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Abstract—Airborne laser scanning technology (LiDAR) makes
it easy to collect large amounts of point data that sample the
elevation of the terrain beneath. The LAS format has become the
de facto standard for storing and distributing the acquired points.
As the sampling density of LiDAR increases so does the size of
the resulting files. Typical LAS files contain tens to hundreds of
millions points today, but soon billions will be commonplace.

We describe a completely lossless compression scheme for
LiDAR in binary LAS format versions 1.0 to 1.3. Our encoding
and decoding speeds are around one to three millions points per
second and our compressed files are only 7 to 25 percent of the
original file size. Compression and decompression happen on-the-
fly in a streaming manner and random-access is supported with a
default granularity of 50,000 points. A reference implementation
unencumbered by patents or intellectual property concerns is
freely available with an LGPL-license, making the proposed
compression scheme suitable to become part of the LAS standard.

I. INTRODUCTION

Low flying aircrafts equipped with modern laser-range scan-
ning technology (LiDAR) collect precise elevation information
for entire cities, counties, or even states. Shooting 100,000 or
more laser pulses per second onto the earth’s surface they
take measurements at resolutions exceeding one point per
square meter. Derivatives of this data such as digital elevation
maps are subsequently used in numerous applications: to
assess flood hazards, plan solar and wind installations, carry
out forest inventories, aid in power grid maintenance, etc.
However, the sheer amount of LiDAR data collected poses
a significant challenge as not millions but billions of elevation
samples need to be stored, processed, and distributed.

The scanner records the waveform of the returning reflection
for each laser pulse that it sends out. The intensity peaks of
this waveform correspond to points that were hit by the laser
and that reflected significant portions back to the sensors on
the plane. There can be multiple peaks because the laser may
hit several surfaces such as wires or antennas, branches, leaves,
or even birds in flight before reaching the ground. Each peak
above a certain threshold is called a return. The coordinates
of these returns together with intensity, scan angle, GPS time,
return number, flight line ID, etc. are the data of interest.

Fresh off the scanner, the LiDAR data is typically stored
in a binary, vendor-specific format. But to exchange the data
between users and across different software packages it was
traditionally converted into a simple ASCII representation
where each line was listing the attributes of a single return.
While flexible and easy to understand, storing millions (or now
billions) of LiDAR returns in a textual format is cumbersome:
the file size grows large, parsing the data is inefficient, and it is

not possible to seek within the file. Addressing these concerns
the ASPRS created a simple binary exchange format - the LAS
format [1]. It is now the de facto industry standard for storage
and distribution of airborne and mobile LiDAR data.

Up to LAS 1.3, each point record has a core 20 bytes of
which 12 bytes store the x, y, and z coordinate as signed
integers. The header of a LAS file contains scaling factors
for those integers that specify the precision (e.g. such as
0.01 for cm and 0.001 for mm). The other 8 bytes store
intensity, scan angle, return count, classifications, etc. This
completes the basic point type 0 (for details see Table I). The
point types 1 and 3 add an 8 byte GPS time and the point
types 2 and 3 provide 6 bytes to store an RGB color. The
LAS 1.3 specification introduced the point types 4 and 5 that
allow attaching full waveform information to each return (with
controversial design choices) but they are not used much.

One of the great features of the LAS format is that it stores
the coordinates as scaled and offset integers—thereby requir-
ing the producers to think about the actual precision in their
scanned data samples and to choose appropriate increments
such as 0.01 meters (or feet) for storing the coordinates. This
eliminates the unnecessary if not disastrous bloat of double-
precision floats or 20 digit ASCII representations where 15
of the 20 digits are really just scanner noise. The absence of
incompressible noise makes it possible to efficiently compress
the LiDAR points in a completely lossless manner.

Generic compression schemes are not well suited to com-
press LiDAR because they do not have the insights into the
structure of the data to properly model the probabilities of
certain patterns to occur. The WinZIP compressor does not
compress well while the WinRAR compressor is extremely
slow. Neither scheme is suited for streaming or for random-
access decompression, which means the entire file needs to be
decompressed before its contents can be accessed.

In this paper we introduce LASzip, a lossless compressor for
LiDAR stored in the LAS format. It delivers high compression
rates at unmatched speeds and supports streaming, random-
access decompression. The source code is available with
LGPL-license and was integrated into the open source libraries
LASlib of LAStools [2] and libLAS [3]. There is native
support for reading and writing LAZ in FME 2012, TopoDOT,
VoyagerGIS, and LAStools and others are following. LAZ is
used internally at USACE, Certainty3D, Watershed Sciences,
Riegl, and others. Data providers such as Open Topography
provide LAZ as an compressed download option [4] and the
DNR of Minnesota hosts LiDAR for 40 counties exclusively
in LAZ format with plans to complete the entire state [5].



II. BACKGROUND

Before describing the LASzip compressor some preliminar-
ies about coordinate precision, the LAS format, related work
in point compression, and entropy and difference coding.

A. Floating-Point Precision vs. Integer Precision

There is a common miss-conception that floating-point rep-
resentations provide more precision than integer presentations
for storing the x, y, z coordinates of a point. They do not.

The coordinates of LiDAR points from an airborne or a
mobile survey are spread out in the x-y plane with uniform
distribution, in the sense that there are roughly the same
number of points per square meter everywhere and that the
points are acquired with roughly the same precision. There
will not be one particularly dense area where points need to
be stored with higher precision. The floating-point format is
not designed for storing uniform distributions of numbers.

Storing a number in floating-point representation means that
the precision of the number will vary depending on the value of
that number. The closer it gets to zero the more precision it will
have. This makes it a good format, for example, for numerical
computations where more precision is needed closer to zero.
But using the floating-point format to store point coordinates
means that there is an increasingly precise spacing of data
samples around one point—the origin—at the expense of an
increasingly imprecise spacing farther away.

An example: in single-precision floating-point there are 223

different numbers to represent a coordinate between 2 and
4 meters with a spacing of 2/223 = 0.00000023841 meter,
there are 223 different numbers to represent a coordinate
between 128 and 256 meters with a spacing of 128/223 =
0.00001525 meter, there are 223 different numbers to represent
a coordinate between 524, 288 and 1, 048, 576 meters with
a spacing of 524, 288/223 = 0.0625 meter, and of course
there are also 223 different numbers to represent a coordinate
between 2, 097, 152 and 4, 194, 304 meters with a spacing of
4, 194, 304/223 = 0.25 meter. If you notice the pattern you
already know that there will also be 223 different numbers
to represent a coordinate between 4, 194, 304 and 8, 388, 608
meters with a spacing of 4, 194, 304/223 = 0.5 meter.

In summary, if you store the easting and northing of your
coordinates directly in floating-point they may retain just 0.5
meters of precision. If you subtract a constant offset from your
coordinates so the origin falls into the middle of the bounding
box, then the samples near the origin are stored with incredible
precision ... much much more than LiDAR has.

The appropriate format for storing the coordinates of LiDAR
points are properly scaled and offset integers. They offer
much more uniform precision than a corresponding floating-
point value for the same number of bits: a 32 bit integer,
for example, offers 7 bits more uniform precision than a 32
bit floating-point number [6] and similarly a 64 bit integer
offers 10 bits more than a 64 bit float. In order to increase the
coordinate range for a large-scale LiDAR collect, the correct
thing to do is to move from 32 bit to 64 bit integers. The LAS
format [1] uses scaled and offset 32 bit integers.

name of atomic item size point type and size
0 1 2 3 4 5

point attributes format size 20 28 26 34 57 63

POINT10 20 bytes x x x x x x
X int 4 bytes x x x x x x
Y int 4 bytes x x x x x x
Z int 4 bytes x x x x x x
Intensity u short 2 bytes x x x x x x
Return Number 3 bits 3 bits x x x x x x
Number of Returns of Pulse 3 bits 3 bits x x x x x x
Scan Direction Flag 1 bit 1 bit x x x x x x
Edge of Flight Line 1 bit 1 bit x x x x x x
Classification u char 1 byte x x x x x x
Scan Angle Rank u char 1 byte x x x x x x
User Data u char 1 byte x x x x x x
Point Source ID u short 2 bytes x x x x x x

GPSTIME10 8 bytes x x x x
GPS Time double 8 bytes x x x x

RGB12 6 bytes x x x
Red u short 2 bytes x x x
Green u short 2 bytes x x x
Blue u short 2 bytes x x x

WAVEPACKET13 29 bytes x x
Wave Packet Descriptor Index u char 1 byte x x
Bytes Offset to Waveform Data u int64 8 bytes x x
Waveform Packet Size in Bytes u int 4 bytes x x
Return Point Waveform Location float 4 bytes x x
X(t) float 4 bytes x x
Y(t) float 4 bytes x x
Z(t) float 4 bytes x x

TABLE I
LASZIP GROUPS THE ATTRIBUTES OF THE POINT TYPES 0 TO 5 OF THE

LAS 1.3 FORMAT INTO FOUR ATOMIC ITEMS: POINT10, GPS10, RGB12,
AND WAVEPACKET13 THAT ARE THEN COMPRESSED SEPARATELY.

B. The LAS format

To facilitate the exchange of LiDAR data between data
vendors, users, and different software packages, the ASPRS
created LAS as a simple binary exchange format [1]. A LAS
file of the 1.0 - 1.3 family consists of a header that can be
followed by any number of variable length records before the
actual point data begins. The first 227 header bytes define the
content of a LAS file: the number of variable length records,
the offset to the start of the points, the type and size of each
point, the number of points, the offsets and scale factors for the
integer point coordinates, and a bounding box that describes
the extends in x, y, and z of all points in the file.

In LAS 1.3, where each point can have an attached wave-
form, there are 235 header bytes. The extra 8 bytes describe the
start of the waveform data. If this field is zero the waveforms
are stored in an external WDP file. If this field is non-zero
the waveforms are stored inside the LAS file after the point
block and the field contains the offset to the start of the
waveform data. LASzip does not (yet) support including the
waveform data inside the LAZ file but always writes it to
an external WDP file instead—at the moment uncompressed.
There is, however, an (undocumented) option in place that will
compress the waveforms to a more compact WDZ file.

Full waveform LiDAR data in LAS 1.3 format is currently
only produced by one vendor. Apparently, the mechanism for



waveform storage was quickly added to the LAS standard
to meet the needs of one hardware vendor without seeking
mutual consensus among all scanner manufacturers first. There
is almost no publicly available waveform data stored in the
LAS 1.3 format and there are only a few software products that
can make use of the waveform data in LAS 1.3 files. Therefore
we postpone the details for full waveform compression for
LAS 1.3 until it becomes more relevant.

The point types 0 to 5 available in LAS 1.3 and the
attributes they are composed of are detailed in Table I. The
LASzip compressor views point types as compositions of
four different atomic items: POINT10, GPSTIME10, RGB12,
and WAVEPACKET13 that are compressed separately. For
example, a point of type 3 is composed of POINT10 followed
by GPSTIME10 and RGB12. Additionally each point may
have n so called “extra bytes” at the end, each of which is
currently considered as a BYTE item. These “extra bytes”
occur when the LAS header specifies a point size larger than
required by the respective point type. For example if the point
type is 1 and the point size is 32 then there are 4 “extra bytes”.

C. Point Compression

The compression of points has been extensively studied in
the context of computer graphics where a point set typically is
a dense sampling of a three-dimensional object. We distinguish
the following qualities in a compression scheme:

• lossy versus lossless
Lossy schemes compress the shape the points represent
rather than the exact point coordinates by allowing their
positions to change slightly as long as they remain
faithful to the underlying surface. They are mainly used
in visualization-only applications. Lossless schemes com-
press point coordinates represented with uniform preci-
sion as scaled integers (in literature often referred to as
“after bounding box quantization” or as “after quantizing
to a certain number of bits per coordinate”) exactly.

• progressive versus non-progressive (or single-rate)
Progressive schemes compress the data such that the de-
coder can immediately display a lower resolution version
of the points while detail is added as the decompression
progresses. They are mainly used for instant feedback
in an interactive visualization setting. Non-progressive
schemes have only one rate of resolution and decompress
the points at full precision. They are mainly used as
an I/O friendly, alternate format of the point data for
transmission or storage, or to take load of a file server.

• streaming versus non-streaming
Streaming schemes start compressing the points and out-
putting the compressed file after reading only a fraction
of them and vice-versa start decompressing the points
and outputting the decompressed file after reading only
a fraction of the compressed data. The memory footprint
remains tiny in comparison to the data they process. Non-
streaming schemes read all points into memory either
during compression, during decompression, or both. They
usually need to construct temporary data structures that

grow with the number of points. Usually, progressive
streaming also falls into this category as decompressing
the points to full precision requires keeping all previously
decompressed coarser points in memory.

• point-permuting versus order-preserving
Point-permuting schemes do not preserve the original
point ordering in the file. Their compression gains come
in large parts from imposing a clever canonical ordering
onto the points that results in small residuals. Order-
preserving schemes do not re-order the points. They
compress more information about each point as they also
need to specify one of n! possible point permutations.

• sequential versus random-access
Sequential schemes decompress the points in the order
they are encoded into the compressed file. Random-
access schemes can seek in the compressed file and
only decompress a particular part. The granularity of the
random access is typically limited to blocks of points.

The LASzip compressor is lossless, non-progressive,
streaming, order-preserving, and provides random-access.

D. Related Work

The seminal geometry compression paper by Deering [7]
sparked the development of a number of compression schemes
for meshes [8], [9], [10], [11], [12], [13] that can also be
thought of as point compression schemes that encode addi-
tional information (i.e. the mesh connectivity). Nearly all point
compression schemes assume that the original order of the
points is meaningless and permute them as they see fit during
encoding to maximize the achieved compression. Because
LASzip aims at compressing LAS files exactly—without any
modification—reordering the points is not an option.

The kd-tree approach of Devillers and Gandoin [10], [14]
recursively bisects a quantized bounding box along all three
axis always encoding the number of points in one half. The
oct-tree approach of Botsch et al. [15] recursively entropy
codes for all eight child nodes whether they contain points or
not with an 8-bit symbol. Peng and Kuo [12] and Schnabel and
Klein [16] use prediction schemes to further improve the bit-
rates of the oct-tree approach. Spatial subdivision approaches
have the drawback that they do not generalize to include
attribute data such as a GPS time or an RGB color.

The method of Waschbüsch et al. [17] generates a binary
tree over the points by pairing close-by points that are replaced
by their centroid to form the next coarser level. The method of
Gumhold et al. [18] incrementally constructs a prediction tree
by greedily attaching the next point to the tree such that it has
the smallest possible residual and compress the tree topology
and the residuals in a streaming fashion. Merry et al. [19]
present a more elaborate prediction tree variation that uses a
globally minimal spanning tree and a set of predictors.

Quite similar to LASzip are the commercially available
LizardTech R© LiDAR compressorTM [20] and the LASCom-
pression software [21] that implements the method of Mongus
and Zalik [22]. Both schemes specifically target LiDAR points
stored in the LAS format and compress them losslessly.



By default the LizardTech’s LiDAR compressor [20] en-
codes points in blocks of 4,096, performing a simplified
Haar wavelet transform on each array of point attributes
individually. Pairs of attribute values are recursively replaced
by an average coefficient, which is simply the left value, and
its corresponding detail coefficient, which is the right minus
the left value. Because high-order bits of detail coefficients
tend to be zero they can compressed efficiently bit-plane by
bit-plane using arithmetic coding [23]. The 8 byte floating-
point GPS time that is part of some point types is compressed
using standard DEFLATE. Besides the compressed contents
of the LAS file, the resulting MrSID file also stores spatial
indexing information to support area-of-interest queries.

The LASCompression software [21] operates very similar
to LASzip in the sense that it predicts the attributes of a
point from previous points with a set of prediction rules and
compresses the corrective deltas with arithmetic coding. In
particular, the authors use a clever scheme for predicting the
linear dependencies between successive points that correspond
to returns from the same pulse by using the already encoded
deltas for x to improve the predictions of y and z.

E. Entropy and Difference Coding

An entropy coder turns a sequence of symbols into a com-
pact stream of bits while using knowledge about the (uneven)
distribution of symbols to store them more compactly—up to
the theoretical optimum. As the symbol distribution is often
not known in advance, an adaptive entropy coder initially
assumes it to be uniform and learns the actual distribution
along the way. When a symbol stream is expected to have
different distributions given “context” information available
to the compressor, it is beneficial to switch between different
contexts while encoding the symbols. The entropy coder used
by LASzip is based on a fast implementation of adaptive,
context-based arithmetic coding by Amir Said [24].

A difference coder compresses the current value as the
difference to a previous value. This is most effective when the
distribution of differences has a much tighter spread and there-
fore a much lower entropy than the distribution of values. The
difference coder used by LASzip entropy codes the number k
that describe the tightest interval [−(2k − 1),+(2k)] that the
difference falls into, entropy codes up to 8 of its highest bits
as one symbol while switching contexts for different k <= 8,
and stores any remaining lower bits raw.

III. THE LASZIP COMPRESSOR

LASzip does not compress the LAS header or any of the
variable length records. It simply copies them unmodified from
the LAS to the LAZ file. It however adds 128 to the value of
the current point type to prevent standard LAS readers from
attempting to read a compressed LAZ file. It also adds one
variable length record that specifies the composition of the
compressed points and various compression options used.

The LASzip compressor views the different point types of
the LAS 1.3 specification as compositions of items: POINT10,
GPSTIME10, RGB12, WAVEPACKET13, and BYTE. Each

item has its own compressor with its own version number
making the compressor modular and easy to extend to future
point types. This document describes LASzip 2.0 that uses
version 2 compression for all items except WAVEPACKET13.
The earlier LASzip 1.0 uses version 1 compression exclusively
and does not allow random access decompression. While still
supported in software for backward compatibility, we do not
describe the LASzip 1.0 compressor in this document.

The LASzip compressor always encodes the points in
chunks of points to allow seeking in the compressed file. The
default chunk size is currently set to 50,000 points. Chunking
makes it possible to, for example, augment the produced LAZ
files with spatial indexing LAX files [2] and support area-
of-interest queries that decompress only the relevant parts of
a compressed LAZ file. Because each compressed chunk is
different in size, the compressor stores a chunk table at the
end of the file that specifies the starting byte of each chunk.

When starting a new chunk, the LASzip compressor stores
the first point as raw bytes and then initializes the entropy
coder. This point is then used as the initial value for subsequent
prediction schemes. All following points are compressed item
by item with the compression schemes detailed below.

A. Compressing POINT10 (version 2)

First, the compressor encodes a bit-mask of 6 bits that
specifies whether any of the following attributes have changed
in comparison to the previously processed point:

• intensity: the 2 bytes that specify the unsigned 16 bit
intensity value i of the point stored in bytes 12 and 13.

• return bits: the 3 + 3 + 1 + 1 bits that specify the return
number r, the number of returns of given pulse n, and
scan direction and edge of flight line stored in byte 14.

• classification bits: the 5 + 1 + 1 + 1 bits that specify
the 5-bit ASPRS classification of the point c and the
synthetic, keypoint, and withheld flags stored in byte 15.

• scan angle rank: the 1 byte that specifies the signed 8-bit
scan angle a of the point stored in byte 16.

• user data: the 1 byte that specifies the unsigned 8-bit
user data u of the point stored in byte 17.

• point source ID: the 2 bytes that specify the unsigned
16-bit flight line p of the point stored in bytes 18 and 19.

Next, the compressor encodes all attributes that have
changed. It encodes the return bits while switching between
256 entropy contexts in dependence on the previous return
bits byte. The return number r and the number of returns of
given pulse n are used to derive two numbers that are used for
switching contexts later: a return map m and a return level l.

The return map m simply serializes the valid combinations
of r and n: for r = 1 and n = 1 it is 0, for r = 1 and n = 2
it is 1, for r = 2 and n = 2 it is 2, for r = 1 and n = 3 it
is 3, for r = 2 and n = 3 it is 4, for r = 3 and n = 3 it is
5, for r = 1 and n = 4 it is 6, etc. Unfortunately, some LAS
files start numbering r and n at 0, only have return numbers
r, or only have number of return of given pulse counts n. We
therefore complete the table to also map invalid combinations
of r and n to different contexts as shown below.



file size compression enc. time dec. time
file name [MB] ratio [sec] [sec]

LAS LAZ SID LAZ SID LAZ SID LAZ SID
5126-05-57.las 287 21 68 13.4 4.2 4.1 85 20 62
5126-05-58.las 312 29 80 10.6 3.9 4.7 97 22 72
5126-05-59.las 363 45 104 8.1 3.5 5.9 120 25 100
5126-05-60.las 287 21 68 13.5 4.2 4.1 87 20 58
5126-05-61.las 286 21 68 13.4 4.2 4.1 87 20 58
total 1,534 138 388 11.1 4.0 23 476 106 350
1942-29-59.las 486 83 144 5.9 3.4 18 242 35 156
1942-29-60.las 485 81 142 6.0 3.4 15 246 33 154
1942-29-61.las 480 80 140 6.0 3.4 14 234 33 153
1942-29-62.las 464 77 135 6.0 3.4 13 224 31 143
1958-23-23.las 539 86 156 6.3 3.4 14 268 37 173
total 2,454 407 716 6.0 3.4 74 1,214 169 779

TABLE II
PERFORMANCE COMPARISON BETWEEN LASZIP (LAZ) AND THE

LIZARDTECH LIDAR COMPRESSOR (SID) IN COMPRESSION RATIO AND

ENCODING/DECODING TIMES FOR LIDAR OF THE MINNESOTA DNR [5].

const U8 return_map_m[8][8] =
{
{ 15, 14, 13, 12, 11, 10, 9, 8 },
{ 14, 0, 1, 3, 6, 10, 10, 9 },
{ 13, 1, 2, 4, 7, 11, 11, 10 },
{ 12, 3, 4, 5, 8, 12, 12, 11 },
{ 11, 6, 7, 8, 9, 13, 13, 12 },
{ 10, 10, 11, 12, 13, 14, 14, 13 },
{ 9, 10, 11, 12, 13, 14, 15, 14 },
{ 8, 9, 10, 11, 12, 13, 14, 15 }

};

The return level l specifies how many returns there have
already been for a given pulse prior to this return. Given only
valid combinations for the return number r and the number of
returns of given pulse n we could compute it as l = n − r.
But we again use a completed look-up table as shown below
to map invalid combinations for r and l to different contexts.

const U8 return_level_l[8][8] =
{
{ 0, 1, 2, 3, 4, 5, 6, 7 },
{ 1, 0, 1, 2, 3, 4, 5, 6 },
{ 2, 1, 0, 1, 2, 3, 4, 5 },
{ 3, 2, 1, 0, 1, 2, 3, 4 },
{ 4, 3, 2, 1, 0, 1, 2, 3 },
{ 5, 4, 3, 2, 1, 0, 1, 2 },
{ 6, 5, 4, 3, 2, 1, 0, 1 },
{ 7, 6, 5, 4, 3, 2, 1, 0 }

};

The LASzip compressor then encodes the intensity as a
difference to the most recent intensity with the same return
map m. The intuition behind this is that, on average, a single
return (where r = 1, n = 1, m = 0) tends to have a different
intensity than the first return of a double return (where r = 1,
n = 2, m = 1) or the last return of a triple return (where r =
3, n = 3, m = 5). The compressor also switches between 4
entropy contexts m = 0, m = 1, m = 2, and m > 3 to further
correlate the expected differences in intensity distributions.

file size compression enc. time dec. time
file name [MB] ratio [sec] [sec]

LAS LAZ LCMP LAZ LCMP LAZ LCMP LAZ LCMP
5126-05-57.las 287 21 26 13.4 11.1 21 119 20 125
5126-05-58.las 312 29 38 10.6 8.2 21 161 22 149
5126-05-59.las 363 45 59 8.1 6.1 24 240 25 120
5126-05-60.las 287 21 26 13.5 11.0 19 120 20 65
5126-05-61.las 286 21 26 13.4 11.1 17 122 20 65
total 1,534 138 175 11.1 8.8 102 762 106 524
1942-29-59.las 486 83 94 5.9 5.2 42 212 35 276
1942-29-60.las 485 81 91 6.0 5.3 40 281 33 363
1942-29-61.las 480 80 90 6.0 5.3 37 348 33 355
1942-29-62.las 464 77 87 6.0 5.3 37 343 31 345
1958-23-23.las 539 86 97 6.3 5.5 41 380 37 379
total 2,454 407 460 6.0 5.3 198 1,564 169 1,718

TABLE III
PERFORMANCE COMPARISON BETWEEN LASZIP (LAZ) AND THE

LASCOMPRESSION CODER (LCMP) [21] IN COMPRESSION RATIO AND

ENCODING/DECODING TIMES FOR LIDAR OF THE MINNESOTA DNR [5].

The compressor then encodes the classification bits while
switching between 256 entropy contexts depending on the
previous return classification byte. There is a potential to
improve compression further by switching contexts based on
the return map m as, for example, a single return is more
likely to be classified as “building” or “ground” whereas the
first return of many is more likely to be “vegetation” or “wire”.
We can expect a modest compression gain from this and plan
to implement this for compressing the new point types of the
recently released LAS 1.4 specification [1].

The LASzip compressor then encodes the scan angle rank
as the difference to the previous scan angle rank. It switches
between two entropy contexts based on the scan direction flag.
Next, LASzip encodes the user data while switching between
256 entropy contexts in dependence on the previous user data
byte, before it encodes the point source ID as the difference
to the previous point source ID. Remember that each of these
six attributes is only encoded if its value has changed.

Finally the compressor encodes the x, y, and z coordinates.
Rather than compressing coordinates directly, LASzip predicts
them from previous points and entropy codes the difference.
For the x and y coordinate it uses a second order predictor:
it predicts the coordinate differences dx and dy between the
previous and the current point as the median of the five
immediately preceding differences of points with the same
return map m. The intuition behind this is, for example, that
single returns are always from a different laser pulse than the
previous point and therefore have a wider spacing in x and/or
y than the middle of three returns.

For the z coordinate (the elevation) LASzip uses a first order
predictor: it predicts z as the elevation of the immediately
preceding point of the same return level l. The intuition is, for
example, that in a forested area a higher return level l signals
a deeper penetration into the forest canopy and therefore a
lower elevation. However, the first of a double return hitting a
power-line has the same return level as a single return hitting
the ground. We can get a small compression gain from using
the return map m instead of the return map l. We plan to
implement this for compressing the new point types of the
recently released LAS 1.4 specification [1].



Fig. 1. The data-sets used in Tables II, III, and IV are provided by the DNR Minnesota [5]. Shown are various derivatives such as false-color elevation,
standard deviation of elevation, highest intensity, hill-shaded elevation, and point densities generated with lasgrid and blast2dem from LAStools [2].

B. Compressing GPSTIME10 (version 2)

The GPS times of a single flight path are a monotonically
increasing sequence of double-precision floating-point num-
bers where returns of the same pulse have the same GPS time
and where subsequent pulses have a more or less constant
spacing in time. While the LASzip compressor is optimized
for compressing single flight paths it will handle any GPS time
sequence. The compression ratio depends on how far the input
is from the expectations. For randomly permuted points it will
be terrible. For multiple flight paths that have been sorted into
tiles one after another it will be excellent.

For compression purposes LASzip treats double-precision
floating-point GPS times as if they were signed 64 bit integers
and predicts the deltas between them. As prediction contexts,
it stores up to four previously compressed GPS times with
corresponding deltas. Keeping multiple prediction contexts
can account for repeated jumps in GPS time that arise when
multiple flight paths are merged with fine spatial granularity.

LASzip distinguishes several cases that are entropy coded
with 516 symbols depending on if the current GPS time is

0 predicted with a delta of zero.
1–500 predicted using the current delta times 1 to 500.
501–510 predicted using the current delta times -1 to -10.
511 identical to the last.
512 starting a new context.
513–515 predicted with one of the other three contexts.

For the first three cases LASzip subsequently difference codes
the delta prediction and the actual delta. Nothing further is

coded when the GPS times are identical. LASzip starts a
new context when the delta overflows a 32 bit integer. For
that it difference codes the 32 higher bits of the current GPS
time and the current context and stores the lower 32 bits raw.
Otherwise it switches to the specified context (where the delta
will not overflows a 32 bit integer) and recurses. The current
deltas stored with each context are updated to the actual delta
when they were outside the predictable range more than 3
consecutive times (i.e. bigger than 500 times the current delta,
smaller than -10 times the current delta, or zero).

Currently the LASzip compressor does not make use of
known data from the already compressed item POINT10
for compressing GPSTIME10. However, if return counts and
point source IDs are populated correctly there is significant
correlation that can be exploited. For example, subsequent
returns of the same pulse are likely to have the same exact
GPS time, and subsequent returns with different point source
IDs are likely to require a context switch. We plan to exploit
this when compressing the new point types of the recently
released LAS 1.4 specification which include the GPS time as
an integral part of the point [1].

C. Compressing RGB12 (version 2)

LAS uses unsigned 16 bit integers for the R, G, and B
channel. Some files—incorrectly—populate only the lower 8
bits so that the upper 8 bits are zero. Other files—correctly—
multiply 8-bit colors with 256 so that the lower 8 bits are zero.
The LASzip compressor therefore compresses the upper and
lower byte of each channel separately. First it entropy codes 6



bits that specify which bytes have changed as one symbol. For
all bytes that have changed it then entropy codes the difference
to the respective previous byte modulo 256.

The channels are encoded in the order R, G, and B.
Differences encoded in earlier channels are used to predict
differences in later channels as there tends to be a correlation
in the intensity across channels—especially for gray colors.
For example, if there was a byte difference in the low byte
of the R channel that difference is added to low byte of the
G channel which—clamped to a 0 to 255 range—becomes
the value to which the difference of the current low byte is
computed.

D. Compressing WAVEPACKET13 (version 1)

The LASzip compressor supports compression of point
types 4 and 5 that contain wave packet information. However,
the current scheme is still in version 1 as it has yet to be
optimized. So far there has been very little real-world demand
for compressing LAS files containing waveform data simply
due to a lack of data stored in this format.

LASzip simply entropy codes the wave packet descriptor
index, an unsigned byte that is zero if a point has no waveform
and indexes the variable length record describing the format
of the waveform otherwise. To compress the bytes offset to
waveform data it entropy encodes one of 4 possible cases:

1) same as last offset
2) use last offset plus last packet size
3) difference to last offset is less than 32 bits
4) difference to last offset is more than 32 bits

In the first two cases no other information is needed. For
the other two cases LASzip difference codes the 32 or the
64 bit numbers. The LASzip compressor difference coded
all remaining fields. Only waveform packet size in bytes
is an integer number. The return point waveform location,
x(t), y(t), and z(t) are single-precision floating-point numbers
whose 32 bits are treated as if they were a 32-bit integer.

E. Compressing BYTE (version 2)

A LAS point may have “extra bytes” because the LAS
header specifies a point size larger than required by the re-
spective point type. Each “extra byte” is entropy encoded with
its own context as the difference to the previous “extra byte”
modulo 256. Treating them as individual bytes is currently
the best that the LASzip compressor can do as there is no
description in the LAS 1.3 specification what these “extra
bytes” may mean. Six “extra bytes”, for example, could be
a single-precision float storing the echo width followed by
an unsigned short storing the normalized reflectivity. Or it
could be an unsigned short storing a tile index followed by an
unsigned integer storing the original index of the point. The
recently released LAS 1.4 specification now officially has an
“Extra Bytes” variable length record to describe the structure
and the individual data types of “extra bytes” [1], which will
allow compressing them more appropriately in the future.
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uncompressed compressed size [MB]
file name size 5 K 10 K 20 K 50 K 75 K 100 K
5126-05-57.las 287 24.3 22.9 22.0 21.3 21.2 21.2
5126-05-58.las 312 33.4 31.5 30.2 29.4 29.1 29.1
5126-05-59.las 363 51.0 48.2 46.2 44.8 44.5 44.1
5126-05-60.las 287 24.4 22.9 22.0 21.3 21.2 21.1
5126-05-61.las 286 24.4 23.0 22.1 21.4 21.2 21.1
total 1,534 157 149 143 138 137 136
1942-29-59.las 486 93.7 88.9 85.5 82.7 82.0 81.6
1942-29-60.las 485 91.6 87.0 83.9 81.2 80.5 80.1
1942-29-61.las 480 90.2 85.7 82.6 80.0 79.3 78.9
1942-29-62.las 464 87.0 82.6 79.5 77.1 76.2 75.9
1958-23-23.las 539 96.8 92.0 88.6 85.9 85.1 84.6
total 2,454 459 436 420 407 403 401

TABLE IV
THE EFFECT OF DIFFERENT CHUNK SIZES 5,000, 10,000, 20,000, 50,000,
75,000, AND 100,000 POINTS ON THE COMPRESSION RATES OF LASZIP.

IV. RESULTS

All timings were taken on an old (2005) Dell Inspiron
D6000 laptop with a 2.13 Ghz Intel processor and an even
older (2003) external LaCie 120 GB fire-wire drive. Encode
timings include reading the uncompressed LAS file from
the local disk (the disk cache was flushed) and writing the
compressed LAZ file to the external fire-wire disk. Decode
timings include reading the compressed LAZ file from the

LiDAR of Minnesota DNR by county size [GB] compression
name # of files # of points LAS LAZ ratio
cottonwood 216 2,491,327,766 65.0 5.2 12.6
douglas 252 2,092,702,039 54.6 5.4 10.2
freeborn 260 1,713,544,294 44.7 3.7 12.1
houston 197 1,450,109,156 37.8 3.9 9.8
jackson 240 2,724,531,642 71.0 5.6 12.6
lincoln 195 2,200,533,847 57.4 4.5 12.8
martin 252 2,853,353,232 74.4 5.8 12.9
murray 252 2,872,608,269 74.9 5.8 12.9
pope 247 2,404,624,049 62.7 5.3 11.9
redwood 302 3,505,060,711 91.4 7.3 12.4
sibley 219 2,501,934,963 65.2 5.8 11.2
swift 282 2,931,687,204 76.4 5.8 13.2
total 2,914 29,742,017,172 776 64 12.1

TABLE V
LASZIP COMPRESSES 30 BILLION POINTS (OR 12 COUNTIES WORTH OF

LIDAR) FROM 776 GB OF LAS DOWN TO 64 GB OF LAZ FOR LIDAR
HOSTED BY THE DNR OF MINNESOTA AT FTP://LIDAR.DNR.STATE.MN.US.



external fire-wire disk and writing the uncompressed LAS file
back to the local disk. Reading and writing from different
disks makes the process less I/O bound. Nevertheless, the CPU
usage for LASzip averages only 50% to 70% on this laptop.
When decompressing LAZ files into memory (not measured
here) LASzip is entirely CPU-bound running at 99%.

The most common question about LASzip is how it com-
pares to the LizardTech R© LiDAR compressorTM that gen-
erates the well-known MrSID format [20]. The results in
Table II show a comparison of the two compressors in terms
of compression ratio, encoding speed, and decoding speed
on typical LiDAR tiles that are publicly provided by the
Minnesota Department of Natural Resources [5]. LASzip is
a clear winner over MrSID in all three performance measures.
The compressed LAZ files are 2 to 3 times smaller than the
compressed SID files, compression was 16 to 20 times faster,
and decompression was 3 to 4 times faster. The encode (!)
times were taken at the Minnesota DNR on a Dell Precision
T3400 workstation with a 3.14 Ghz Intel processor. The de-
code times were taken on the Dell laptop using the command-
line lidardecode.exe version 1.1.0.2802 [20].

We need to be a bit careful in comparing LASzip and
the LizardTech LiDAR compressor because they are aimed
at different work-flows: LASzip is designed to turn large LAS
files into more compact LAZ files for easier management,
faster transmission, and lower file system I/O. The LizardTech
product adds extra value by seamlessly integrating into the
established raster work-flow of the MrSID file format and
includes multi-resolution support for fast access to the point
data at global scale with an option for lossy compression.

In Table III we compare the performance of LASzip with the
LASCompression software [21] that implements the algorithm
described by Mongus and Zalik [22] on the exact same data-
sets. LASzip consistently achieves between 15 to 25 percent
higher compression, encodes 7 to 8 times faster, and decodes
5 to 10 times faster. These are end-to-end wall-clock timings
taken under the exact same conditions for I/O performance of
the laptop / fire-wire disk configuration. While compression
rates are comparable, LASzip clearly excels in speed.

The impact of different chunk sizes on the achieved com-
pression is illustrated in Table IV. Smaller chunk sizes mean
less compression as the adaptive entropy coder resets at the
start of each chunk and needs to relearn all symbol distribu-
tions, which negatively affects compression. There is little to
be gained from chunk sizes larger than 50,000 and there is no
reason for choosing chunk sizes smaller than 5,000 as LiDAR
is usually processed in increments of millions of points.

A large-scale user of LASzip is the Department of Natural
Resources of Minnesota that—at the time of writing—hosts
40 counties of publicly accessible LiDAR in LAZ format [5].
An overview of the savings in data storage, transmission band-
width, and download time for 12 of those counties is detailed
in Table V. The 30 billion points that would take up 776 GB
if stored as LAS files compress down to 64 GB as LAZ.

Compression performance across a large smorgasbord of
typical, experimental, as well as unusual LAS files is reported

in Table VI with the number corresponding to the smallest file
size (or the highest compression ratio) being in bold. We also
report the point type and loosely categorize the point order as
both have an effect on the compression rates. Point order f
means in flight-line order, point order x means sorted along
some axis, and point order t means some form of tiling.

The standard WinZIP algorithm is by far the worst per-
former. This is noteworthy because WinZIP is still used by
several agencies to provide compressed LAS downloads. In
contrast, the generic WinRAR algorithm does surprisingly
well. While it takes a long time to compress, in terms of
compression rate it gives the dedicated LizardTech LiDAR
compressor a run for its money. The LT compressor struggles
with point types 1 and 3 that contain an 8 byte floating-point
GPS time, which it compresses with the inefficient DEFLATE.

Again, LASzip gives the overall best compression ratio.
The data sets on which it is outperformed are usually those
sorted along an axis (i.e. point order x) or those with little
oddities such as “Grass Lake Small”, for example, which has
random values in its return number field and its classification
field or “line 27007 dd”, which has a strange z coordinate
scaling. Although not reported here, LASzip is across the
board the—by far—fastest algorithm for both compression and
decompression.

V. DISCUSSION

Compressing LAS with WinZIP, WinRAR, gzip, bzip, or
any other generic compressor not only means settling for larger
files and slower encoding and decoding speeds, but also means
that no seeking is possible in the compressed file and that
accessing any part of the LiDAR requires to completely de-
compress the file first. LASzip allows you to treat compressed
LAZ files just like standard LAS files. You can load them
directly from compressed form into your application without
needing to decompress them onto disk first. The availability of
two APIs, LASlib [2] and libLAS [3], with LASzip capability
makes it easy to add native LAZ read/write support to your
own software package. The LASzip source code is available
on the website indicated above.

The LASzip compressor is optimized for the case where
points are stored more or less in scanner acquisition order in
the LAS file and the compression rates degrades the farther
the file is from that assumption. If a LAS file is a tile that is
part of a larger tiling, the best compression rates are achieved
when the flight-lines that pass through the tile are kept in
acquisition order (e.g. like lastile from LAStools does it).
Some LiDAR processing software disturbs the original point
order and produces seemingly meaningless point permutations.
When compressing large LiDAR collects to be offered via a
web server to a large audience it may make sense to first re-
order the points of each tile into acquisition order (e.g. with
lassort from LAStools).

The compressed LAZ files can - just like the original LAS
files - be used in conjunction with the small spatial indexing
LAX files (that can be produced with lasindex). This
supports efficient area-of-interest queries when reading the



original LAS file point compression ratio total file size in MB
name size in bytes type order ZIP RAR LCMP SID LAZ LAS ZIP RAR LCMP SID LAZ
Grass Lake Small 123,876,781 0 x 2.6 6.1 7.0 6.9 6.2 118 46 19 17 17 19
LASFile 1 48,097,847 0 f 1.9 3.8 4.8 4.3 4.8 46 24 12 10 11 10
LASFile 2 44,168,907 0 f 1.9 3.8 4.9 4.5 4.9 42 22 11 9 9 9
LASFile 3 16,782,887 0 f 1.8 3.6 4.6 4.2 4.7 16 9 4 3 4 3
LASFile 4 48,471,887 0 f 1.9 3.9 4.9 4.5 5.0 46 24 12 9 10 9
LDR030828 212242 0 59,672,207 0 f 1.9 3.8 4.8 4.4 4.9 57 30 15 12 13 12
LDR030828 213023 0 58,414,787 0 f 1.9 3.8 4.8 4.5 5.0 56 29 15 12 12 11
LDR030828 213450 0 53,215,067 0 f 1.9 3.8 4.8 4.3 4.9 51 27 13 11 12 10
Lincoln 185,565,975 0 x 1.7 6.1 6.1 6.1 6.5 177 106 29 29 29 27
line 27007 dd 107,603,879 0 x 2.4 3.5 3.6 4.0 3.8 103 42 30 28 26 27
MARS Sample Filtered LiDAR 163,225,753 0 x f t 2.8 6.5 7.1 6.3 8.3 156 56 24 22 25 19
Mount St Helens Nov20 2004 115,737,877 0 x 2.2 12.4 13.4 12.9 12.6 110 51 9 8 9 9
Mount St Helens Oct4 2004 134,868,035 0 x 1.7 6.1 6.7 6.4 6.6 129 78 21 19 20 19
ncwc000008 63,161,789 0 f t 1.8 3.1 3.5 3.1 3.4 60 34 19 17 19 18
Palm Beach Pre Hurricane 51,612,715 0 x 1.6 6.6 7.0 6.5 6.8 49 30 7 7 8 7
Dallas 104,639,368 1 f t 1.8 5.2 6.2 2.8 7.5 100 55 19 16 36 13
IowaDNR-CloudPeakSoft-1.0-UTM15N 163,727,279 1 f t 2.5 8.8 8.3 3.3 11.2 156 62 18 19 47 14
LDR091111 181233 1 54,609,113 1 f 1.8 4.4 5.1 2.8 5.6 52 29 12 10 19 9
LDR091111 182803 1 54,255,417 1 f 1.8 4.5 4.9 2.8 5.7 52 28 12 11 19 9
merrick vertical 1.2 54,609,113 1 f 1.8 4.4 5.1 2.8 5.6 52 29 12 10 19 9
S1C1 strip021 78,220,943 1 f 2.0 6.2 7.8 3.4 8.4 75 37 12 10 22 9
Serpent Mound Model LAS Data 91,423,839 1 f 2.2 5.6 6.9 3.3 8.8 87 40 15 13 27 10
Tetons 104,800,536 1 f t 2.0 4.8 5.0 2.8 6.0 100 50 21 20 35 17
USACE Merrick lots of VLRs 101,081,369 1 f t 1.8 4.6 5.2 2.9 5.5 96 54 21 19 33 18
LAS12 Sample withRGB Quick Terrain Modeler 99,156,855 2 x 2.7 6.5 error 6.5 7.4 95 35 14 error 15 13
xyzrgb manuscript 56,046,269 2 t 2.9 8.5 10.2 9.7 10.9 53 18 6 5 5 5
autzen-colorized-1.2-3 362,213,959 3 f t 2.1 2.3 5.2 3.1 6.6 345 164 148 66 119 52
total 2,599,260,453 2.0 4.5 5.9 4.1 6.4 2,479 1,210 551 425 610 388

TABLE VI
COMPRESSION PERFORMANCE BETWEEN WINZIP (ZIP), WINRAR (RAR), LASCOMPRESSION (LCMP), THE LIZARDTECH LIDAR COMPRESSOR

(SID), AND LASZIP (LAZ) FOR TYPICAL, EXPERIMENTAL, AS WELL AS UNUSUAL LAS FILES THAT ARE AVAILABLE AT HTTP://LIBLAS.ORG/SAMPLES.

LAS/LAZ files with any LAStools tool or any application that
uses the LASlib API [2] to read or write LAS or LAZ files.
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