Group-wise Cortical Correspondence via Sulcal Curve-Constrained Entropy Minimization

TitleGroup-wise Cortical Correspondence via Sulcal Curve-Constrained Entropy Minimization
Publication TypeConference Paper
Year of Publication2013
AuthorsLyu I, Kim SH, Seong J-K, Yoo SW, Evans AC, Shi Y, Sanchez M, Niethammer M, Styner M
Conference NameProceedings of the Conference on Information Processing in Medical Imaging (IPMI)
Abstract

We present a novel cortical correspondence method employing group-wise registration in a spherical parametrization space for the use in local cortical thickness analysis in human and non-human primate neuroimaging studies. The proposed method is unbiased registration that estimates a continuous smooth deformation eld into an unbiased average space via sulcal curve-constrained entropy minimization using spherical harmonic decomposition of the spherical deformation field. We initialize a correspondence by our pair-wise method that establishes a surface correspondence with a prior template. Since this pair-wise correspondence is biased to the choice of a template, we further improve the correspondence by employing unbiased ensemble entropy minimization across all surfaces, which yields a deformation field onto the iteratively updated unbiased average. The specific entropy metric incorporates two terms: the first focused on optimizing the correspondence of automatically extracted sulcal landmarks and the second on that of sulcal depth maps. We also propose an encoding scheme for spherical deformation via spherical harmonics as well as a novel method to choose an optimal spherical polar coordinate system for the most efficient deformation field estimation. The experimental results show evidence that the proposed method improves the correspondence quality in non-human primate and human subjects as compared to the pair-wise method.

Full Text