Distributed Hash Tables

Jasleen Kaur

November 11, 2009

Distributed Hash Table (DHTs)

- Hash table: data structure that maps “keys” to “values”
 - essential building block in content systems

- Distributed Hash Table: similar, but spread across the Internet
 - Each node stores (key, value) pairs
 - Interface:
 - Insert(key, value)
 - Lookup(key)
 - Join/leave
 - Each DHT node in the overlay supports single operation:
 - given input key, route messages toward node holding key

- “Middleware” for building distributed systems
 - DNS, File Systems, ...
DHT In Action

Operation: take key as input; route messages to node holding key

DHT In Action: insert()

Operation: take key as input; route messages to node holding key
DHT In Action: lookup()

- **Operation**: take key as input; route messages to node holding key.

DHT Design Goals

- An “overlay” network with:
 - flexible mapping of keys to physical nodes
 - small network diameter
 - small degree
 - local routing decisions
- A “storage” or “memory” mechanism with
 - best-effort persistence (soft state)
- We’ll look at two designs:
 - Chord
 - Pastry
Chord

- Based on logical m-bit identifiers
 - 0 to 2^m-1 ordered in an identifier “circle” (modulo 2^m)

- (Key, Value) pairs are stored/located by using a **consistent hash** function CH_k to map keys, K, onto a point Φ on the circle
 - $\Phi = CH_k(K)$

- System nodes are also mapped onto points, N_i, on the same identifier circle
 - Φ may be greater than N_i

- Node N_i stores all (K,V) pairs where K maps to a point Φ such that N_i is the first node where
 - $\Phi \leq N_j$ (where N_j is the successor of Φ)
Chord

- DHT API:
 - Each node stores (key, value) pairs
 - Interface:
 - insert(key, value)
 - lookup(key)
 - join/leave
 - Each DHT node in the overlay supports single operation:
 - given input key, route messages toward node holding key
Simple Lookup -- recursive mode
(part two: return successor & send query)

Memory: O(1)
Mean lookup is O(n^2)
Not Scalable!

Scalable Lookup With Small Node State
(part one: use local “finger table”)

Finger table at node j:
for i=0 to log(n)
finger[i] = Successor(Node(j+2^i mod 2^log(n)))
Scalable Lookup With Small Node State
(part two: use remote finger table data)

Scalable Lookup With Small Node State
(part three: locate successor node)

Finger tables help halve the ID-space distance in each step.

Mean lookup is $O((\log n)^2/2)$
With m table entries

\cdots Schnieder
Chord

- **DHT API:**
 - Each node stores (key, value) pairs
 - Interfaces:
 - lookup(key)
 - insert(key, value)
 - Join/Leave
 - Each DHT node in the overlay supports single operation:
 - given input key, route messages toward node holding key

Node Join
(example, Hash(128.250.6.182) = 26)

- Nodes also maintain a **predecessor** link (not used for search)
- (1) Joining node contacts any existing node to find successor
- (2) Successor link created from returned value
Node Join
(example: Hash(128.250.6.182) = 26)

- (3) Successor Notified and data for keys < 26 moved and predecessor link made.
- (4) Periodic Stabilize protocol run by all nodes updates successor link in predecessor node (N21) and predecessor link in new node; Fix Fingers also run to fix finger tables (uses find successor search).

Replication & Robustness:
Each node maintains list of r successors

Protocol against simultaneous node failures that could result in loss of correct successor links.

Applications run replicate data at k of the r successors to provide high availability in event of node failures.
The Chord Theorems

Theorem 12.1: For any set of \(N \) nodes and \(K \) keys, with high probability, the following is true:
1. Each node is responsible for at most \((1 + 1/K)\) keys.
2. When an \(O(N) \) node joins or leaves the network, the responsibility of \(O(K/N) \) keys changes hands (and only to or from the joining or leaving node).

Theorem 12.4: With high probability, the number of nodes that can be contacted in \(O(N/\log N) \) time in an \(N \)-node network is \(O(N/\log N) \).

Theorem 12.3: If any sequence of join operations is encountered interleaved with stabilizations, then at some time after the last join the successor pointer will form a cycle on all the nodes in the network.

The Chord Theorems (cont.)

Theorem 12.2: If we take a stable network with \(N \) nodes with correct finger pointers, and another set of up to \(N \) nodes joins the network, and all successor pointers that perhaps not all finger pointers are correct, then bootstrap will still take \(O(N/\log N) \) time with high probability.

Theorem 12.5: If we use a successor list of length \(s = \Theta(\log N) \) in a network that is initially stable, and does not move, fails with probability \(1/2 \), then with high probability \(\text{find-successor} \) returns the closest living successor in \(O(N/\log N) \) time.

Theorem 12.6: In a network that is initially stable, if every node then fails with probability \(1/2 \), then the expected time to execute \(\text{find-neighbor} \) is \(O(N/\log N) \).