
Streaming Extraction of Elevation Contours from LIDAR Points

Martin Isenburg1 Yuanxin Liu2 Jack Snoeyink2

1Computer Science Division 2Computer Science
UC Berkeley UNC Chapel Hill

Abstract

Air-borne laser range scanning technology (LIDAR) is able
to quickly generate massive amounts of densely spaced
points that sample the elevation of a terrain. We describe
a streaming technique that is able to extract high-resolution
iso-contour elevation lines from such large data sets using
significantly less memory than the processed input points
and the produced output lines. Optional on-the-fly simplifi-
cation can makes the produced iso-contours more tractable
for immediate visualization and smooth out scanning er-
ror. By keeping point, mesh, and line data in streaming for-
mats containing “finalization tags,” we connect individual
batch operations into a streaming processing pipeline that
instantly begins producing final iso-contour output.

1. Introduction
The “pipes” concept, originated by Doug McIlroy1 in the
1972 AT&T Unix v.3, allowed users to effortlessly combine
simple tools operating on a data stream, with the operating
system time-slicing between the processes in a pipe. Some
tools (notably grep, awk, sed) allowed processing on-
the-fly, while others (e.g. sort) were batch operations that
would read their whole input before producing output.

Since geometric data sets (e.g., point clouds, polygon
soups, and meshes) are difficult to characterize and repre-
sent, most tools operating on them are either systems that
convert geometric data into their own format for the op-
erations that they support, or batch processing tools, like
sort. (Of course, since no single system provides all oper-
ations that a user wants to apply, the large systems are also
used as batch processes that write output data to temporary
files instead of to pipes.)

Recently we have demonstrated that the concepts of

1From the Software Tools Users Group 2004 STUG award to Doug
McIlroy: “The one thing, however, that most people think about when they
think of UNIX is the power of the command line interface and the elegance
of the pipe and filter model. . . . Doug McIlroy helped develop the concept
of pipes and stream processing. In order to demonstrate the concept of
stream programming, he wrote the original UNIX version of such tools
as sort(1), spell(1), diff(1), join(1), graph(1), speak(1), and tr(1), among
others.” http://www.usenix.org/about/stug.html

pipes and of stream processing can be brought to geomet-
ric data by extending the representations in which geometry
is input and output with the concept of finalization, which
documents in the data format when a data object will no
longer be needed. In this paper, we bring together work on
spatial finalization for point clouds [1, 2] and topological
finalization for meshes [3, 4] and show that these support
the best type of pipelined processing and visualization: the
results can begin to be displayed well before the input data
has been read, which would valuable even if its only benefit
was to give a user an opportunity to abort the computation
after a few seconds if the visualization is not quite what was
desired. But developers also benefit from the elegance of
pipes and filters by being able to focus on the computation
while the system takes care of time-slicing.

We consider the task of constructing topographic maps
by converting LIDAR (air-borne laser range data, which
returns scattered points with x, y, and z coordinates) into
contours (isoheight lines) via a TIN (Triangular Irregular
Network [5], a common terrain representation for scattered
data). Our pipeline for this task works as follows (see
Figure 1): while spfinalize adds finalization tags to
a stream of points, module sp2delaunay [1] creates a
TIN as a streaming Delaunay triangulation. As triangles
are produced, they are passed to smsmooth for Laplacian
smoothing of z coordinates and smsimp for mesh sim-
plification using a quadric error metric [6]; these modules
may be used multiple times for additional smoothing or
simplification. Module tin2iso extracts specified eleva-
tion contours as streaming polygons and polylines from the
stream of triangles of the smoothed and simplified mesh,
and slclean filters out small contour lines (based on the
length, the number of segments, or size of bounding box),
piping the rest to a file or to the sl viewer for optional
line simplification and interactive display. The only batch
process in this pipeline is at the front: for the point set we
need a bounding box partitioned into a grid, with the count
of how many points are in each grid cell. If this informa-
tion comes from the point producer, then all stages of the
pipeline can be active simultaneously, and the user can be-
gin to see output when a small percentage of the data has
been read.
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Figure 1: An example processing pipeline realized by piping our processing modules together. Spatially finalized points stream out of
spfinalize into spdelaunaywhere a TIN is computed with streaming Delaunay computation [1] and streamed onwards in streaming
mesh format to smsmooth where elevation coordinates are smoothed and on to smsimp which simplifies down to a specified fraction.
The simplified TIN streams to tin2iso where iso-contours are extracted at specified elevations and streamed out in a streaming line
format to slcean where small polylines are removed. The final lines can be streamed to disk or—for inspection—streamed or through a
viewer that renders the lines as they arrive while on-the-fly creating a coarser version in memory solely for interactive rendering.

The benefits of a streaming pipeline for processing large
amounts of geometry data are

composability Streaming implementations give us the flex-
ibility to “plug and play”—to string different modules
together to solve complex tasks with high throughput.

low latency Finalization allows output from the last mod-
ule in the string while the first is still reading its input,
giving the user rapid feedback from the whole compo-
sition.

memory coherence As data is finalized its memory may be
released, keeping the memory footprint of each mod-
ule small so that they need not compete for memory
resources on the system.

parallelism Pipes can harness the computing power of an
additional processor or multi-core chips without any
programming effort; the operating system can take
care of the load balancing.

modularity Modules can be developed first as simple pro-
totypes, as ours have been, and later replaced with a
”better” techniques, as ours will be. (e.g., the Delau-
nay triangulator and mesh smoothing operators should
respect breaklines)

2. Related Work
There are uncountably many systems that prepare or visu-
alize terrain data in general. The Army Corps of Engineers
maintains a survey with links to over 500 commercial pack-
ages2. And few of these handle LIDAR data, notably QT

2http://www.tec.army.mil/research/products/TD/
tvd/survey

Modeler from Applied Imagery3 who use a quadtree [7] to
handle hundreds of millions of points within their system
without loading them all into memory. Each of these pack-
ages provides functionality that works within its own sys-
tem, so it is not uncommon to have to go from system to
system to compose functions, storing intermediate data in
files.

As mentioned in the introduction, pipes were introduced
in AT&T Unix version 3, “at the suggestion (or perhaps in-
sistence) of M. D. McIlroy, a long-time advocate of the non-
hierarchical control flow that characterizes coroutines.” [8]
Pipes are crucial plumbing in modular visualization sys-
tems, such as such as the former SGI Explorer [9] or current
AVS4. Our contribution is to identify finalization as a way
to pipe less-structured data through concurrent coroutines
without the support of a large system.

The processing we do is typical of a LIDAR processing
pipeline; what is novel is the ability to see the results before
any of the steps of the pipeline completes.

Bare-earth extraction: LIDAR sensors capture elevation
points from the ground (bare-earth data) as well as
from objects on the ground, such as forests and build-
ings. For contouring and many other applications, it
is desirable to use bare-earth data only. However, ex-
tracting the bare-earth data is not simple and often in-
volves time consuming manual processing. There have
been much research on automatic methods to extract
the bare-earth models [10, 11]. Many of these meth-
ods filter data points based on local geometry of the
points or of a TIN and can be adapted to work in the

3http://www.appliedimagery.com
4http://www.avs.com
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streaming pipeline.

Contour smoothing: The contours drawn on a topographic
map to depict a natural terrain are expected to be
smooth curves. Unfortunately, the contours produced
from a TIN are often either jagged or noisy: jagged
when contours are computed from a TIN with resolu-
tion too coarse, so that the polygonal nature of the con-
tours become visible, and noisy when the TIN is con-
structed from dense data such as LIDAR that is either
capturing featurs that are smaller than the resolution of
interest or that is noisy itself.

Contours are best smoothed by smoothing a surface,
and then generating contours from the surface. This
guarantees that there are no crossing contours, and that
they convey a consistent picture of the underlying to-
pography. It is computationally easier to smooth con-
tour lines individually, which we support in our vi-
sualizer, but surprisingly difficult to smooth a group
of contour lines while guaranteeing no intersections;
Estkowski and Mitchell showed that some versions of
this problem are NP hard and hard to approximate [12].

Visualization and applications: Once the TIN has been
prepared from the point data there are many applica-
tions in addition to visualization. Contour lines may
also be analyzed for flood level prediction, or volume
under the surface may be computed for beach erosion
analysis. The surface may be converted into a raster
DEM for further processing.

3. Streaming Formats and Modules

Streaming formats seek to present data in an order that al-
lows stream processing modules to perform computation as
the data arrives. The most common streaming formats are
for one-dimensional time series, such as streaming audio or
video. To decompress or filter such time series, the data in
a small sliding window is buffered in a FIFO queue. The
window size is chosen so that the operation has all the local
information that it needs. This allows data to stream out as
fast as it streams in, with only a little latency.

For geometric data, including triangle meshes, line seg-
ments, or point clouds, there are many operations that de-
pend only on the data in a local neighborhood. Unfortu-
nately, there is no “natural” order of the data for which
a small sliding window on a one-dimensional stream will
contain all local information that a non-trivial operation
needs. Instead, we add explicit “finalization tags” to our
streaming input and output data formats; the tag for a data
item lets a streaming module know that it has all the data
required to perform a computation for that item.

Figure 2: A close-up of a TIN from the raw LIDAR points of
“noaa” before (left) and after (right) piping it through smsmooth,
along with the corresponding one-foot contour lines extracted by
tin2iso. The “noaa” data is low relief data from a program that
monitors coastal areas. Elevations are scaled by 32 for illustration.

3.1. Streaming Meshes, Points, and Lines

Isenburg and Lindstrom [4] describe a streaming format for
meshes: vertices and triangles are intermixed, along with
vertex finalization tags that indicate when all triangles ref-
erencing this vertex have already appeared in the stream.
This topological finalization of mesh vertices allows mod-
ules to derive when, for example, the one-ring or two-ring
neighborhood around a vertex or an edge has completely
appeared in the stream, and perform tasks that need the data
from such neighborhoods (e.g. computing vertex normals).
Finalization of vertex v tells the application that it can com-
plete all computations that were waiting for v’s topology,
output partial results, and safely free any data structures that
are no longer needed.

In our pipeline we produce topologically finalized TINs
as output of our streaming Delaunay triangulator so that we
can simplify the TINs with streaming edge-collapse opera-
tions [13, 14]. We also use topologically finalized TIN input
to extract elevation contours and output them in a streaming
line format that includes vertices, line segments, and vertex
finalization tags. Having topologically finalized lines can in
turn be exploited for streaming topological clean-up that re-
moves connected components smaller than some threshold.

To perform streaming operations on point data requires
a different type of finalization. Pajarola [2] sorts the points
into a global spatial order that allows him to derive what we
could call k-neighbor finalization: a point is finalized after
its k nearest neighbors have arrived. We, in a paper that is
sent as supplemental material [1], use spatial finalization:
space is partitioned into regions, and a region is finalized
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Figure 3: A close-up of a TIN from the raw LIDAR points of
“grbm” before (left) and after (right) piping it through smsimp,
which simplifies down to 10 percent. The corresponding two-foot
contour lines extracted by tin2iso demonstrate the achieved
quality in line simplification. Elevations are scaled by 16.

after the last point in the region appears in the stream.
In our pipeline we need spatially finalized points as in-

put to our streaming Delaunay triangulator. In the ideal case
the input format from which we start processing already has
spatial finalization tags. Otherwise compute this informa-
tion with two additional passes over the points or (for highly
incoherent input) with spatial sort as outlined in [1].

3.2. Stream Processing Modules
We have implemented a number of stream processing mod-
ules that operate on points, meshes, and lines, many of
which are included in the software that accompanies this
paper. They are described here briefly:

sp2sp,sm2sm,sl2sl convert format of streaming
points, meshes, and lines between ascii, raw binary,
and compressed binary representations.

spreduce decimates points by random selection.

spfinalize computes spatial finalization tags for raw
points in three read passes [1]. Consumes raw points
and produces streaming points.

spdelaunay converts streaming points into a streaming
mesh using streaming 2D Delaunay triangulation [1].

smsmooth performs Laplacian smoothing on the z co-
ordinate of a TIN. Consumes a streaming mesh and
produces a streaming mesh (see Figure 2).

smsimp simplifies a TIN down to a chosen fraction
with the simplification technique of [14]. Special-
ized towards TINs which allow more efficient topology
checks of edge-collapse validity (see Figure 3).

tin2iso extracts elevation contours (iso-height lines)
for specified elevations with linear interpolation. Con-
sumes a streaming mesh, produces streaming lines.

slclean removes short polylines that have few segments
or short total length. Consumes streaming lines pro-
duces streaming lines. Buffers only those polylines
that are below the threshold but still active.

sp viewer,sm viewer,sl viewer render stream-
ing points, meshes, and lines for quick inspection. Un-
optimized OpenGL based viewers. Simplify input on-
the-fly using vertex clusterting to retain interactivity
for larger inputs. Support out-of-core rendering of a
the chosen view-point at full resolution.

4. Performance Measurements
In Table 1 we report data production, timings, and main
memory consumption for various configurations of our
stream modules into a geometry processing pipeline. We al-
ways start from a binary file containing raw points in single-
precision floating point format on one disk and end with the
respectively produced data (e.g. streaming points, meshes,
lines) on the other disk. Measurements are taken on a Dell
Inspiron 6000D laptop with a 2.13 GHz mobile Pentium
processor and 1 GB of memory, running Windows XP. The
raw point file is read from an external LaCie 5,400 RPM
firewire drive and the data produced by the last module is
written to the 5,400 RPM local harddisk.

To demonstrate the minimal end to end delay in our
streaming pipeline we report the time that it takes until
the first result appear at the end of the pipe once the raw
input points are finalized. Computing spatial finalization
takes an additional 2+2 seconds for the smaller “grbm”
data set and 27+27 seconds for the larger “puget” data set
as spfinalize needs to make two strictly I/O limited
passes over the points before it can start producing final-
ized output points. If the raw points are already stored in a
finalized format on disk this preprocessing is not necessary
and our pipe starts producing output almost instantly.

The total main memory use of our pipe is well below
the availability of memory resources on household PC. The
biggest memory hog is spfinalize that buffers point to
stream them out in “chunks”. That processing the 10 times
larger inputs and outputs of “puget” uses only slighly more
memory than that of “grbm” demonstrated the scalability of
our pipeline.

While there is plenty of memory for adding more mod-
ules to the pipe, this slows down the pipe as it adds another
consumer of CPU cycles. The slowest component of our
pipe is smsimp which consumes most of the CPU time. As
the slowest module dictates the speed for the whole pipe,
adding a second CPU can only increase the throughput to
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“grbm” (6,016,833 points, 69 MB) number of produced size time (sec) memory (MB)
added module produced data objects (comp) MB prep first last other cmd total
spfinalize finalized LIDAR 6,016,833 71 2+2 1 3 - 28 28
spdelaunay2d raw TIN 12,018,597 213 2+2 1 27 28 7 35
tin2iso raw lines 1,236,155 7,127 29 2+2 1 35 35 6 41
slclean clean lines 1,180,364 228 28 2+2 1 36 41 1 42
smsmooth smooth TIN 12,018,597 213 2+2 2 43 42 6 48
smsimp smooth simpl TIN 1,201,860 21 2+2 15 170 44 15 59

smooth simpl lines 398,694 608 10
smooth simpl clean lines 390,357 145 9

“puget” (67,125,109 points, 568 MB) number of produced size time (sec) memory (MB)
added module produced data objects (comp) MB prep first last other cmd total
spfinalize finalized LIDAR 67,125,109 776 27+27 1 42 - 21 21
spdelaunay2d raw TIN 134,207,228 2328 27+27 1 426 21 10 31
tin2iso raw lines 8,861,024 8,434 205 27+27 1 469 31 11 42
slclean clean lines 8,697,263 3,382 201 27+27 1 475 42 1 43
smsmooth smooth TIN 134,207,228 2328 27+27 2 547 43 12 55
smsimp simpl TIN 13,420,723 232 27+27 28 2118 50 16 66

smooth simpl lines 2,853,504 7,894 65
smooth simpl clean lines 2,708,640 1,796 63

spfinalize -i points.raw | spdelaunay2d -ispb -osmb | smsmooth -ismb -osmb |
smsimp -ismb -osmb | tin2iso -ismb -oslb | slclean -islb -o lines.slb

Table 1: Performance of streaming pipeline when adding more stream modules, for two data sets, “grbm” and “puget”. As
you read down the tables, stream modules are added to the pipe one by one, cumulating in the above pipeline. Each line in
the table reports the additional time, amount of produced data and memory use for the newly added module. Time is broken
down into preprocessing time, and from then the time until the first result, and until the last result streams out at the end.

that of smsimp, which can simplify around 100 thousand
triangles per second. One possibility to better leverage mul-
tiple CPUs offered by our modular approach is a pipe of
multiple smsimp modules together that each simplify less.

Even on one CPU, in less than 35 minutes our pipe has
turned over 700 MB of point data into 63 MB of simpli-
fied iso-contour elevation lines. Along the way—to cre-
ate intersection free contours—it creates a temporary TIN,
uses its connectivity to smooth elevations among neighbor-
ing points, and then simplifies it to 10 percent. Neither the
raw nor the smoothed and simplified TIN need every to be
stored as they stream from one module to the other. As
all described modules and the “grbm” data set are included
with the paper, we encourage the reviewers to verify the re-
ported performance or even build their own pipe on their
own data.

5. Conclusions
We have shown that streaming formats for geometric data
support the incremental development of a suite of simple
streaming modules that handle complex processing tasks ef-
ficiently, are easy to work with, and allow for immediate
inspection in an interactive workflow.

Note that streaming is useful even if your input and out-
puts fit into memory. In an interactive workflow streaming

can drastically reduce the time from loading the points from
file until “seeing” the first extracted isoline. When explor-
ing the data one instantly notices when the pipe is running
with the wrong parameters, and can stop the computation
without having to wait for its completion to rerun again. In
other words, we obtain confirmation within seconds that the
result we are creating is what we actually wanted . . . only
then do we commit to letting the pipe run through.

As a contour production tool, our prototype pipeline
needs a few improvements. The contours on a high quality
topographic map can quickly convey the three dimensional
shape of a terrain to a human reader. However, the output
from our contour production pipeline may contain visual ar-
tifacts, due to the “noise” in the data and the simplicity of
our interpolation and contour extraction algorithms. Fortu-
nately, the modularity of pipeline processes supports incre-
mental development by easy substitution of new algorithms.

One of the immediate needs is what the geographers
call “hydrological enforcement.” Terrain models are often
used to analyze drainage characteristics of a landscape; any-
one who reads topographic maps knows the that a common
visual cue for a river valley is a sequence of sharp “V”-
shaped contours, with the pointed end of the “V” pointing
upstream. Unfortunately, the TIN construction sometimes
puts a “dam” in a river valley, and subsequent contours can
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Figure 4: Our stream processing pipeline operating on the “grbm” data set. The original 6 million LIDAR points (left) are spatially
finalized, Delaunay triangulated, smoothed, and simplified into a TIN of 1.2 million triangles (middle) from which we extract 2 feet
elevation contours and output them into a file while removing poly lines shorter than 10 feet.

look blatantly incorrect [15]. Traditional photogrammetric
techniques avoid such mistakes because the (human) con-
tour generator looks at the photographs of a terrain. To au-
tomatically generate hydrologically correct contours, a TIN
construction algorithm must respect hydrological enforce-
ments so that it does not generate terrains that obstruct water
flow.

The easiest way to do this is to add additional data for
river and ridge lines, known as breaklines, into the construc-
tion and smoothing of the TIN. Thus, we plan to extend our
streaming Delaunay triangulator [1] to accept hydrological
breaklines as input and produce constrained Delaunay trian-
gulations and to modify the smoothing operators to respect
breaklines in the TIN.

We hope that the efficiency of our streaming pipeline has
presented a compelling case that it is worthwhile to develop
new algorithms with streaming in mind.
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