Content Distribution Systems

Jasleen Kaur

November 18, 2009
Bittorrent: Introduction

- Peer to Peer file transfer protocol
 - Files are shared by many users
 - Active participation of all users

- Transfer of large files

- Huge success in the file sharing domain
 - 35% of internet traffic

Striking Characteristics

- A central server is not needed
 - No single point of failure
 - Allows distribution of content without straining budgets (low bandwidth, small computers)

- Not dependent on a single source
 - Automatic replication
 - Original source hard to trace

- More the number of users, greater will be the transfer rate
 - Rate proportional to popularity of file
 - Viral spreading of file throughout peers

- Data available in pieces, not as a single large file

- Tit for tat strategy
 - Incentive for contributing resources
Architecture of BitTorrent

Components:
- Metainfo File
- Data
- Tracker
- Peers
- Client

HTTP → Peer → Tracker
TCP → Peer → Peer

Metainfo File

- Contains all information about a torrent
 - File with a .torrent extension

- It has the following keys
 - info, tracker-info, creation date, comment, created by
 - Keys are encoded before they are sent

- Hashes of all the pieces are present in info field of metainfo file

- Files are uploaded in public sites by seeds
 - Users download this file via HTTP and can participate in the torrent transfer
Data

- Data can be a single file or multiple files contained in a directory.
- Data is split into many pieces of equal size.
 - Common piece sizes are 256 KB, 512 KB, and 1 MB.
 - Each piece is further divided into many blocks.
- A piece will have a hash, needed for data integrity check.

Tracker

- Manages users participating in a torrent.
- Helps peers find each other.
 - Peers request tracker for other peers having the required pieces.
 - Tracker responds with a list of peers that have the requested pieces.
- A tracker can manage many torrents.
- It is an HTTP service that works on port 6881.
Working of BitTorrent

1. Seeder generates a torrent file and uploads torrent to a web server.
2. The seeder notifies the tracker that it is sharing the file described in the torrent file.
3. A leecher downloads the torrent file from the web server.
4. The leecher connects to the tracker specified in the torrent file.
5. The leecher connects to its peers to retrieve pieces of the file.

Peers

- Peers speak TCP
 - Ports 6881 - 6889 are used by peers
- Following key strategies are used by peers while sharing files
 - Random First
 - Ensures that peers have all pieces that other peers want (increased exchange opportunity)
 - Low incentive for a currently upload-only peer to not share anything of interest to others
 - Minimizes new peers are downgraded from the original seed (no flash crowds)
 - Random First Piece
 - Peers may come from a slow peer (need a piece quickly)
 - Endgame Mode
 - Add all pieces for last sub-piece (prevent a slow peer from delaying your finish)
 - Peer reciprocation
 - Upload to peers which uploaded to you (enhance pointer efficiency)
 - Cloning and Optimising Unchoking
 - Allows to discover and tune-out peers that can offer better download rates
Client

- Executable program running on user's machine
- Coordinates with OS to perform read write operations
- A .torrent file must be opened by the client
- Peers with same client perform better

Attacks on BitTorrent

Pollution Attack
1. The peer receives the peer list from the tracker.
2. One peer contacts the attacker for a chunk of the file.
3. The attacker sends back a false chunk.
4. Attacker requests all chunks from swarm and wastes their upload bandwidth.
Attacks on BitTorrent

DDoS Attack
1. The attacker downloads a large number of torrent files from a web server.
2. Attacker spoofs IP address and port with that of victim and notifies the tracker.
3. Tracker directs peers towards victim.
4. Victim will be flooded with requests from other peers.

Attacks on BitTorrent

- Bandwidth Shaping
 - This is done by user’s ISP.
 - Uncrypted BitTorrent packets are easily identified and filtered.
 - Sophisticated filtering software can detect BitTorrent like behavior.
 - Comcast has recently admitted to filtering BitTorrent traffic.
Current Solutions

Pollution Attack

- Blocklisting
 - Achieved using software such as Peer Guardian or modRew.
 - Blocks connections from blocklisted IPs which are downloaded from an online database.

DDOS Attack

- Spoofing needs to be avoided in the first place
 - This can be done by using filters
- Make the tracker validate a peer whether it has the torrent or not
Current Solutions

Bandwidth Shaping

- Encryption
 - Most BitTorrent clients can encrypt the packets they send
 - Simple filters which simply look at the contents of the packet can easily be traversed

- Tunneling
 - Using VPN software to connect to an unfiltered network
 - Such tunnels which are free from filters provide easy path to BitTorrent packets

Conclusion

- BitTorrent is a popular P2P technology deployed across the Internet.
 - 27-33% of Internet traffic (measured at different locations)
- The protocol has found a niche as a preferred method for the decentralized distribution of large files

Pros:
- Lower cost to content provider (used even by organizations that want to distribute their own or licensed material)
- Higher redundancy (and availability)
- Greater resistance to "flush accounts"

Cons:
- Downloads can take time to rise to full speed (it takes time for a node to become an effective upserter)
- Non-continuous download not suitable for "streaming" or "progressive downloads"
- Does not offer use anonymity (exposes users with insecure systems)
- Causes home routers to lock up (frequency contacts 360-500 servers per second, filling up NAT tables)