
Design, Implementation, and Evaluation of an Approach
for Determining When Programmers are Having Difficulty

Jason Carter
Computer Science Department

University of North Carolina at Chapel Hill
Chapel Hill, NC, USA

carterjl@cs.unc.edu

Prasun Dewan
Computer Science Department

University of North Carolina at Chapel Hill
Chapel Hill, NC, USA

dewan@cs.unc.edu

ABSTRACT

Previous research has motivated the idea of automatically

determining when programmers are having difficulty, provided an

initial algorithm (unimplemented in an actual system), and

performed a small student-based evaluation to justify the viability

of this concept. We have taken the next step in this line of

research by designing and developing two-different systems that

incorporate variations of the algorithm, implementing a tool that

allows independent observers to code recorded sessions, and

performing studies involving both student and industrial

programmers. Our work shows that (a) it is possible to develop an

efficient and reusable architecture for predicting programmer

status, (b) the previous technique can be improved through

aggregation of predicted status, (c) the improved technique

correlates more with programmers’ perception of whether they are

stuck than that of observers manually watching the programmers,

(d) the observers are quicker than the developers to conclude that

programmers are stuck, (e) with appropriate training, the tool can

be used to predict even the observers’ perceptions, and (f) a group

training model offers more accuracy than an individual one when

the training and test exercises are the same and carried over a

small time frame.

Categories and Subject Descriptors

H.5.3 Group and Organization Interfaces: Computer-supported

cooperative work.

General Terms

Human Factors

Keywords

Machine learning, data mining, architecture, software

development, semantic awareness

1. INTRODUCTION
Often programmers get ―stuck‖ while coding, unable to make

much progress despite all efforts to address some issue. It would

Figure 1: The Eclipse

environment extended to show a

user’s Google Talk® buddy list.

Figure 2: Notification

that alerts developers of

a status change.

be useful if an interested remote party could become aware of this

situation through, for instance, a notification and/or status change

in a buddy list. This idea extends the notion of continuous

coordination [1] to continuous help, and provides a new kind of

contextualized information in collaborative software development

[2].

An educational setting provides particularly compelling

applications of this idea because an important goal is to help

students and monitor their progress. In fact, based on the results of

several previous studies, mentioned later, the true benefits of this

idea could actually occur in industry.

One way to support this idea is to allow programmers to manually

change a status field displayed to potential helpers. However,

there are several apparent problems with this approach. First,

studies show students and new programmers are late to use help

[3], and programmers often exhaust other forms of help before

contacting a teammate [4]. Even those who are willing to

manually change their status are likely to not set it back, just as

people forget to change their busy status in an IM tool or turn off

the ―call steward‖ light in a plane.

Another approach is to allow a pair of developers to monitor the

progress of each other, using local [5] or distributed [6] side-by-

side programming. However, this approach does not scale to

beyond a pair of programmers, requires continuous monitoring of

the partner’s display, and is not guaranteed to succeed as an

observer may not know if the actor is, in fact, stuck.

Therefore, a superior approach is to develop a mechanism that

automatically determines if a programmer is stuck (Figure 2) by

mining logs of their interaction with the programming

environment. Such an approach is bound to be iterative, consisting

of the following steps:

1. Develop an initial naïve algorithm for predicting the

(stuck/not stuck) status.

2. Implement the algorithm in one or more programming

environments.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

GROUP’10, Nov. 7–10, 2010, Sanibel Island, Florida, USA.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

3. Ask selected developers in lab and/or field experiments to

correct the predictions made by the current algorithm.

4. Analyze the logs to refine the set of features.

5. Input these features to existing selected log-mining

algorithms.

6. If none of these algorithms makes a significant improvement,

stop.

7. Make the algorithm that gives the best results the current

algorithm.

8. Go to 2.

Our previous work[7] carried out the first iteration of the

process, and evaluated the resulting algorithm (not implemented

in any programming environment) in a study involving six student

programmers, whose logs were used both in the training and

evaluation phases. It leaves, however, several important questions

unanswered.

1. Is it possible to develop a common set of extensible

prediction modules for different programming environments?

2. Is it possible for the modules to have no impact on the

response times perceived by the developers?

3. How well does the previous algorithm work when it is used

by industrial programmers?

4. Is it better to train the modules using logs of the individual

developer whose status is predicted, or some group of

programmers that excludes him/her?

5. What is the correlation between the perceptions of the

developers and their observers regarding whether the

developers are having difficulty?

6. If these perceptions differ, how well can the predictions

made by a tool correlate with the perceptions of human

observers?

In the rest of the paper, we address these questions. In Section 2,

we survey related work providing the inspiration for and

techniques used in the paper. In Section 3, we describe the results

of a small field study involving a naïve implementation of the

previous algorithm, and adaptations to its semantics and

implementation to overcome some of the problems exposed by

this effort. In Section 4, we describe a lab study involving nine

student and five industrial programmers, and a coding study in

which two coders and the first author classified recordings made

during the lab study using a special tool we built for this work. In

Section 5, we describe the results of the study using an existing

model for determining if programmers are stuck. In Section 6, we

consider what happens when group and individual data from the

lab and coding study are used train the tool. In Section 7, we

consider privacy issues raised by this work, and present

preliminary solutions to them. In Section 8, we discuss our

findings and provide conclusions and directions for future work.

2. RELATED WORK
The motivation for encouraging programmers to help each other is

provided by a variety of previous research efforts, which have

explored various degrees of couplings among developers:

distributed, co-located, radically co-located, and pair

programming.

Herbsleb et al.[8] found that the productivity of distributed teams

was lower than that of co-located teams. A more recent study by

Cataldo [9] has similar conclusions based on software quality

rather than productivity. It found that the number of errors in a

project was positively correlated with the number of locations

involved in the project. Teasley et al. [10] studied a higher

degree of physical coupling, called radical co-location, in which

all team members work in a single war-room or bull-pen. They

found that the productivity of radically co-located teams was

higher than that of co-located ones. In radical co-location, even

though the members of the team work in one room, they (can) use

different workstations. Higher physical coupling is achieved in

pair programming, wherein two programmers sit next to each

other, sharing a workstation, and working on a single task, with

one programmer, called the driver, providing input, and the other

programmer, called the navigator, offering advice. Some studies

of pair programming have found that it offers faster task

completion times, and more importantly, after taking into account

the cost of fixing bugs, much better productivity [11, 12].

The reason higher coupling offers more productivity may lie in

how much developers help each other. Pair programming is

centered on the idea of the two programmers helping each other

with every aspect of the task. Williams and Cockburn report that

―pairs often find that seemingly ―impossible‖ problems become

easy or even quick, or at least possible, to solve when they work

together [11].‖ Teasley et al. [10] found that in a war-room, if

someone was having difficulty with some aspect of code, another

developer in the war-room ―walking by and seeing the activity

over their shoulders, would stop to provide help.‖ The study by

Herbsleb et al. [8] also showed the importance of a helpful

software development. It found that in distributed team

development, several forms of communication were more

difficult: it was harder to find people, get work-related

information through casual conversation, get access to

information shared with co-located co-workers, get timely

information about plan changes, have clearly formed plans, agree

about plans, be clear about assigned tasks, and have co-workers

provide help (beyond the call of duty). The study found that the

perception of received help was the only factor that correlated

with productivity. A related study by Hebsleb and Grinter [13]

found that developers are less comfortable asking remote rather

than co-located software developers for help. A study by Cataldo

[9] found that the number of errors correlated with uneven

distribution of engineers across locations, which, together with the

other studies, seems to suggest that the team would benefit if a

location with more engineers (which is likely to have more

expertise, and perhaps, more time) helped the one with fewer

engineers.

Together, these studies seem to conclude that (1) developers often

hesitate to explicitly ask for help, even when they could use it, and

(2) the greater the distance between them and potential helpers,

the more their hesitation, and the more difficult it is for the latter

to determine if the former need help.

One approach to address the second problem, described in [14],

makes distributed team members aware of each other’s

interactions with the programming environment. For example,

[14] gives a scenario in which Bob, on seeing Alice stuck on

debugging a particular class, deduces she could use help, and

offers it. This distributed scenario directly mimics the war-room

scenario quoted above.

Providing virtual channels that give distributed users the feeling

of ―being there‖ in a single location is an important goal of

CSCW. However, Hollan and Stornetta have argued that if

CSCW is to be truly successful, it should go ―beyond being there‖

by providing capabilities not available in face-to-face interaction

[15].

One approach to support this goal is to automatically infer when

people are frustrated using cameras, posture seating chairs,

pressure mouse, and wireless Bluetooth skin conductance test as

sensors to collect data [16]. A problem with this approach is the

overhead including time and cost of using this extra equipment.

An alternative approach is to determine this information by

logging developers’ interaction with the system. An important

step in this direction is made in [17], which describes a logging-

based tool for monitoring student progress. Student teams use a

wiki to interact with several tools including CVS, newsgroups,

and a metrics module that analyzes students’ data. The wiki

allows students to track their development tasks, and analyzes

tasks such as file modifications to measure the workload of teams.

A problem with this approach is that the rate of student progress is

determined after the fact, when a project is checked-in, rather than

incrementally, when the student could use help. This limitation

can be addressed by logging interactions with the programming

environment. The authors of [17] said they did not take this

alternative because ―many students have a preferred programming

environment and establishing a common one would be a

challenge.‖

It is possible to overcome this problem by creating such a logger

for as many mainstream programming environments as possible.

Before this step can be taken, it is important to determine if such

an approach is feasible.

There is reason to believe it can work. Previous work by Begole

et. al. [18] logged email interaction, calendar appointments, and

the locations of users to show that there are rhythms or patterns in

user activities. An even closer work to the topic of this paper is

work by Fogarty et al [19]. Developers are randomly interrupted

by a notification and their interactions with the programming

environment are logged. Interruptibility is measured from the time

the notification appears to the time the notification is

acknowledged. The specific actions developers perform right

before they were interrupted are used to determine if these actions

correlate with being interruptible.

These approaches represent general methods to mining data,

which consists of two main steps: (a) an algorithm for deducing

semantic awareness (out of office, interruptible) and (b) a scheme

for training the system and evaluating the automatic scheme. Our

previous work [7] applied this general approach to the problem of

determining progress. This work extended an Eclipse plug-in [24]

to log developers’ programming actions and allowed the

developers to indicate their status: stuck (which is considered,

here, synonymous with having difficulty) and making progress.

Based on the event and status logs of six student programmers, it

developed the following approach for automatically inferring the

status. It categorized user input into five categories: navigation,

edit (text insertion/deletion), remove (methods and/or classes),

debug, and the programming environment losing/gaining focus.

The logs were segmented into sections based on the number of

events. Every 50 actions, the tool calculated the ratio of

occurrences of each category of actions in that segment to the

total number of actions in the segment as percentage, and used

these percentages as features over which patterns were identified.

This event aggregation technique was used to predict developers’

status. The intuition behind the technique was that when the ratio

of edit events to total number of events decreases, programmers

are stuck. The approach correctly identified 90% of the time when

the students were having difficulty. This result is promising

because it recognizes with high accuracy when student

programmers are having difficulty even though having difficulty

is a rare event. As mentioned in Section 1, this approach left

several questions unanswered, which are the focus of this paper.

3. INITIAL EVALUATION AND

ADAPTATIONS
To determine how well the technique developed in our previous

approach [7] works in practice, we took two additional

implementation and evaluation steps. (1) We incorporated the

algorithm in both the Eclipse and Visual Studio programming

environments. (2) Some members of our research group, and one

industrial software developer, used the Eclipse and Visual Studio

implementations for their daily work. We gained important

lessons from these steps.

The industrial developer complained about frequent false

positives while building a new product – a workflow system. In

particular, when he started a new session, the tool gave a

relatively high number of false positives because of the

navigations performed to build the working set of files. He also

needed more time to determine if the predicted change of status

was correct, and, thus, often was not sure about his status.

The second author identified two additional problems. The cost of

processing incremental input events was noticeable, and

sometimes intolerable, on his 3-year old laptop. Moreover, even

when the tool accurately predicted he was having difficulty,

seeing the status message hurt his ego, as he felt that the change in

progress was caused by the difficulty of the problem rather than

lack of appropriate skills! A final problem had to do with the

implementation architecture: the Visual Studio and Eclipse

implementations performed the same functions, but did not share

code. Therefore, when a change was made to the code in the

Eclipse implementation, the code in Visual Studio had to also

change. Put in another way, there would need to be a different

implementation of the tool per programming environment, which

increases programming time and effort.

We took several steps to address these problems. To address the

―hurt ego‖ issue, we changed the status message from ―Having

Difficulty‖ to ―Slow Progress.‖ In addition, we allowed

developers to customize the message so that the second author

could, for instance, report it as ―Complex Programming.‖

To address the false positives faced by the industrial programmer,

we developed a label aggregation technique that complemented

the event aggregation technique. As before, we computed the

status every 50 events. However, we notified the developer every

250 events – the value reported was the dominant status in the last

five segments.

Together, the two aggregation techniques take into account the

fact that the status of a developer does not change instantaneously.

In addition, we added an ―indeterminate‖ status value to capture

the fact that developers need time to decide if they are stuck. At

startup, before 250 events were input, the tool reported the

indeterminate value. We also allowed the developer to correct a

predicted status to indeterminate.

Figure 3: System Architecture

Table 1: Field Study of Industrial Software Developer.

Status Guessed # Corrected Accuracy

Difficulty

17 2 88%

Making Progress

69 7 89%

Indeterminate 2 0 100%

Table 1 shows that the changes resulted in a high accuracy for the

industrial developer.

However, the table shows that the aggregation scheme results in a

large number of false negatives. In particular, it missed 7 of the 22

cases when the developer was having difficulty. To develop a

more accurate scheme, we gathered more data points through a

user study.

Before this step can be taken, it was important to address the

performance and implementation overhead of the Eclipse and

Visual Studio implementations. A reusable architecture is crucial

for this research because of its iterative nature. We were able to

apply certain standard design patterns and existing libraries to

address the reuse issue. To address the performance issue, we

offloaded event processing to a separate process that worked

asynchronously from the programming environment.

Figure 3 shows the architecture. Naturally, a separate module is

needed per programming environment to intercept its events. In

addition, a separate module is needed per programming

environment to display the current status, which is done by using

a Google talk plug-in. Thus, in our implementation we use two

different event-interception and status-display modules – one pair

for Eclipse, and one for Visual Studio.

An event-interception module asynchronously forwards the events

to a separate process, which makes the predictions. As the process

was written in C#, serialized events could be sent directly from

Visual Studio to this process. Java events, on the other hand,

require conversion, and we were able to use standard (WOX and

IKVM) libraries to do so.

Consider now the modules in the predicting process. Events are

received by the ―communication director‖ of the system, the

mediator, which mediates between a pipeline of other modules.

The mediator gives the received event to the first module in the

pipeline. In addition, it receives output from each of these

modules and feeds it as input the next module, if such a module

exists.

The first module to receive input from the mediator is the event

aggregator module. This module aggregates 50 events and passes

these events to the mediator. The mediator passes these events to

the feature extractor module, which computes the ratios that are

used to predict a status. The feature extractor passes the ratios to

the mediator, and the mediator gives these ratios to the prediction

manager. The prediction manager includes the decision tree

algorithm (used in [7]), which uses previous data and the ratios to

predict a status. This status is passed to the status aggregator,

which aggregates each status and gives a final prediction to the

mediator. The mediator delivers this status to the status displayer

of the appropriate programming environment.

The benefit of using the mediator pattern is that it allows modules

to be loosely coupled so that any change in the flow of

communication would not require a change to a module. For

example, if the status manager had to be omitted, the mediator

would have to change. However, the other modules in the system

would stay the same.

The iterative nature of this research requires the ability to easily

change also the behavior of each of the individual modules in this

pipeline. We used the standard Strategy pattern to achieve this

goal. We give below specific uses for it in our context by

considering each of the phases in the pipeline, and showing that

multiple algorithms could be used in each phase.

1. Event aggregator: There are at least two algorithms that can

be run to aggregate events. The current algorithm uses

discrete, independent chunks of 50 events. An alternate

option is to use a gradual sliding window approach similar to

the approach used in TCP/IP. The code below shows the use

Figure 4: Video Coding Tool

of the strategy pattern to easily switch between the two,

assuming both are implemented:

EventAggregator ea = new EventAggregator();

 //ea.setEventAggregationStrategy(new SlidingWindow());

ea.setEventAggregationStrategy(new DiscreteChunks())

2. Feature extractor: We currently extract features based on the

number of events. For example, the edit ratio it computes is

the number of edits divided by the total sum of all actions

including editing. It would also be useful extract features

based on time such as editing time/total time. Another useful

feature that was observed while watching developers solve

problems is the number of exceptions per run.

3. Prediction manager: We currently use two machine learning

algorithms, decision tree and classification via clustering, to

predict developers’ status. In the future, we plan to test other

classification or clustering algorithms, and perhaps build our

own algorithm.

4. Status manager: There are at least two ways to aggregate

statuses. Currently, we aggregate five statuses and take the

most dominant status. This algorithm is similar to

aggregating events in discrete chunks. Another approach is to

use a sliding window, which corresponds to using a sliding

window to aggregate events.

Our experience with the new architecture showed that (a) as

expected, when multiple strategy objects were implemented for a

stage, it was indeed trivial to replace one with the other, and (b)

the asynchronous processing did not result in perceptible delays in

user-response times.

We were now ready to do a controlled user study to evaluate the

adapted algorithm and investigate additional adaptations based on

this study.

4. USER AND CODING STUDY
In a controlled user study, the problems must be chosen carefully.

Our previous work [7] found that having difficulty is a rare event.

Thus, we must try and ensure that developers face difficulty in the

small amount of time available (1-4 hours) for a lab study, and yet

do not find the problems impossible.

We used problems from the Mid-Atlantic ACM programming

competition. These problems are attractive because they have

varying difficulty. We piloted several problems to find problems

that were difficult but not impossible to solve by the subjects.

Based on these pilots, we settled on the problems shown in Table

2. The table characterizes the difficulty of each problem by

showing the number of teams that solved the problem, the total

number of teams, and the fraction of teams that solved the

problem. The difficulty level of each problem was determined by

the number of teams that solved the problem. For example, 100%

of teams that attempted the Simple Question of Chemistry

problem solved it, while only 16% of teams that attempted the

Balanced Budget Initiative Problem solved it.

Five industrial and nine student programmers participated in the

study. Participants were instructed to correct an incorrect

prediction by the system using status-correction buttons (Figure

5). By measuring how often the developers corrected their status,

we could, as in [7], measure the accuracy of our approach with

respect to the perceptions of the developers.

However, there is a question as to whether participants would

accurately report their status, given the hurt ego problem faced by

the second author. Moreover, it is useful to compare the tool’s

predictions about a developer’s status with that of a third party

manually observing the developer. Therefore, the first author and

two independent coders observed participants' programming

activities and made an independent determination of their status.

To allow coders to independently and asynchronously observe

participants' programming activities, we used Microsoft Live

Meeting® to record the participants' screens. Live Meeting® also

allowed the first author to observe remote sessions. In fact, Tang

et al. [20] argued that screen recording is an effective and

Table 2: ACM problems from Mid-Atlantic contest.

Year Problem Title

of teams

that solved

problem

of

teams

%

correct

2006

Shrew-ology 43 138

31%

2004

Balanced

Budget Initiative
23 142

16%

2002

A Simple

Question of

Chemistry

124 124

100%

unobtrusive technique when subjects do not feel it invades their

privacy.

We obtained participants' consent to record their screens. We

recorded 40 hours and 44 minutes of video. To relieve coders

from watching hours of video, we created a video observation

tool, shown in Figure 4. This video tool shows all segments where

the participant, first author (while observing the experiments and

later when randomly sampling the video), or system indicated the

participant was having difficulty or not sure of their status

(indeterminate). As it turned out, in our study, there was one

indeterminate segment (indicated by a participant). We shall refer

to these segments as ―stuck‖ segments.

As there were few such segments, we asked the coders to classify

each of these segments. It was not reasonable, however, to ask

them to classify all of the other segments, which would have

involved watching over forty hours of video. We could use a

statistical sampling approach to reduce the number, but because

having difficulty is a rare event, we would have had to sample the

vast majority of segments to capture the false negatives.

Therefore, we used the following, somewhat arbitrary approach to

choose the ―making progress‖ segments. We randomly chose

these segments, and made the number of randomly sampled points

about the same as the number of having difficulty or

indeterminate segments. If there were fewer than three having

difficulty or indeterminate segments, we randomly sampled three

segments. We shall refer to the randomly sampled segments as

―random segments‖.

Each segment was two minutes of video. Coders were not aware

of the status of each segment and had to classify the segment as

making progress or slow progress. They were shown the video

that corresponded to a particular participant and problem. If there

were any segments for the coder to classify, they were shown on a

line below the track bar. The segments on the line corresponded

with the particular point in the video the coder needed to classify.

To classify segments, coders right clicked on the segment to label

it as ―slow progress‖ (the message displayed for ―having

difficulty‖), and left clicked to label it "making progress". An

image of a mouse was provided to remind coders what each

mouse button meant, and a legend was also provided to help

coders remember that a black segment meant the segment was

unlabeled, a red segment meant slow progress, and a green

segment meant making progress.

Two coders and the first author classified 26 stuck segments and

36 random segments.

5. STUDY RESULTS
After the user study and coding phases were complete, we were

able to answer the following questions: What is the correlation

between (a) predictions of the two coders; (b) developers’ and

coders’ perception of status, (c) predictions of the tool and the

developers’ perception of the status, and (d) predictions of the tool

and the coders’ perception of the status? As we see below, the

answers depended on whether the segment involved was one of

the ―stuck‖ segments or random segments.

Table 3 shows that coders agreed 88% of the time with each other

on stuck segments, and 83% of the time on random segments, and

overall they agreed 85% of the time.

To determine the level of agreement within the stuck (random)

segments we counted the number of times observers agreed with

each other and divided that by the total number of stuck (random)

segments observed.

Interestingly, coders agreed that in 50% of the random segments,

which were classified by the tool as ―making progress,‖

participants were actually having difficulty. We examined these

eighteen cases individually and found three segments that were

three minutes before a stuck segment, so in these cases, the

observers were quicker than the tool in determining the status of

these segments. In the remaining fifteen segments, the coders

seemed to take the inactivity of developers as being stuck. The

three early observations were not counted as incorrect.

So what did the participants themselves feel about their status in

case of these segments? By definition, they agreed completely

with the predicted status for these segments, as these were the

segments that were classified by the tool, participant, and first

author as ―making progress‖ segments.

We noticed that coders seemed to have a difficult time classifying

participants when they were idle, and apparently thinking. The

tool uses developers' actions to predict their status and does not

take into account think times or when developers are idle.

Therefore, we consider the fifteen random segments as ―making

progress‖ when computing the accuracy of the tool.

Consider now the non-random or ―stuck segments.‖ Again, these

are the segments classified either by the first author, or the

participant, or the tool as ―having difficulty‖. These segments tell

a very different story. Table 4 shows the agreement of the coders

with the tool, the author, and the participants for these segments.

Interestingly, coders agreed with the tool 100% of the time that

participants were stuck. Perhaps even more interestingly,

participants never corrected a ―having difficulty‖ status predicted

by the tool.

In four of these segments, participants corrected the ―making

progress‖ prediction of the tool. Three of those times, participants

indicated they were having difficulty, and one of those times

participants indicated that they were not sure of their status

(indeterminate.) In nine of these segments, the first author

classified the ―making progress‖ prediction of the tool as actually

―having difficulty‖. The coders agreed with seven of these

observations (77%). Coders agreed with the participant 75% of

the time. The coders disagreed with the participant who indicated

indeterminate as the status. The first author also reviewed this

disagreement and agreed with the coders that the participant was

indeed having difficulty.

Several (preliminary) conclusions can be drawn from these

results. What is perhaps most remarkable is that when the tool

Table 3: Observer's agreement with each other.

Segment

Type

of

Agreements

of

Observations

%

Agreement

Stuck

segments

23 26 88%

Random

segments

30 36 83%

Total 53 62 85%

Table 4: Coders’ agreement with the tool, first author, and

participants (stuck segments).

Entity

of

Agreements

of

Observations

%

Agreement

Tool

13 13 100%

First

Author

7 9 77%

Participant 3 4 75%

Total 23 26 88%

predicts programmers are having difficulty, all three types of

humans involved in making the prediction – the participants, the

coders, and the first author, also think they are having difficulty.

Thus, the tool does not seem to give a false positive, which is a

very strong result, and a significant improvement over the results

in our previous work [7].

Moreover, if we take the participants’ perceptions as ground truth,

the tool also gives negligible false negatives – only four segments

out of 1222 segments in the entire study were corrected. On the

other hand, if we take the coders’ agreements as ground truth, the

results are not so good, and it seems, based on our sampling, the

tool missed half of the positives (stuck status).

There are two ways to interpret these data. The first relies on the

viewpoint of the participants rather than the coders. The argument

for doing so is that the observers could not read the mind of the

participants, and were probably looking only at idle times to

deduce the developer status. Idle times, alone, are not sufficient to

distinguish between thinking and having difficulty. Our tool, on

the other hand, keeps track of and computes a larger number of

factors, such as the navigation, edit, and focus ratios, and thus

agrees more with the participants. In fact, when asked about the

accuracy of the tool, participants commented that they were happy

with it (Table 4). The numbers shown in the table are represented

by the following two comments: "I think it worked pretty well;

It's non-intrusive, and only pops up with information when the

status changes." " It knew when I was having issues cause it

switched to slow progress and when I was flyin doing all the class

design it said progress."

The other interpretation relies on the observers (coders and first

author) rather than the participants. The rationale for doing so is

that participants tend to underreport their problems [21]. The false

negatives of the tool can be explained by two factors:

1. The tool uses developers' actions to predict their status, and

does not take into account idle times, which should probably

be considered in a future algorithm.

2. The training set consisted of data from the six student

programmers logged in our previous work [7], who used the

tool during normal ―field work‖ consisting of assignments

and research projects. The behavior of these programmers

was different in some ways from those of several of the

programmers in this lab study. The first group primarily

used the Internet to look for help when they were having

difficulty. The participants in this study did not use the

Internet often because of the type of tasks and duration of

this study. The only times they used the Internet was to

remember syntax or look at the Java or .NET API. Moreover,

the two groups solved different types of problems, and the

group in this study also included industrial programmers.

One piece of objective data seems to indicate that the type of

programmer may be a factor in automatic status prediction.

For three student participants, the automatic predictions were

completely in agreement with the perceptions of the coders,

when the coders agreed.

Even under this interpretation, our tool seems useful because of

the zero false-positive rates. It seems that if a choice has to be

made between low false positives and negatives, the former is

more desirable, as it does not unnecessarily waste the time of the

developers and those who offer help. Missing some ―having

difficulty‖ statuses is no worse than the current practice of not

having any automatic predictions. Our tool did give several

positives (thirteen), which were all correct under this

interpretation. Thus, if it is considered desirable to automatically

let others know about developers’ difficulties – an assumption of

this research based on previous work - then it seems better to use

our tool than not use it.

Naturally, it is attractive to try and reduce the false negative rate

(under the second interpretation) without increasing the false

positive rate. One way to do so is train the system using the

observers’ conclusions rather than developer corrections

(assuming the former are true). Moreover, the accuracy can be

further improved if the training data involved the same exercises

as the ones used in the testing phase. We could either build a

group model, in which the data of multiple developers is

aggregated during the training phase, or an individual model,

where no aggregation is done. (The approach described so far was

also a group model, but in it, the training group was smaller and

solved different problems) Therefore, we decided to, next, explore

these directions.

6. PREDICTING OBSERVER STATUS
To build the individual and our group models, we assumed the

following ground truth. All segments classified by the participants

as stuck, were indeed stuck segments. Participants implicitly

classify segments as stuck when they do not correct a stuck

prediction of the tool. They explicitly classify them as stuck when

they correct a ―making progress‖ segment as ―slow progress‖.

Of the remaining segments, if the first author and the two coders

classified a segment as stuck, then it was also a stuck segment,.

Figure 5a: Accuracy of tool (participants 1-6)

regardless of how the participant classified it. All other segments

were making progress.

To build and evaluate the individual model, we used a standard

technique, known as cross validation, which executes 10 trials of

model construction, and splits the data so that 90% of the data are

used to train the algorithm and 10% of the data are used to test it.

In some of the participant's training sets, the number of ―making

progress‖ segments vastly outnumbered the number of ―having

difficulty‖ segments, resulting in low accuracy in predicting the

"having difficulty" segments. This is an example of the class

imbalance problem in classification algorithms, wherein the

accuracy of predicting an event can decrease as the frequency of a

rare but important event decreases. The SMOTE [22] algorithm

implemented in the WEKA toolkit [23] overcomes this

problem by replicating rare data records until that data are equal

to the more common data.

Therefore we used this scheme in the data sets of those

participants who experienced the class imbalance problem. In our

case, we used an accuracy threshold of 90% to determine if a

participant experienced this problem, which was the accuracy of

our previous approach [7]. The accuracy of the model without

SMOTE was 66% or less for participants who had difficulty

20% or less of the time. For participants who had difficulty more

than 20% of the time, the accuracy of the model without SMOTE

was 94% or more. Thus, according to our threshold, participants

who had difficulty less than 20% of the time faced the class

imbalance problem. For these participants, we used SMOTE to

replicate the ―having difficulty‖ segments. In the case of the

remaining participants,‖ having difficulty‖ was either less or

about as frequent as ―making progress‖. Thus, there was never a

need to use SMOTE to replicate the ―making progress‖ segments.

Three of the twelve participants faced so much difficulty that they

Figure 5b. Accuracy of tool (Participants 7-12)

did not complete two of the three exercises.

To build the model for a particular individual, we used that

individual's data as both the training and test set. To build the

group model, we aggregated the data from all of our participants

except data from the participant whose status we were trying to

automatically predict. The exclusion was meant to test if a tool

trained by one set of developers could be used to predict the status

of another. We used the group data to predict the status of each

individual.

The group data set did not suffer from the class imbalance

problem because some of the participants had difficulty just as

much as they were making progress. As mentioned before, even

those who made relatively smooth progress experienced some

difficulty. The decision tree algorithm [23] was used to build both

the individual and group models.

Figures 5a and 5b show the accuracy of the tool. We considered

four accuracies: (a) group stuck: the accuracy of the group model

when predicting having difficulty, (b) individual stuck: the

accuracy of the individual model when predicting having

difficulty, (c) group overall: the accuracy of the group model

when predicting both making progress and having difficulty, and

(d) individual overall: the accuracy of the individual model when

predicting both making progress and having difficulty. The

accuracies are shown for all but two participants. These two

participants were not included because their data was not

collected correctly.

We expected each individual's model to be more accurate than the

group model, but surprisingly, the group model was more accurate

in predicting both ―having difficulty‖ and ―making progress‖ than

the individual model. This unintuitive result is likely because the

group model has more data than the individual model. It is

0% 50% 100%

1

2

3

4

5

6

Accuracy

P
a

r
ti

c
p

a
n

t

1 2 3 4 5 6

Group Stuck 75% 100% 100% 33% 100% 50%

Group Overall 96% 98% 100% 93% 100% 99%

Ind. Stuck 75% 94% 96% 95% 100% 98%

Ind. Overall 94% 97% 98% 97% 92% 98%

Accuracy of Tool

0% 50% 100%

7

8

9

10

11

12

Accuracy

P
a

r
ti

c
ip

a
n

t

7 8 9 10 11 12

Group Stuck 90% 100% 100% 100% 100% 100%

Group Overall 96% 92% 98% 98% 100% 100%

Ind. Stuck 80% 83% 97% 98% 95% 91%

Ind. Overall 92% 92% 97% 99% 96% 90%

Accuracy of Tool

Table 5: Survey Questions and Results (Scale: 1 = Strongly

Disagree to 7 = Strongly agree).

 Survey Question Mean Median STDDEV

Q1 I felt that the tool was

accurate.

6 6 .95

Q2 I would prefer to use a

speech interface (speaking

your status) instead of

pressing buttons to correct

the status.

2.83 3 1.53

possible that with more training, the individual model would

perform better. Even then, it may not be the preferable approach

because participants, probably, would not like training the tool. In

fact, during the debrief one participant commented that pressing

buttons "stopped my flow of thought" and another participant felt

that pressing buttons "sort of broke my concentration".

We asked participants if they preferred to speak their status

because this could help reduce breaking their concentration (Table

5). Participants did not like this feature either, and felt it would be

disruptive to those around them.

There were two participants whose accuracy was 50% or below.

We examined these cases and determined that the tool believed

these participants were making progress while human observers

believed the participants were stuck. In each case, the participants

were performing significant edits, which indicated to the tool that

they were making progress. However, these edits involved a large

number of deletions. This kind of activity suggests that, when

extracting features, editing actions should be split into two

categories: insertion and deletion of text.

The evaluations above show that it is possible to increase the

agreement between a tool and a set of observers by (a) keeping the

exercises the same in the training and evaluation set, and (b) using

the judgments of these observers in the training set. Additional

iterations are required to determine if (a) a tool trained using one

set of exercises can be used to predict the status for another set of

tasks, and (b) judgments of one set of observers can be used to

agree with the judgments of another set of observers.

7. PRIVACY
So far, we have assumed that letting others know about

difficulties of others is good. This assumption is probably true

when the observers are mentors/advisors, as suggested in [3].

However it is possible to have observers who judge programmers

without actually helping them. These judgers can use information

about developers being stuck repeatedly in a negative manner

which could cause programmers to lose respect in their team.

Even when observers can be trusted, the developers may want

more time to investigate their problems. There are several ways

to solve this problem. One approach is to block judgers, a feature

readily available in Google Talk and other IM clients. The

problem with this approach is that blocked judgers can realize that

they are blocked, which could cause them to become hostile.

Therefore, a superior approach is to allow programmers to decide

which status they want to report. Figure 6 shows a preliminary

scheme we have implemented to support this feature, which is

also used by developers to train the system. This interface reports

two statuses – the true status and the reported status. Buttons are

provided to change both statuses.

 Figure 6: Training user interface that show actual versus

report status.

The buttons that change the true status are used to train the system

and the buttons that change the reported status determine what

others on their buddy lists see (Figure 1). The true status field is

automatically copied to the reported status field after a certain

time lag. During this time, developers can manually disable the

copying. Assuming that having difficulty is indeed a rare event,

this user-interface does not impose substantial overhead.

We have not formally evaluated these privacy controls, but we

have gotten some initial feedback from those who have used

them. Users would indeed like to customize not only what status

is reported, but when it is reported, and to whom it is reported.

Thus, this scheme must be extended to control the nature and

timing of reported status for different classes of observers such as

(a) human observers and tools, (b) a team member sitting on the

next seat, radically co-located, and distributed, (c) a close friend,

mentor, and boss, and (d) team members who have and do not

have the expertise to help solve a problem.

Such elaborate customization could make the overhead required to

use the tool high. Future versions of this scheme must allow for

setting user-specific defaults. For example, the number of IM

messages with team members can be used to identify close

friends; organization charts can be used to find mentors and

bosses; location information can be used to find the physical

distance between developers and various observers; and the

difficulty each team member has with different pieces of a project

can be used to find expertise. In addition, the tool can adapt how

developers morph the reported status. For instance, if they always

report the indeterminate status to their boss, then the tool could

ask them if they wish to set this value automatically for this

observer.

8. CONCLUSIONS AND FUTURE WORK
This paper contributes to both the general area of semantic

awareness and the specific subarea of providing awareness about

developers’ progress. To the best of our knowledge, other work on

semantic awareness has not tied the judgments of third-party

observers with those of a tool. Our work shows that (a) these

judgments can be different from those of the actors about whom

the awareness is being provided, (b) a special tool must be

provided to gather third-party observations, and (c) it is possible

to train an automatic tool to agree, to a high degree, with those of

the observers.

Our main contributions, of course, are in the subarea of difficulty

prediction. We have identified a pipeline of modules for

predicting and displaying difficulty. We have also shown the

usefulness of two well-known design patterns, Mediator and

Strategy, in implementing the pipeline. We have created an

architecture that allows the pipeline implementation to be reused

by and execute asynchronously with multiple programming

environments. Our evaluations show that label aggregation can be

used to significantly improve the accuracy of a difficulty-

prediction algorithm, and a group training model offers more

accuracy than an individual one under certain circumstances.

They also show that it is possible to build a tool that does not give

false positives, regardless of whether the participant or observer

judgments are used about the ground truth. Finally, we motivate

and present new user-interfaces for customizing status messages

and exporting the status to others.

As mentioned before, it would be useful to formally evaluate a

design space of status customization and exporting interfaces, and

determine if (a) a tool trained using one set of exercises can be

used to predict the status for another set of tasks, and (b)

judgments of one set of observers can be used to agree with the

judgments of another set of observers. Perhaps the biggest

unresolved issue raised by this work is whether the participants or

observers should be relied upon to determine if developers are

stuck.

Perhaps more observations are needed to help resolve this issue.

Another, more objective approach, is to make the following

assumption: The fraction of ―having difficulty‖ segments is

proportional to the inherent difficulty of the problem. By using

problems of known difficulty, we can determine whether the

judgments of observers or developers correspond more closely

with problem difficulty.

Once this issue is resolved, the next step would then be to deploy

the tool in larger field studies and determine (a) what the

developers feel about the accuracy of the tool, (b) how often and

to whom they export the ―having difficulty‖ status, and (c) how

often and from whom they accept help. Naturally, based on this

experience, we can expect additional iterations through the design

process identified earlier.

Assuming that observers are not reliable in characterizing

developer’s difficulty level, a pair of programmers working side-

by-side [6] could use difficulty notifications to determine if they

should help each other. Moreover, knowing the rate at which

developers get stuck may be useful not only for determining if

they need help. It could be used to (a) characterize the inherent

difficulty of new problems, (b) determine the expertise of

developers to solve certain kinds of problems, (c) estimate how

long it will take them to complete their task, (d) compare the

effectiveness of the various coupling degrees, mentioned earlier,

in reducing the number of times developers face difficulty.

This paper provides a basis and motivation for carrying out these

future research directions.

9. ACKNOWLEDGEMENTS
This research was funded in part by NSF grants IIS

0312328, IIS 0712794, and IIS-0810861. We would like to thank

the study subjects.

10. REFERENCES
1. Redmiles, D., et al. Continuous Coordination: A New

Paradigm to Support Globally Distributed Software

Development Projects. Wirtschaftsinformatik, 2007. 49

(Special Issue): p. 28-38.

2. Sarma, A., D. Redmiles, and T.R. André van der Hoek. , TR-

UNL-CSE-2009-0017, 2009, The Coordination Pyramid: A

Perspective on the State of the Art in Coordination

Technology. 2009, UNL.

3. Begel, A. and B. Simon. Novice software developers, all over

again. in International Computing Education Research

Workshop. 2008.

4. LaToza, T.D., Venolia, G., and Deline. R. Maintaining Mental

Models: A Study of Developer Work Habits. in Proc. ICSE.

2006: IEEE.

5. Nawrocki, J.R., et al., Pair Programming vs. Side-by-Side

Programming, in Software Process Improvement. 2005,

Springer Berlin Heidelberg. p. 28-38.

6. Dewan, P., et al. Experiments in Distributed Side-by-Side

Software Development. In IEEE CollaborateCom. 2009.

7. Carter, J. and P. Dewan. Are You Having Difficulty? In Proc

CSCW. 2010.

8. Herbsleb, J.D., et al. Distance, dependencies, and delay in a

global collaboration. In Proc. CSCW. 2000.

9. Cataldo, M. Sources of Errors in Distributed Development

Projects: Implications for Collaborative Tools. In Proc.

CSCW. 2010.

10. Teasley, S., et al. How does radical collocation help a team

succeed? In Proc. CSCW. 2000.

11. Cockburn, A. and L. Williams, The Costs and Benefits of Pair

Programming. Extreme Programming Examined. 2001:

Addison Wesley.

12. Williams, L., et al. Building Pair Programming Knowledge

through a Family of Experiments. in IEEE ISESE. 2003.

13. Herbsleb, J. and R.E. Grinter. Splitting the Organization and

Integrating the Code: Conway's Law Revisited. Proceedings of

International Conference on Software Engineering. 1999.

14. Hegde, R. and P. Dewan. Connecting Programming

Environments to Support Ad-Hoc Collaboration. In Proc.

IEEE/ACM ASE. 2008.

15. Hollan, J. and S. Stornetta. Beyond Being There. In Proc. CHI

'92 .

16. Kapoor, A., Burleson, et al., Automatic Prediction of

Frustration. International Journal of Human-Computer

Studies, 2007. 65(8).

17. Liu, Y., Stroulia, E. A Lightweight Project-Management

Environment for Small Novice Teams. In Proc. of 3rd

International Workshop on Adoption-Centric Software

Engineering. 2003.

18. Begole, J.B., et al., Work Rhythms: Analyzing Visualizations

of Awareness Histories of Distributed Groups. In Proc. of

CSCW. 2002. p. 334-343.

19. Fogarty, J., Ko, A., Aung. H. H., Golden E., Tang, K. and

Hudson S. Examining Task Engagement in Sensor-Based

Statistical Models of Human Interruptibility. In Proc. CHI,

331-340, 2005.

20. Tang, J.C., et al. Unobtrusive But Invasive: Using Screen

Recording to Collect Field Data on Computer-Mediated

Interaction. In Proc. CSCW. 2006.

21. Shrauger, J.S. and T.M. Osberg. The Relative Accuracy of

Self-Predictions and Judgments by Others in Psychological

Assessment. Psychological Bulletin, 1981. 90(2): p. 322-351.

22. Chawla, N.V., et. al., Smote: Synthetic minority over-

sampling technique. Journal of Artificial Intelligence

Research, 2002. 16.

23. Witten, I.H., Frank, E. Data Mining: Practical Machine

Learning Tools and Techniques with Java Implementations.

1999: Morgan Kaufmann.

24. Eclipseye—spying on eclipse. Bachelor’s thesis, University of

Lugano, 2007.

