive
method of Theorem 4. Fon = 4, however, the reduction by the Euclidean algorithm in
Appendix A leaves a non-diagonal matrix

2724H7775z%+:72) 483461+z73
Cl) = 7725
483461472 416856r2828:%+272) |
7725 23625

Instead of defining a pair of symmetric sibling frames as in Section 4, the method of
Theorem 4 can be employed for the construction of non-symmetric tight frame generators
(Y1, ¥2). If we substitutex for z2 in C(z), the parameteN in Theorem 4 is 1. Solutions
(u1,u2,v1) of Eq. (5.4), which are algebraic polynomials of degree at most 1, can be
chosen to have the form

ui(x) = 0[7775(d2 —di1(1+x)+ dox) + 19472dy + dzx)]

=3.15315% + 2.6093Q

uz(x) =c[26928722 /225| = 3.47592,

v1(x) = c[48346d0— d1+ d2)/5] = 4.12182
Their coefficient sequences (a total of 6 unknownsifgru,, andvi) are chosen from

the null space of a system of four linear equations. Here, the coeffidiéntg;, do) =
(—2.07544 —17.2278 —0.4745323 stem from the univariate factorization

detC(z) = (do + d1x + dax?)(do + dix ' + dox~?)



C.K. Chui et al. / Appl. Comput. Harmon. Anal. 13 (2002) 224-262 249

1.2 T T T T T T T T

1+ 4

0.8

0.6

0.4

0.2

0.8 L L I L L I I I
-2 -1 0 1 2 3 4 5 6 7

Fig. 7. Cubic spline tight frame generatafs (solid line) andy» (dashed line) with four vanishing moments.

and can be computed using a separate procedure. The constahB0427x 107° is
used to guarantee condition (5.6). Finally, the Laurent polynomial) = —0.150495% —
0.795400 is computed using the relation

B(x) —u1(1/x)v1(x) = u2(1/x)v2(x).

This gives the factorization (5.3) @. If we combine this new factorization with the
previous steps (factorization of moments, Euclidean algorithm) that were performed in
Section 4, the two-scale Laurent polynomials of non-symmetric tight frame generators
(Y1, ¥2) become

1-z 4 .
Qi(Z)=<T) qi(z), 1=12,

and the coefficient sequencesgfare as follows:

k -2 -1 0 1 2 3 4
g1 0.130465 1.04372  3.54312 6.42680 4.11416 1.26126 0.157657
q2 0.074371 0.594967 3.70527 1.23987  0.154984

This example of minimally supported tight frame generatoys, ) was first
considered in [14]. Graphs @f; andy, are depicted in Fig. 7. O

Remark 6. We like to point out that our linear algebra approach was already described in
the first draft of the manuscript. In fact, the manuscript submitted to ACHA for publication
contained only minor modifications of the draft distributed to others. The only significant
change occurs in the above example, where the degrees of the polyngnaati;, were
reduced from 1311 to 11 9 after we had a chance to see the manuscript [14]. We thank the
authors of [14] for providing us their manuscript before it was submitted for publication.

Remark 7. Example 3 demonstrates a general procedure that Theorem 4 makes available.
It explains how the spectral factorization of deft and the solution of the linear system
(5.4) can be decoupled. The actual coefficients of the Laurent polyndiaigin (5.4) are

only needed for the normalization in (5.6).

In order to use the result of Theorem 4 for our construction of tight frames, we first need
to find a positive semidefinite matrix

S(z) — S(z)P(z) P(1/2) —S(z%)P(1/2) P(—2) }

M@ ;:[ ~SEP@P(-1/2)  S(=2) = SE)P(-2)P(~1/2)
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asin (4.2), by a suitable choice of the VMR functi®nNote that the matrix\1 is positive
semidefinite o if and only if

S() - S| P[> >0 (5.18)
and

A(?) = 5(2)8(=2) — S(D)[S(=2)| P[>+ S(2)| P(-2)[]] > 0. (5.19)

However, for nonnegativg, the condition in (5.19) already implies (5.18). Therefore, it is
sufficient to find a Laurent polynomidl that is nonnegative ofi and satisfies (5.19), in
order to construct a positive semidefinite matkikin (4.2). By rewriting (5.19) as

1 _|P<z>|2_|P<—z>|2}
S(z2) S(z) S(—z) |

we see that forS > 0, the positivity condition in (5.19) is equivalent to the positivity
condition

1 P@P P
Sz3) Sk S(-2 =7
which is linearin 7.

A?) = S<z>S<—z>S(zz)[

Corollary 1. Let¢ be a compactly supported refinable function that satigfe€3a){(2.3c),
and S a Laurent polynomial with real coefficients that satisftg4) = 1 and S(z) > 0 for
all z € T. Then(5.19)is a necessary and sufficient condition foto be a VMR function.

Remark 8. A different positivity condition forS is established in [14] for the existence of
compactly supported wavelet tight frames associated githamely

A@2):=S&) - S(A(|P@[*+|P(=2)|?) >0. (5.20)

We remark that this (linear) condition (i) is a sufficient but not a necessary condition.

In fact, there is a large class of compactly supported refinable functions with two-scale
symbolsP(z) that allow the construction of tight frames with compactly supported frame
generators, for which there are no Laurent polynomils) that satisfy (5.20), with

S(1) =1 andS(z) >0,z € T. As a clarification of this point, we include the following
example.

Example 4. Let ¢ be a refinable function with two-scale symh|z) that satisfies
PO+ P2 21 zeT, (5.21)

and not identically equal to one on the unit cirleExamples of such refinable functions
include those provided by the dual scaling functigrs, which are biorthogonal to the
cardinal B-spline N,, of orderm > 2 and have: vanishing moments, & n < m. Indeed,

if P denotes the two-scale symbolgyf, ,, then

P)P(1/2) + P(-2)P(-1/2) =1, zeT,
whereP := 1+ z/2)™, so that
PQ)P+|P(—)P>1. zeT\{L -1},

since| P (2)|2+ | P(—2)|2 = cof" (w/2) + si?" (w/2) < 1,z € T\ {1, —1}.

We claim that under condition (5.21), condition (5.20) can never be satisfied for any
Laurent polynomialS satisfying S(1) = 1 and S(z) > 0 on T. This statement can be
justified in two steps, as follows:

(i) Firstwe show that (5.20) and (5.21) imply that: 1 on the unit circle. To see this, we
note, by continuity, that it is sufficient to verify th&(z) > 1 for all z € T for which
there is am € N U {0} such that?' = 1. We prove this by induction om. Forn =0,
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the conditionS(1) = 1 gives the desired inequality. Assume tis&t) > 1 for all z
such thatz2' = 1. Then, for anyw with w2 = 1, we have, by applying (5.20) and
(5.212),

Sw) > $(w?) (|Pw)|* +|P-w)) > S@w?) > 1.

>1

This shows that the inequalit§(z) > 1 holds for all “dyadic” roots of unity. By
continuity of S, we findS(z) > 1 onT.

(i) Let z be a dyadic root of unity such thaP(z)|?> + | P(—z)|? > 1. Clearly,z cannot
be 1. We choose a sequen@e,),>1 such thatw,zl = Wy_1,..., w% =z =: wo, and
lim,— oo w, = 1. The positivity ofA andS > 1 imply that

Swn) = [T(1P@o |+ [P(~wi)[)8(?) = |P@|*+ |P(~2) [P = co > 1,
k=0
and, therefore, the sequent®w,)},n = 1, 2,..., which is bounded below byy,
cannot converge to 1.

This shows that the conditions (5.28)1) = 1, and the continuity of cannot hold
simultaneously. In other words, no Laurent polynonfialwhich is non-negative off,
exists, such that (z) in (5.20) is non-negative fare T. O

However, there does exist some Laurent polynoialth S(1) = 1 andS(z) > 0onT,
such that condition (5.19) holds fey, , according to the following theorem.
One possible way for finding such @ns described in the following.

Theorem 5. Let¢ be a compactly supported refinable function that satigfe3a)«(2.3c)
If the Laurent polynomial®(z) and P(—z), with P in (2.2), have no common roots aritl
satisfies Cohen’s condition, then there is a Laurent polynofiaith real coefficients that
satisfiesS(1) =1, S(z) > Ofor all z € T, and Eqs(4.4)and (5.19) In other words S is a
VMR Laurent polynomial function such that the matkikin (4.2)is positive semidefinite.

The construction of is based on properties of the transfer operator

Tipe(N() =|P@I 1@ + P2 f(-2), (5.22)

which is a positive operator acting on certain finite-dimensional subspaces of Laurent
polynomials. (Here, we restrict the variabdeo T; hence, all Laurent polynomials can

be identified with trigonometric polynomials.) The transfer operator was analyzed in

connection with the study of smoothness and stability properties of refinable functions
(see [22,23]). It is easy to see that

N
Ey:=3> filz/ +z77): £ ER}
j=0
is an invariant subspace &fp2, whereN = N, — N; refers to the degree of the symmetric
Laurent polynomial P|2 (see (2.2)). Moreover, the subspaces
Eni:={f€En: f@Q=0(z—1) nearz=1}, 1<k<2m, (5.23)

are invariant subspaces.
The notion of positive cones naturally restricts to the spatgsx, 0 < k < m, with
topology defined by the norm

I fllok = rpe%mz)(l—z)—z"

The cone of non-negative functions iy 2, denoted byPy o := {f € Ey2k: [ =
0 onT}, is closed, convex, and generatég o in the usual sense thaty o — Py 2k
is the full space. Its interior consists of all functiofi&) € En 2 that are strictly positive

, fE€EN%.
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on T\ {1} and have a zero of exact order &t 1. A well drafted extension of notions of
irreducibility and Perron—Frobenius theory of positive matrices in [16] to positive linear
operators on finite-dimensional vector spaces can be found in [27,35].

The aforementioned notions are essential in order to discuss the existence of positive
eigenfunctions of the transfer operafoe= 7|2 acting onEy 2, where positivity f > 0
means thatf is an interior point of the positive confy 2. Let us first analyze the
irreducibility of the transfer operator. According to [27], irreducibility is defined as the
following property: if T f < «f for some positive number and somef > 0, f # 0, then
f > 0. We need the following.

Lemma 5. The operator7, p 2, restricted to its invariant subspacEy o, is irreducible
with respect to the conBy 2 of positivity, if and only ifP(z) and P(—z) have no common
roots onT and P satisfies Cohen’s condition.

Proof. Letus assume tha(z) andP(—z) have no common roots dhand thatP satisfies
Cohen’s condition. Since the arguments are similar to those in the proof of Proposition 1,
we only give a short outline here. Lgte Ey 2, f > 0 and f = 0 be given, such that
T\pi2f < af holds for somex > 0. Assume that there existy € T, zo # 1, where
f(z0) = 0. Then the assumptions of imply that 72 f (z0) = O, which can only be
satisfied, due to positivity constraints and assumption® pif there existsz1 € T with
z% =zo and f(z1) = 0. By repeating this argument, we obtain a sequgngieof zeros of
f» which must form a nontrivial cycle (see Proposition 1). We then showRkat: ;) =0
follows for all elements of this cycle, which is a contradiction to Cohen’s condition. This
contradicts to the assumption thahas a zero.

Conversely, letP(z) and P(—z) have a common zergy € T. It is clear thatzg # +1.
The function

f@i=2-z-12)"z—28)(1/z — ) (z — 1/z5) (1/z — 1/2})

is in Py 2 and has double zeros a% and its complex conjugate/z’l,%. It is relatively
simple to find a constant > 0 such that7|p2 f < «f. Similarly, the construction of

f € Py 2k with double zeros in a nontrivial cycle can be performed in the case, where
Cohen’s condition is not satisfied.O

Based on the Perron—Frobenius theory, but with stronger assumptiabgegarding
common zeros iiC \ {0}, the following result is shown in [23].

Theorem D. Let the assumptions of Theoré&mbe satisfied. Then the spectral radius of the
transfer operator| p|2 restricted toEy is 1, andi = 1 is a simple eigenvalue @t , 2 with
strictly positive eigenfunctioBy € Ey. All other eigenvalues df, , 2 have absolute value
less than one.

We need the following modification to this result which is a direct consequence of the
irreducibility of the transfer operator and Theorem D.

Theorem 6. Let the assumptions in Theoredrbe satisfied. For each < k < m, there
exists an eigenfunctiofi of the transfer operator| .2 which is strictly positive off \ {1}

and has a zero of exact ord2k at 1. Furthermore, the corresponding eigenvalue is simple,
positive and less than one.

Proof. The existence of an eigenfunction in the interior of the c@yey follows from

[24, Theorem 6]. The corresponding eigenvalue is the spectral radius of the restriction
of Tipp2 tO the subspacé&y . It is strictly positive, as stated in the same theorem.
Theorem 4.3 in [35] assures that the spectral radius is a simple eigenvalue. (We point out
even more is true: any other eigenvalue of the same modulus is also simple.) Finally, we
infer from Theorem D that the spectral radius must be less than 1, as any eigenfunction of
T,p2 for eigenvalue 1 is non-zeroat=1. O
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We are now ready to complete the proof of Theorem 5.

Proof of Theorem 5. By Lemma 5, we can select an eigenfunctién € Ey 2, of T\pp
with associated eigenvalueOx < 1 which is strictly positive off" \ {1} and has a zero of
exact order & at 1. The conditions o® also assure tha&s > 0 onT. For any$ > 1 we
can choose a Laurent polynomi&lby trigpnometric approximation, so that

1 1
<SK onT. (5.24)
B¢ + ,BFm B¢ + Fm
Obviously,S is strictly positive, and the inequalities in (5.24) can be rewritten as
1
ﬂFm>§—B¢>Fm.

SinceF,, is an element oF y 2, this shows that
1 By(2)=0(lz — 1|2m) nearz = 1.
S(z)

We have thus found a Laurent polynomsathat is strictly positive off' and satisfies (4.4).
Moreover, the monotonicity of the operatfi, 2 and the fact thaB,, is an eigenfunction
of 7} p2 for the eigenvalue 1 lead to

. 1 . 1
(id — T|p|2)<§) =(id — T|p|2)<§ - B¢> 2z Fn — T|p|2(,3Fm) =1 AB)Fn.
The last expression is non-negative for all values ef 8 < 1/x. Therefore, we obtain
1 _IP@P [P0
5% 7 S S(-2)

Multiplication by the factorS(z)S(—z)S(z%) gives (5.19). This completes the proof of
Theorem 5. O

, zeT.

Remark 9. In all of the examples in Section 4, straightforward computation of the function
S by solving (4.4) with linear algebra methods leads to a ma#trly which is positive
definite onT. No examination of the spectrum @i, . is needed in these cases. The
construction of tight frames with two generators for the cardiBaiplines of ordeun,

2 < m < 4, relies on this definiteness @d#p. In [14] it is shown that the functiol§ in
(4.11) leads to a positive definite matiho for all m > 1.

Both results in Theorems 4 and 5 can be combined to give the following general result.

Theorem 7. Let¢ be a compactly supported refinable function that satigfe3a)«(2.3c)

If the Laurent polynomial®(z) and P(—z), with P in (2.2), have no common roots and
P satisfies Cohen’s condition, then there exists a tight framg®fvith two generators
Y1, Y2 € V1 that have compact support andvanishing moments.

Proof. We summarize the steps of the construction of the tight frame briefly. Theorem 5
gives a VMR Laurent polynomial functiofi such thatM in (4.2) is positive semidefinite
onT. The reduced matriMy in (4.9) and its polyphase decomposition

1 1/1]

Q(zz):=[1 1}/\40(1)[
z —z 1 -1/z

are positive semidefinite as well. The matrix coefficients are Laurent polynomigisas
indicated by the above notation. The matrix Riesz Lemma, namely Theorem 4, provides a
factorization

9(z%) = R(1/z%)R().
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Combination of these steps leads to the two-scale symbols

01(z) == ; (1;2Z>m [R11(z%) + zR12(z%)],
! ; Z) [R21(z%) + zR22(z%)],

which define the two generatofg andyr, of a tight frame withn vanishing moments. O

o =1
2(z) := E(

It should be noted that the result in Theorem 7 does not include assertions about
symmetry or inter-orthogonality of1 andv,. The sibling frames in Theorems 2 and 3
may provide an alternative for situations where any of these properties is required.

6. Sibling and tight frameswith one generator

In this section, we consider the particular case of a pair of sibling frameés{v}
with only one generator ifir;. We will show that under certain assumptionsgo(stability
of integer shifts) sibling frames with one generator can be renormalized to provide tight
frames derived from a quadrature mirror filtBr see Theorem 8. In particular, ¢f is a
cardinal B-spline of ordern > 2, we show that there do not exist compactly supported
sibling frames with one generator.

For an arbitrary pair of generatofg} and{v}, the matrix relation (4.2) becomes

_[ oz B
M(z) = |:Q(—1/z):| [0() Q2] (6.1)
Here,S(z) = R(z)/ T (z) is the quotient of two Laurent polynomials with real coefficients,
as in Theorem 1, such th&tl) = 1.

The rank ofM in (6.1) is at most 1. Therefore, its determinant must vanish identically.
This gives

A(22) = 5()S(=2) — S()[S(=2)|P@|* + S| P(-2) ] =0 (6.2)
for all z € C\ {0}. This simple observation leads to the following result.
Lemma 6. Let S be the VMR function of a pair of compactly supported sibling frames
{v}, {y}. If Sis a Laurent polynomial, then the equations
S(=2)|P@[*+ 5@ |P(—2)|* = 5(-1), (6.3)
S(2)S(—z) = S(-1)S(z?), (6.4)
are satisfied for alk € C \ {0}. In particular, S(—1) # 0.

Proof. If S(z) is a Laurent polynomial, theR(z) := z/ S(z) is an algebraic polynomial
for somej € Z, and R(0) # 0. Multiplication of (6.2) byz%/ gives an identity where
the degrees of the polynomiaié’/S(z)S(—z) and z%/S(z%) agree. Hence, the Laurent
polynomial inside the brackets in (6.2) must be constant.zFerl, Eq. (6.2) shows that
this constant isS(—1), and we have established (6.3) and (6.4). Sifids non-trivial,
S(—1) cannot be zero by virtue of (6.4).0

The following conclusion about the structure$€an be drawn from Lemma 6.

Lemma 7. Let S be a Laurent polynomial with real coefficients afifl) = 1, such that
(6.3)and (6.4) are satisfied. Then the following statements hold

(a) Allroots of S lie onT. The set of all roots is a finite disjoint union of nontrivial cycles.
Moreover, all roots in a specific cycle have the same multiplicity.

(b) S is real and nonnegative offi; in particular, all roots of S have even multiplicity.
Moreover,S(—1) is positive.
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Proof. We use similar arguments as in the proof of Proposition 1. § edatisfy the
assumptions of the lemma. §f is constant inC, we haveS = 1, and properties (a) and
(b) follow immediately.

Let us assume tha is not constant. We hav&(—1) # 0; otherwiseS would be the
zero constant by (6.4). For the proof of part (a),uet C \ {0} be a root ofS. If we insert
z? = w into the right-hand side of (6.4), we may conclude that there exists C such

thatw% = w andS(w1) = 0. By repeating this argument we obtain a set of roots
Fy:={wi: S(w) =0, wf =w, k>0}.

This set must be finite and does not contain 1, due to the assumptighithat aurent po-
lynomial andS(1) = 1. Therefore, there is a non-trivial cydle, wr—_1, ..., Wk—m} C Fy.
This cycle containsv, becausev = w,fk, and therefore the cycle agrees with the Bgt
Hence, we have shown that every root$is the member of a nontrivial cycle df.
Clearly, there can only be a finite number of such cycles, and distinct cycles must be
disjoint. This confirms the first two assertions of part (a).

In order to analyze the multiplicity of all the roots 8fin a fixed cycleF, letw € F be a
root with maximal multiplicity among all elements &f. It is a simple fact that-w cannot
be an element of any nontrivial cycle @h Therefore, equation (6.4) implies thaf has
the same multiplicity as. This argument can be repeated and assures that all elements of
the cycleF have the same multiplicity as. This completes the proof of part (a).

For part (b) of the lemma, we first show th&is real onT. By assumption$ has real
coefficients and all its roots lie dfi. Furthermore, as a consequence of part (a), neither 1
nor—1 is a root ofS. By Lemma 1,5 has a factorization

S(z) = s0z' So(z),

wheresg € C, ¢ is an integer, andp is a Laurent polynomial with real coefficients which
is real onT. Eq. (6.3) can be written as

502 (=D P(2)[2So(=2) + | P(=2)|*S0(2)) = so(— 1) So(—1).

It follows thatz* must be real for alt € T, so that? = 0, andS(z) /s is real-valued of.
Finally, our assumption that(1) = 1 implies thatS is real-valued orT.

It remains to show thaf is nonnegative off’, because the roots ¢f must then have
even multiplicity andS(—1) > 0 holds. By continuity ofS, it is sufficient to prove thaf
is strictly positive on the dense set of points

Ze=e2U?  j>1 0<0<2 — 1 (6.5)

We first consider the valu§(—1). Let w be the zero ofS with the smallest positive
argument, and: = ./w be the element on the smaller circular arc connecting 1wand
Continuity of the real-valued functiofi on this arc ands(1) = 1 give S(u) > 0. EqQ. (6.4)
requires that

Su)S(—u) = S(w)S(-1) =0, henceS(—u)=0.
Inserting this into equation (6.3) gives
S(—=1) = Sw)|P(—w)|* > 0. (6.6)

The strict inequality is justified sinc&—1) is nonzero by (6.4).

The positivity of S at all points of the form (6.5) is shown by mathematical induction.
We already showed that the assertion is true fet 1; in other words,S(1) > 0 and
S(—=1) > 0. Let us assume that all of the valuS& ;) are positive, 0< £ < 2/, We
take anyu := z;11.¢ With 0 < € < 2/; this is a complex number on the upper half circle.
Eq. (6.4) gives

Sw)S(—u) = S(—1)S(u2) =S(—1)S(zj¢) > 0.

The last inequality follows from the induction hypothesis and (6.6). Therefire, and
S(—u) have the same sign. In order to satisfy equation (6.3) both cannot be negative, so
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that S(u) > 0 andS(—u) > 0. This proves the positivity of at all z; 1 ¢, and by the
induction hypothesis we have positivity at all points (6.5). This completes the proof of the
lemma. O

We will next discuss certain consequences of the previous results. Lemma 6 can be used
to rewrite the matrixM in (4.2). First observe that, based on Lemma 6, we have

S(2)S(=z2)| P 2
S(Z)—S(zz)|P(z)|2=S(z)_ ()S(=2)|P )|

S(—1)
= MS(Z)(S(—:L) - S(=2)|P)|")
__1 2 p(_\|2
= S(_l)S(z) |P(—2)|",
and
_S()P@P(=2) = ———$(2)S(—1) P P(~2)
S(—1) '
This gives
1 S@2|P(~2)[? ~S(@)S(=2)P() P(~2)
M@) = — oo 2
S(—=1) [ =S(2)S(—2) P(z) P(—2) S(—2)?|P(2)|
1 27 1S(2) P(—2) S S
=51 [—z‘lS(—z)P(z)} [2S@P(=2) —zS(=2)P ()]
Sinces is real andS(—1) > 0, we may choose the symbol
Z
0:(2) = 75CD S(2)P(=1/z2) (6.7)

in order to obtain a symmetric factorization o¥1. Therefore we can replace the
factorization (6.1) that defines the pair of sibling frames}, {¥/} with a symmetric
factorization that, in turn, defines a tight frame. This is summarized as follows.

Theorem 8. Let{y}, {1/} be a pair of compactly supported sibling frames associated with
a VMR functionS. If S is a Laurent polynomial, then the functign € V1 with two-scale
symbolQ, in (6.7) defines a tight frame aof? which is associated with the same VMR
functions.

Remark 10. The result of Theorem 8 can also be expressed in terms of a “renormalization”
of the refinable functionp. If S is non-negative ol and satisfies (6.3) and (6.4),
Lemma 7 can be used to define the Laurent polyno#iislich that (z) = U(1/z) and
U(2)? = S(z). (We take half of the multiplicity of all the zeros ¢fto define the zeros of

U.) The new refinable functiogy, defined by

by &) :=U(P)$&), z=e/2
is a finite linear combination of integer shifts ¢f Its two-scale symbol takes on the form

U@, U(=2)
Py@ =3 PO == P@).

Eq. (6.3) implies thaPy is a QMF; i.e., we have
|Py@)*+|Po(-2)fP =1, zeT.

The tight framey; in Theorem 8 results from the typical construction based on the QMF;
the two-scale symbol of, relative to the refinable functiopy is Qy (z) = zPy(—1/z).

In other words, compactly supported sibling frames with one generator and VMR Laurent
polynomial S are essentially tight frames defined for a refinable functiprwhose two-
scale symbol is a quadrature mirror filter.
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Let us end this section by including a discussion of the case where the integer shifts of
¢ form a Riesz basis dfp. Recall from Proposition 1 th&t must be a Laurent polynomial
in this case. Therefore, as a consequence of Theorem 8, we have the following.

Corollary 2. Suppose that the integer shiftsgoform a Riesz basis dfp. Then there exists
a pair of compactly supported sibling frames with one generatdfiif and only if there
exists a compactly supported tight frame with one generatdtin

Hence, it is reasonable to say that compactly supported sibling frames with one
generator associated with stable refinable functions are essentially tight frames.

A simple, but important negative conclusion can also be drawn from Theorem 8 as
follows.

Theorem 9. Suppose that the integer shifts ¢fform a Riesz basis dfy and | P(i)| #
V2/2. Then there does not exist a pair of compactly supported sibling frames, and
particularly, a tight frame, with one generator iv} .

Proof. If there exists a pair of compactly supported sibling frami¢g, {/} with
generators inv1, then there must be a Laurent polynom$aivhich satisfies Eqgs. (6.3)
and (6.4). Note thatP and S have real coefficients, anfl is real onT. Therefore,
S@i) = S(—i) and Eq. (6.4) give

Si)S(—i) = S3i)% = S(-1)2

By Lemma 7,S is non-negative. We thus hawi) = S(—i) = S(—1). Inserting these
values into (6.3) leads to

|P(i)|2 + |P(—i)|2 = 2|P(i)|2 =1

This confirms the result of Theorem 90

Note that the valu¢P (i)| = +/2/2 is compulsory for every quadrature mirror filte
On the other hand, there are many examples of stable refinable functions for|Wwkigh
does not have this precise value. Any cardiBaspline N,, of orderm > 2, for example,
has the propertyP (i)| = 2-"/2. Therefore, Theorem 9 shows that there do not exist pairs
of compactly supported sibling frames and particularly tight frames with one generator
which are finite linear combinations @&f-splinesN,, (2. — k) form > 2.
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Appendix A

In the following, we give a precise description of the matrix factorization technique used
for matricesMg in (4.9) whose determinant has low degree.

Proposition 3. Assume thap is a refinable function with two-scale Laurent polynomial
symbol P(z) = ((1 + z)/2)"™ Py(z) and Py(z) = Po(—z). Let S be a vanishing-moment
recovery function that is real-valued dh Suppose that the matri&tg in (4.9) is positive
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definite for allz € T. Let¢ denote the maximal length of the coefficient sequences of the
entriesA and B in this matrix, and

ra
Ao@) =Y de(z+1/2%, ra>0,
k=0
be its determinant.

(@) If ro =0 or 1, then there exists a tight affine frame generated by two compactly
supported functiongy, ¥} € V1 that have vanishing moments of order The
lengths of their symbolg;, i = 1, 2, is bounded above by + [£/2] + 2r, + 1. If
ra = 0, both generators can be chosen to be symmeétdcevernm) or antisymmetric
(for oddm), provided thatp is symmetric.

(b) If ro =1, then there exists a pair of compactly supported sibling frafges»} and
{¥1, Y2} such that all of the four generators have vanishing moments of ad@he
lengths of their symbol®; and 0:, i = 1,2, are bounded above by + [€/2] + 5.

All generatorsy; and;, i = 1,2, can be chosen to be symmetfior evenm) or
antisymmetriq for oddm), provided thatp is symmetric.

Proof. We first note that the assumptions on the two-scale symbuoiply that the matrix
Mo in (4.9) has the form

_|A®@ B@)
MO(Z)_[B(z) A(—z)]’

where we define8(z) = —S(z%) Po(1/z) Po(z). Moreover, all the entries of this matrix are
real-valued orT, by virtue of our assumption afiand the factorizationin (4.6). Therefore,
A and B can be written as polynomials in= (z + z~1)/2 (which is a real variable in
[—1, 1]), yielding the form

rA 'B
A@Q)=Y au*,  B@)=)_buf. rarpeN. (A1)
k=0 k=0

Furthermore, all odd coefficientsy.1 are zero due to the assumptions®@y This shows
that the determinamo(z) is a polynomial inu?.
The polyphase decomposition for the wavelet symbols in (4.10) is achieved by matrix

multiplication
1 1 1 1z
| 2 —z:| Mo(@) |:1 —1/z]
[AG@) +A(-2) +2B(z) 2 YA@R) - A(-2))
2(Ax) — A(=2)) A(z) + A(—z) — 2B(2)
[ a(<?) ﬁ@%]
[28(%) v(@®) ]

The symmetric form (A.1) leads to the representations

Mo(z) =

NI DR NI
T

“(ZZ) = Z(GZk + byu® =: a(uz),

k=0
re
y(zz) = Z(aZk - bZk)MZk =: c(uz), and
k=0
b
B =2 amsu® = Lb(u?),
2= Z

where the leading coefficients with indey, r,, andr., respectively, are supposed to be
non-zero. By using = u2 we obtain

= 1 a@m  (u/2)b()
MO(Z)_E[(uz)b(z) c(t) }
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Note thatu/z = 1+ 1/z% anduz = 1 + z? are Laurent polynomials in even powerszof
and one is obtained from the other by substitution af fbr z. This substitution leaves all
the other entries, b, andc unchanged, so that we haﬂdo(z) = ./\/lo(l/z)T

The determinant of the matrix product is

a()e(t) — 1h2(t) = Ao(z?). (A.2)

It is a positive polynomial in the real variabkee [0, 1], by the assumptions of the
proposition, and its degree, is either 0 or 1 depending on cases (a) or (b) in the
proposition. We will apply the Euclidean algorithm to reduce the sum of degyees. of

the diagonal entries of1p to matchr, and to make the non-diagonal entries zero. (Note
that the positivity of the determinant excludes the possibility of having zero polynomials
or ¢ in the diagonal.) Assume that

ra+re>ra and rp >0.
Then the leading coefficients in the expansion of the determinant must cancel, which gives
Ta+re=2r,+1

This shows that eithet, < r, < r. orr. <rp < r, must be satisfied. Let us consider the
first case. (The second case can be treated analogously.) There is a polyncuitiat

b(t) = k1(D)a(t) + b1(1), rpy :=degb1) <ra,

where deg=degree of. Elementary computations lead to

v . 1 1 —(u/2)ki(®)
Ml@"[ (uz)k1(t) 1]M°(Z)[ 1 }

_ [ a(r) (”/Z)bl(l)i|
(uz)b1(t) c1(t) ’

wherec1 = ¢ — 2k1tb + k%ta. Note that the structure of the new mat.ﬁl is the same as
before. Moreover, the matrik, on the left ofﬂo and the factor on the right are related
by transposition and substitution ofAfor z. In particular,c; is a polynomial of = u? of
degree,, and the determinant has not changed; & 0, we have reached a situation of
a diagonal matrix and proceed to the last step of the constructibn#fO, we can show
that

Fey <Tq <Tec. (A.3)

This means that the sum of the degregst r., was reduced, and an inductive argument
will follow. Relation (A.3) is a consequence of the properties

A= deg(acl — tb%) <1, 0<rp <rq.
In the next step, a further reduction is obtained by finding a polynatpial so that
b1(t) = ka(t)c1(t) + ba(2), rp, = dedgbr) < re,.

In this case, the matrix product

Moz) = [é e } M) |:—(uz:;k2(t) ﬂ
_ [ az(1) (u/z)bz(t)}
(uz)ba(t) c1(t)
has the diagonal entey, = a — 2kotb1 + tk%cl has degr,,), with
Tay <Tey <Tq.

By repeating this procedure finitely many times, we obtain a diagonal matrix

'Vl _ ay(t) 0
Mv(t)—|: 0 Cv(t)]. (A.4)
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The matrices in the Euclidean algorithm which appear on the leflgfand M, etc.,
constitute a matrix

R(zz) =K,(t)---K1(t) = |: R11(1) (”/Z)Rlz(f):| .

(uz)R21(1) R22(1)

This is clearly a matrix with determinant 1 whose entrigg are Laurent polynomials
of z2. All matrices with this particular structure define a ring, and the factorshat
constituter are invertible elements of this ring. Thereforeis invertible and

—1/.2\ Roo(1) —(u/z)R12(t)
R (Z)_[—(MZ)Rzl(t) Ru1(1) ]

For degree considerations, we define
A = max{degR11), deg R12), deg Rz1), degR22) |,

where the polynomials are considered in the variabta:? = (z 4+ 1/z)2. It can be shown
that) < 1/2maxr,, r.} where these two numbers denote the degree of the diagonal entries
of Mp. Hence,

4r <2maXry, re} < [£/2],

with ¢ as in the proposition.

Let us now consider the final decomposition step. The determinant of the diagonal
matrix M, is Ag, and the matrix is positive definite for alle [0, 1]. If Ag is constant,
then both diagonal elements are positive constants. The trivial factorization

2

is used to find a symmetric factorization

2
/ﬁo(z)=R‘1(zz)|:‘/? ﬁ_} RY1/H7. (A.5)

The generators for the tight frame can thus be defined through their two-scale symbols

01(2) = va, (1 = 2)/2)" [Ra2(t) — (z + 1/2) R21(1) ],
02(2) = /erz((L = 2)/2)"[Rua(t) — (z + 1/2) Ria(1)].

with 7 = (z + 1/z)2. These symbols are even or odd depending on the parity bfence,
the symmetry or antisymmetry of the functiogig and vr» is assured, provided that
is symmetric. The length of the coefficient sequences for the symbols is bounded by
m+4).+1. This number is bounded aboveby- | £/2] +1, as claimed in the proposition.

If o = 1, then one diagonal entry @#,, is constant and the other is a linear polynomial
int. Letus assume that () has degree 1. By the Riesz Lemma, we can find a factorization

ay (1) = co+ c1(22 + 1/2%) = (yo+ n22) (o + 11/22).

Using the same matriR(z?) as above, this gives rise to the definition of tight frames with
the two-scale symbols

01(2) = (yo+ 112%) (1 — 2)/2)" [R22(t) — (z + 1/2) R2a(1) ],
02(2) = /erz((1—2)/2)"[R1a() — (z + 1/2) R12(1)].

While the functionyr, has the same symmetry properties as outlined before, only special
circumstances (such as even multiplicity of the roots\gf would make the symbaD;
symmetric or antisymmetric. The length of the coefficient sequences is seen to be bounded
bym +[£/2] 4+ 1 for Q2 andm + [£/2] + 3 for Q1. This completes the proof of part (a) of
the proposition.

In order to achieve symmetry for all generators of the frame, the non-symmetric
factorization

~ (1 0 a, (1) 0
Ao=lo &)
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can be used instead. This leads to the definition of sibling frdmesy,}, {1, 2} where

Yo = 2 is defined with a two-scale symbd@l, as above. The functiong; and v,
however, are determined by their two-scale symbols

01(2) = (1 - 2)/2)"[R11(t) + (z + 1/2) R2a(1) ],
01(z) = ay(t) 01(2).

From this definition, it is clear that the two-scale symbols/efand differ only by a

factor that is a Laurent polynomial iff. Symmetry of the Laurent polynomiaf@; and

01 is seen exactly as in the previous cases. The lengths of the coefficient sequences are
m+[£/2]+ 1for Q1, O2, and éz, andm + [¢/2] + 5 for él. This concludes the proof of

the second part of the proposition

This type of factorization is used in the examples of Section 4.1.
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