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Abstract

This paper introduces and analyzes a Linear Minimum Mean Square Error (LMMSE) estimator using a Rician

noise model and its recursive version (RLMMSE) for the restoration of diffusion weighted images. A method to

estimate the noise level based on local estimations of mean or variance is used to automatically parametrize the

estimator. The restoration performance is evaluated using quality indices and compared to alternative estimation

schemes. The overall scheme is simple, robust, fast, and improves estimations. Filtering diffusion weighted magnetic

resonance images (DW-MRI) with the proposed methodology leads to more accurate tensor estimations. Real and

synthetic datasets are analyzed.

I. INTRODUCTION

Diffusion weighted magnetic resonance imaging (DW-MRI) allows for the measurement of water diffusivity.

In particular, the directionality of water diffusion may be studied with appropriately selected gradient directions

for diffusion measurements. Application areas for DW-MRI include neuroimaging studies [1] (where it can be

used to determine the direction of white matter fibers and thus to determine brain connectivity), ischemic stroke

detection [2], or the investigation of muscle fibers, e.g., within the heart [3], to name but a few.

Unlike structural magnetic resonance imaging, where white matter appears as a region of uniform intensity,

DW-MRI leads to diffusion direction dependent image intensities. In the case of anisotropic water diffusion, image

intensities will be low if the measurement gradient direction is aligned with the major direction of diffusion and

image intensities will be high for diffusion directions orthogonal to the measurement gradient direction.

Frequently, one aims at measuring the major diffusion direction as an indication of fiber orientation [4] and thus

as a way to measure connectivity for example by tractography methods. Unfortunately, large diffusion causes low

signal intensity, which results in a low signal to noise ratio. If scanning time is not an issue, the signal to noise ratio

can be improved by repeated acquisitions and appropriate spatial averaging (assuming the subject does not move

during the scan to avoid registration issues). However, high angular resolution diffusion weighted imaging, where

many gradient directions need to be acquired, may result in prohibitive scan durations for such physical averaging
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procedures. A postprocessing method to remove noise from DW images is thus desirable. Of note, besides noise

influences, measurement data may for example be corrupted due to magnetic field inhomogeneities or subject

motion. A comprehensive restoration methodology needs to account for such effects. This is beyond the scope of

this paper, which focuses solely on the restoration of signals corrupted by measurement noise.

Various postprocessing methods to improve signal to noise ratios in magnetic resonance imaging have been

proposed1. One of the first attempts to estimate the magnitude MR image from a noisy image is due to Henkel-

man [5] who investigated the effect of noise on MR magnitude images, showed that the noise influence leads

to an overestimation of the signal amplitude and provided a correction scheme based on image intensities. The

conventional approach (CA) was proposed by McGibney et al. [6] utilizing the noise properties of the second

image moment. Sijbers et al. [7], [8], [9] estimate the Rician noise level and perform signal reconstruction using

a maximum likelihood approach. A similar method is used by Jiang and Yang [10]. Expectation maximization

formulations with Rician noise assumptions have been used in SAR imaging [11], [12]. Other approaches use

wavelet-based methods for noise removal, as Nowak’s [13] —in which the authors assume an underlying Rician

model—- or the one due to Pižurica et. al [14]. McGraw et al. [15] use a weighted total-variation-norm denoising

scheme, Ahn et al. [16] propose a template-based filtering procedure, and Martin-Fernandez et al. [17] propose an

anisotropic Wiener-filter approach; all without using a Rician noise model. Basu et al. [18] use a Perona-Malik-like

smoothing filter combined with a local Rician data attachment term (effectively trying to remove the intensity bias

locally), assuming a known noise level for the Rician noise model. Recently, Koay and Basser in [19] developed a

correction scheme to analytically estimate the signal, also assuming the Rician model.

The method proposed in this paper is closest to the Wiener-filter approach by Martin-Fernandez et al. [17].

However, it assumes a Rician noise model and is paired with an automated method to estimate the Rician noise

level.

Section II discusses the theory of the approach and gives some background on alternative estimation methods,

Section III presents results. Conclusions are presented in Section IV.

II. RESTORATION OF MR DATA

A. Model of noise in MRI

Noise in magnitude MRI images is usually modeled following a Rician distribution [7], [20], [21], due to the

existence of uncorrelated Gaussian noise with zero mean and the same variance σ2
n in both the real and imaginary

parts of the complex k-space data. Given the magnitude image M and the original signal amplitude A, the probability

distribution function (PDF) of such an image is

pM (Mij |Aij , σn) =
Mij

σ2
n

e
−

M2
ij+A2

ij

2σ2
n I0

(
AijMij

σ2
n

)
u(Mij), (1)

1For diffusion tensor imaging, there are also many approaches that aim at noise-removal in the tensor domain. This paper will focus on

approaches doing filtering directly on the diffusion weighted images, where noise can be modeled more easily.
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with I0(·) being the 0th order modified Bessel function of the first kind, u(·) the Heaviside step function and σ2
n

the variance of noise. Mij is the magnitude value of the pixel {i, j} and Aij the original value of the pixel without

noise.

In the image background, where the signal to noise ratio is low, the Rician PDF reduces to a Rayleigh distribu-

tion [22] with PDF

pM (Mij |σn) = pM (Mij |Aij = 0, σn) =
Mij

σ2
n

e
−

M2
ij

2σ2
n u(Mij). (2)

Most signal estimation procedures rely on a given noise variance σ2
n. Methods performing noise estimation from

magnitude data may roughly be divided into two groups: (i) approaches estimating the noise variance using a single

magnitude image and (ii) approaches using multiple images. Noise estimation using a single image is usually based

on background intensities (which need previous segmentation), where the true signal amplitude should vanish. Using

the Rayleigh distribution, estimators based on the mean and the second order moment [23] can be defined as

σ̂2
n =

1
2N

N∑
i=1

M2
i , σ̂n =

√
2
π

1
N

N∑
i=1

Mi. (3)

where N is the number of points considered for the estimation. These estimators do not require any segmentation

of the background and will be used in this paper. Other estimators are based on the method of moments [10] and

on the mode of the histogram [24].

B. Signal estimation methods

A number of techniques have been proposed to estimate the noise-free signal, A, from the noisy measurement

signal, M . Methods may be subdivided by the noise-model assumed. Basic filtering strategies include Gaussian

smoothing and Wiener [25] filtering (also assuming a Gaussian noise model). More recently, estimators taking the

Rician noise model into account have been developed. Since the approach proposed in this paper relates to this

class of estimators, we briefly list and review some of the methods in what follows:

1) Conventional Approach (CA) [6]. Taking into account the relation between noise and signal of the second

order moment in a Rician distribution, the signal can be estimated as

Âc =
√

max(〈M2〉 − 2σ2
n, 0) (4)

where 〈M2〉 is the sample second order moment. The sample estimator 〈.〉 is defined

〈I〉 =
1
|η|
∑
p∈η

Ip (5)

with η a square neighborhood. This estimation may also be performed using non-square weighted windows,

such as Gaussian functions.

2) Maximum Likelihood estimator (ML) [7], [8], [9], [10]. The signal is estimated by maximizing the likelihood

function.

ÂML = arg max
A

(log L) (6)
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with

log L =
N∑

i=1

log
(

I0

(
AMi

σ2
n

))
− NA2

2σ2
n

−
N∑

i=1

M2
i

2σ2
n

. (7)

where N is the number of samples considered for the likelihood function.

3) Expectation-maximization (EM) method [11], [12]. EM is a recursive method that aims at estimating the noise

variance and the signal simultaneously through maximization of the expected log likelihood:

Âk+1 =
1
N

N∑
i=1

I1

(
ÂkMi

σ̂2
k

)
I0

(
ÂkMi

σ̂2
k

)Mi, (8)

σ̂2
k+1 = max

[
1

2N

N∑
i=1

M2
i −

Â2
k

2
, 0

]
. (9)

N is again the number of samples. The initial values are computed as

Â0 =

2

(
1
N

N∑
i=1

M2
i

)2

− 1
N

N∑
i=1

M4
i

1/4

, (10)

σ̂2
0 =

1
2

(
1
N

N∑
i=1

M2
i − Â0

)
. (11)

4) Analytically exact solution, proposed by Koay and Basser in [19]. Assuming a Rician noise model and given

a measured sample mean 〈M〉 and a sample variance 〈M2〉− 〈M〉2, the signal and noise level are computed

based on analytical relations. Given the correction factor

ζ(θ) = 2 + θ2 − π

8
e−

θ2
2

[
(2 + θ2)I0

(
θ2

4

)
+ θ2I1

(
θ2

4

)]2
,

and the root θ0 of

g(θ) :=

√
ζ(θ)

(
1 +

〈M〉2
〈M2〉 − 〈M〉2

)
− 2− θ,

the signal estimation and the noise variance estimation may be computed as:

σ̂2 =
〈M2〉 − 〈M〉2

ζ(θ0)

Â = θ0σ̂.

In all the cases, 〈.〉 is the sample estimator as defined in eq. (5).

C. LMMSE estimator for the Rician Model

The estimation method proposed in this paper (to estimate the signal from the noisy magnitude image) is based on

the Linear Minimum Mean Square Error (LMMSE) estimator. Instead of modeling the signal Aij as an unknown

constant, we consider it as a realization of a random variable which is functionally related to the observation.

This way a closed-form analytical solution is achievable. This is in contrast to many other estimation techniques

which find the solution via an iterative optimization scheme; this is for example the case for the ML and EM

approaches. The closed-form solution of the LMMSE estimator makes the method computationally more efficient
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than optimization-based solutions, which is a major advantage when dealing with the frequently large data volumes

of diffusion weighted imaging.

The Linear Minimum Mean Square Error estimator of a parameter θ from data x is defined as [26]

θ̂ = E{θ}+ CθxC−1
xx (x− E{x}), (12)

where Cθx is the cross covariance vector and Cxx is the covariance matrix of the data. Rewriting eq. (12) for the

two-dimensional (2D) Rician model, and computing statistics locally, we define

Â2
ij = E{A2

ij}+ CA2
ijM2

ij
C−1

M2
ijM2

ij

(
M2

ij − E{M2
ij}
)
, (13)

where Mij is the magnitude value of the pixel (i, j) in a 2D MR image. In order to achieve a closed-form expression,

we use A2 instead of A, as the even-order moments in a Rician distribution are simple polynomials, and therefore

easier to calculate [7], [13]. The covariance matrices in this case are just scalar values for each pixel —for the

matrix case see [27].

In the case of a Rician distribution, the (square) signal LMSSE estimator for the 2D case is then

Â2
ij = E{A2

ij}+
E{A4

ij}+ 2E{A2
ij}σ2

n − E{A2
ij}E{M2

ij}
E{M4

ij} − E{M2
ij}2

(
M2

ij − E{M2
ij}
)
.

If the expectations are replaced by their sample estimators 〈·〉, and after some algebra, the estimator becomes

Â2
ij = 〈M2

ij〉 − 2σ2
n + Kij

(
M2

ij − 〈M2
ij〉
)
, (14)

where Kij is defined as

Kij = 1−
4σ2

n

(
〈M2

ij〉 − σ2
n

)
〈M4

ij〉 − 〈M2
ij〉2

. (15)

The operator 〈.〉 is the sample estimator of the expectation, defined as in eq. (5).

The LMMSE estimator can be easily extended to N-D volumes. In the 3D case, it is defined as

Â2
ijk = 〈M2

ijk〉 − 2σ2
n + Kijk

(
M2

ijk − 〈M2
ijk〉
)

with

Kijk = 1−
4σ2

n

(
〈M2

ijk〉 − σ2
n

)
〈M4

ijk〉 − 〈M2
ijk〉2

.

and

〈Ii,j,k〉 =
1

|ηi,j,k|
∑

p∈ηi,j,k

Ip.

The noise variance σn must be estimated from the given data. Usually, this estimation is based on a set of

background intensities of a selected subregion, assuming that the noise-free signal vanishes in this region. This region

is frequently manually selected and noise level estimations are sensitive to imaging artifacts such as ghosting [24].

Some automatic estimators have been previously reported. We proposed two automatic estimators based on local

statistics of the image [28]. If there is a background where the distribution of noise may be assumed to be Rayleigh,

the noise may be estimated as

σ̂n =

√
2
π

mode {〈Ii,j,k〉} . (16)
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If this assumption does not hold, the estimation may be performed using the local variance

σ̂2
n = mode

{
σ2

i,j,k

}
(17)

where σ2
i,j,k is the (unbiased) local sample variance, that may be computed as

σ2
i,j,k =

1
|ηi,j,k| − 1

∑
p∈ηi,j,k

I2
p − 〈Ip〉2.

The size of the neighborhood is a parameter that must be chosen by the user. However, since both estimators

(eq. (16) and (17)) use the mode of the distribution for estimation, the effect of this size is minimized; a greater

value will make the distribution narrower, but the mode remains at the same value [28]. As an example, see Fig. 21.

For further details see Appendix II.

D. Recursive LMMSE filter

Once the image is filtered with the LMMSE estimator the output model may no longer be considered Rician.

However, we can still use the filter recursively. If the noise is dynamically estimated in each iteration, the filter

should reach a steady state as the estimated noise gets smaller and smaller. We define the 3D recursive LMMSE

filter (RLMMSE) as

I2
ijk[n + 1] = 〈I2

ijk[n]〉 − 2σ2
n + Kijk[n]

(
I2
ijk[n]− 〈I2

ijk[n]〉
)

(18)

with

Kijk[n] = 1−
4σ2

n[n]
(
〈I2

ijk[n]〉 − σ2
n[n]

)
〈I4

ijk[n]〉 − 〈I2
ijk[n]〉2

,

where I[n] is the magnitude image after n iterations of the filter. By definition I[0] = M . For further details see

Appendix I.

III. EXPERIMENTS

To illustrate the behavior of the LMMSE and the RLMMSE filters, we test and compare their restoration

performance for structural magnetic resonance images (Section III-A) and for diffusion weighted images (Section III-

B). Further, we investigate the behavior on subsequent tensor estimation (Section III-C) and for the LMMSE

estimator the behavior for diffusion analysis methods: tractography, fractional anisotropy and color by orientation

calculations (Section III-D).

A. Filtering of structural MR images

This Section focuses on the restoration of structural MR images using the proposed LMMSE estimator with

automatic noise estimation. To be able to compare the results to a ground truth, we work with synthetic images and

artificially add noise. We evaluate our method quantitatively on synthetic structural MR data, quantitatively using

synthetically created (but non-anatomical) diffusion weighted MR data, as well as qualitatively on real DW-MRI
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(a) Original (b) Mask

Fig. 1. Synthetic experiments: (a) Original Image (from BrainWeb) used in the synthetic experiments. (b) Mask used in the quality measures.

σn SNR (White Matter) SNR (Gray Matter) SNR (CSF)

5 30 dB 26 dB 17 dB

10 23.6 dB 20 dB 11 dB

20 17.6 dB 13.9 dB 5 dB

TABLE I

VALUES OF σn USED IN THE SYNTHETIC EXPERIMENTS. FOR THE SNR THE MEAN VALUE OF S IN EACH REGION HAS BEEN CONSIDERED.

data). A structural MR slice with 256 gray levels, originally noise-free, from the BrainWeb database [29] (Fig. 1-

(a)), is corrupted with synthetic Rician noise with different values of σn. We define the signal to noise ratio [30]

as

SNR(dB) = 10 log10

(
S2

σ2
n

)
(19)

where S is a measure for the signal intensity and σ2
n is the noise variance. The signal to noise ratios considered

for the following experiments are given in Table I.

The noisy image is processed using eight different techniques (see Section II-B for details on these techniques);

techniques taking into account the Rician Model:

1) The Conventional Approach by McGibney et al. [6],

2) the Maximum Likelihood Estimator (ML) [7], [8], [9], [10],

3) the Expectation-maximization (EM) Method [11], [12],

4) the Analytically Exact Solution, proposed by Koay and Basser in [19],

5) the LMMSE Estimator, as proposed in eq. (14),

6) the RLMMSE Estimator using 8 and 50 iteration steps, as proposed in eq. (18),

and (to compare the filters with other well-known techniques) techniques using a Gaussian noise model:

7) Gaussian Smoothing, using a 11× 11 kernel with σ = 1.5.

8) and Adaptive Wiener Filtering [25], using a 5× 5 neighborhood. In order to achieve the best performance of

the filter, σn is manually set to the actual value.
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σn = 5 σn = 10 σn = 20

SSIM QILV MSE SSIM QILV MSE SSIM QILV MSE

Noisy 0.9235 0.9977 24.8971 0.7904 0.9890 100.2940 0.5722 0.9251 395.0881

CA 0.8544 0.6394 190.9824 0.8491 0.6430 192.1922 0.8236 0.6543 205.6214

EM 0.5726 0.0140 2839.1 0.8685 0.6513 144.1177 0.8373 0.6342 168.0615

Koay 0.7653 0.8874 577.9081 0.7616 0.8871 579.5691 0.7416 0.8886 579.9471

ML 0.3770 0.2265 2120.9 0.8681 0.6516 144.2500 0.8370 0.6354 168.1712

Gaussian 0.8904 0.6479 128.5180 0.8789 0.6073 139.1106 0.8392 0.5145 190.3817

Wiener 0.9664 0.9967 18.1872 0.9092 0.9839 57.9197 0.8146 0.9076 161.8120

LMMSE 0.9681 0.9980 17.7973 0.9168 0.9921 53.9731 0.8346 0.9613 130.5361

RLMMSE (8) 0.9713 0.9981 17.4090 0.9270 0.9917 51.8197 0.8597 0.9502 122.5699

RLMMSE (50) 0.9714 0.9982 17.4562 0.9298 0.9915 51.8487 0.8540 0.9429 129.5132

TABLE II

QUALITY MEASURES: SSIM, QILV AND MSE FOR THE IMAGES IN THE EXPERIMENTS. THE BEST VALUE OF EACH COLUMN IS

HIGHLIGHTED. LMMSE-BASED SCHEMES SHOW BETTER RESULTS IN TERMS OF NOISE REMOVAL AND EDGE PRESERVATION.

In all the cases where the variance of noise is needed, it is manually set to its optimal value. Note that the ML

and EM estimators, as well as the method by Koay and Basser are designed to work with several samples of the

same image. As in the present experiment we suppose only one sample is available, the statistics are computed

using local neighborhoods. In all cases 5× 5 neighborhoods have been used.

To compare the restoration performance of the different methods, two quality indices are used: the Structural

Similarity (SSIM) index [31] and the Quality Index based on Local Variance (QILV) [32]. Both give a measure of

the structural similarity between the ground truth and the estimated images. However, the former is more sensitive

to the level of noise in the image and the latter to any possible blurring of the edges. Both indices are bounded; the

closer to one, the better the image. The mean square error (MSE) is also calculated. These three quality measures are

only being applied to those areas of the original image greater than zero (see Fig. 1-(a)); this way the background

is not taken into account when evaluating the quality of each method.

Table II shows the experimental results. Some graphical results for σn = 10 are shown in Fig 2.

When compared with other schemes considering a Rician noise model, the LMMSE and the RLMMSE show

a better performance in terms of noise cleaning (a larger SSIM) while the edges are preserved (the QILV value

gets better). The noise cleaning performance of the ML, EM and Koay schemes are good, but, as the QILV index

points out, they cause image blurring. Consequently, image information is lost at the border and the image edges.

This performance is not due to the schemes themselves, but to the fact that they are originally designed to estimate

the signal from multiple samples. When only one image is available, the statistics must be calculated locally.

Consequently this local estimation produces some edge smoothing, in some cases similar to the one produced by

a Gaussian filter. LMMSE, although it is also based on local statistics does not show this edge-blurring behavior.
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(a) Original (b) Noisy (c) Smoothed

(d) CA (e) ML (f) EM

(g) Koay (h) LMMSE (i) RLMMSE (8 steps)

Fig. 2. Experiment with synthetic noise. MRI from Brainweb (Detail). (a) Original Image. (b) Image with Rician noise with σn = 10.

(c) Gaussian filtered. (d) Conventional approach. (e) ML estimator. (f) EM method. (g) Koay’s method. (h) LMMSE estimator. (i) Recursive

LMMSE (8 iterations). The LMMSE filters with correct noise estimation show the best performance, as confirmed by the numerical results in

Table II.

January 21, 2008 DRAFT



10

σn = 5 σn = 10 σn = 20

LMMSE 0.06 0.06 0.06

RLMMSE (8) 0.57 0.57 0.57

EM 28.13 28.08 20.61

Koay 145.6 150.4 155.4

TABLE III

EXECUTION TIME PER SLICE (IN SECONDS) OF SOME FILTERING METHODS.

The Gaussian smoothing, as expected, improves the quality of the image from an SSIM point of view, but the

QILV suggests structural distortion due to blurring. In our experiments we also observed some numerical stability

problems with EM and ML when the level of noise is low. Strikingly, all schemes, except for the proposed LMMSE

approaches and the Wiener filter, fail when the level of noise is low: in this case, the quality indices are lower than

the corresponding quality indices for the noisy image.

It is interesting to study the performance of the Wiener filtering; although it slightly blurs the image, it shows

an overall good performance. Its performance is worse than the LMMSE, because the Wiener filter is based on

a Gaussian noise model. This mismatch between the Rician model and the Gaussian model is not too large in

structural MRI, but becomes more important for diffusion weighted images, where dark regions (where the mismatch

is greatest) indicate large diffusion.

Finally, the RLMMSE results shows very good performance, when compared with the other schemes. There is

a good balance between noise cleaning (SSIM index) and edge and structural information preservation (see QILV

values). In addition, the filter shows great numerical stability: after 50 iterations the results are similar to those after

8 iteration, indicating that the filter reaches a steady state.

One main advantage of the LMMSE filter (and to some extent for the RLMMSE filter) is that the solution can be

computed in one single step (or a few steps for the RLMMSE filter), making it computationally efficient for large

data sets as frequently encountered in diffusion weighted imaging. This is in contrast to the EM and ML schemes,

as well as to the approach by Koay and Basser, where the solution is found by numerical optimization and thus

iteratively. As an illustration, in Table III-A runtimes for the LMMSE, the RLMMSE, and the EM algorithm as well

as for the method by Koay are compared. All algorithms were implemented in Matlab. Execution times reported are

measured by Matlab. Of note, while implementations of the LMMSE, the RLMMSE, and the EM algorithm could

easily take advantage of Matlab’s efficient matrix computations, we used loops in the implementation of Koay’s

method which may have increased computational time slightly. The timing experiments clearly demonstrate the

efficiency of the LMMSE and the RLMMSE approach. An in-depth execution profile analysis shows the evaluation

of Bessel functions (as required by the EM algorithm and the approach by Koay) to be costly.

A subset of the analysis is performed using real structural MR images. Since in this case, the ground truth is
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(a) Original (b) CA (c) EM

(d) Koay (e) LMMSE (f) RLMMSE (8 steps)

Fig. 3. Coronal slice from a 3D acquisition. (a) Original image. (b) Conventional approach. (c) EM method. (d) Koay’s method. (e) LMMSE

estimator, adaptive noise estimation using the local mean and a 5×5 window. (f) RLMMSE estimator, adaptive noise estimation using the local

mean and a 5 × 5 window (8 iterations).

unknown, the comparison is done strictly visually. A coronal slice from a 3D structural MRI volume2 was selected.

The original image, see Fig. 3-(a), exhibits noise. See Fig. 4 for a zoomed-in view. The image is filtered using the

LMMSE and the RLMMSE estimators using the noise estimator given in eq. (16). Results are shown in Fig. 3,

details in Fig. 4. For comparison the same image is filtered using the conventional approach, EM estimation, and

the method proposed by Koay and Basser. In all the cases adaptive noise estimation is performed using eq. (16)

with a 5× 5 window. Results are given in Fig. 3.

As expected, the visual results are much better for the LMMSE and the RLMMSE estimators. The behavior

shown for the other schemes is consistent with the synthetic experiments: noise is attenuated at the cost of blurring

2Data set 1: Scanned in a 1.5 Tesla GE Echospeed system. Scanning Sequence: Maximum gradient amplitudes: 40 mT/M. Six images,

four with high (750 s/mm2), and two with low (5 s/mm2) diffusion weighting. Rectangular FOV (field of view) 220 x 165 mm. 128 x 96

scan matrix (256 x 192 image matrix). 4 mm slice thickness, 1 mm interslice distance. Receiver bandwidth 6kHz. TE (echo time) 70 ms; TR

(repetition time) 80 ms (effective TR 2500 ms). Scan time 60 seconds/slice.
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(a) Original (b) CA (c) EM

(d) Koay (e) LMMSE (f) RLMMSE (8 steps)

Fig. 4. Detail of the images of the experiment of Fig. 3

the image.

B. Filtering of diffusion weighted MR images

This Section investigates the performance of the proposed scheme when filtering DWI data. We use a SENSE

EPI data set [33]: Scanned in a 3.0 Tesla GE system, with 51 gradient directions (distributed on the sphere using

the electric repulsion model with antipodal pairs), and 8 baselines; voxel dimensions: 1.7 x 1.7 x 1.7 mm.

In areas with high diffusion along the gradient direction, the DWIs show a low signal level. Frequently, these

areas are of great interest, since the direction of high diffusion is related to tissue structure [4]. However, they are

also the most prone to noise effects and have the lowest signal to noise ratios. While Gaussian noise assumptions

may suffice largely for non-diffusion-weighted images with high signal intensities (and consequentially high SNR),

Rician noise models become more important for diffusion weighted imaging, where dark signal areas are of higher

importance.

All the DWIs are filtered using the RLMMSE filter and the noise estimator of eq. (16). One of the advantages

of this noise estimator is that no segmentation of the background is needed, neither manually nor automatic. This

advantage is important when processing MR data in which an artificial background has been added.

Fig. 5-(a) shows an EPI slice image. Fig. 5-(b) shows in black all pixels with intensities equal to zero. Comparing

both images, it is clear that there is a small area between the skull and the zero-background which corresponds

to the actual background, and a greater area where an artificial zero background has been added. If the noise is

estimated over the whole background there will clearly be a bias.

We can overcome this problem by using the local mean distribution. For the whole baseline volume, this

distribution is depicted in Fig. 6-(a). Due to the intensities that have been set to zero in the background, the

maximum of the distribution is at the origin. However, it is still possible to identify a second maximum due to the
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(a) (b)

Fig. 5. (a) Baseline image (b) Thresholded image; in black all the pixels with intensity value equal to 0. An artificial black background has

been added.

noise itself. If the zero value pixels are not considered for the distribution, the histogram changes shape as shown in

Fig. 6-(b), and its maximum clearly reflects the noise level, in the same way as in eq. 16. We will thus not consider

zero value pixels for the noise estimation. (Note that alternatively, the estimation may be done using eq. (17) for

the pixels inside the head.)
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(a) (b)

Fig. 6. Local mean distribution of a 3D MR volume. (a) Distribution using all the values. (b) Distribution using only the points with intensities

greater than 0 (the artificial background is not considered).

The whole EPI data set is filtered using this noise estimator and the RLMMSE filter. The noise is re-estimated

in each iteration. Fifteen iterations are considered (in all the cases with 15 iterations, the output reaches a steady

state). Results of this filtering for different neighborhoods are shown in Fig. 7 (baseline) and Fig. 8 (DWI). For

both, the baseline and the DWIs, the RLMMSE filter performs well in terms of noise removal while preserving

image structure. The filtering effect is stronger for low signal intensity areas of the DWIs, since these are the areas

most prone to noise according to the Rician noise model.
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(a) Original baseline (b) (3,3,1) (c) (5,5,1)

(d) (7,7,1) (e) (9,9,1) (f) (11,11,1)

Fig. 7. Slice 40 of the EPI dataset. Baseline. Original image and images filtered with different neighborhoods. Noise estimated over a (7, 7, 1)

neighborhood.

C. Tensor estimation

Diffusion weighted images are acquired to investigate the diffusion characteristic of water molecules which is

in turn related to the underlying tissue microstructure. One of the simplest diffusion models is the diffusion tensor

model which assumes a multivariate Gaussian probability density function for the water displacement. Since tensor

estimation results are noise-dependent, noise removal before tensor estimation should lead to improved tensor

estimation results3.

Assuming a multivariate Gaussian probability density distribution for the water displacement, the set of diffusion

weighted images {Mk} acquired with gradient directions {gk}, using a b-value b, is related to the non-diffusion-

weighted baseline image M0 through the Stejskal-Tanner equation [35], [36]

Mk = M0e
−bgT

k Tgk + ηk, (20)

where T denotes the diffusion tensor and ηk denotes Rician noise. If we further assume that our proposed estimation

method removes (or at least significantly reduces) the noise from the diffusion weighted images, eq. 20 simplifies

3Note, that many different ways for tensor estimation exist [34], including schemes incorporating a Rician noise model. However, in this paper

the approach is to reconstruct the noise-free signal before tensor estimation. Since the noise is removed at an early stage in the preprocessing

pipeline any subsequent processing steps will benefit from this noise reduction.
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(a) Original DWI (b) (3,3,1) (c) (5,5,1)

(d) (7,7,1) (e) (9,9,1) (f) (11,11,1)

Fig. 8. Slice 40 of the EPI dataset. DWI. Original image and images filtered with different neighborhoods. Noise estimated over a (7, 7, 1)

neighborhood.

to

Âk = Â0e
−bgT

k Tgk ,

and subsequently to

log

(
Âk

Â0

)
= −bgT

k Tgk,

which is linear in T and can be solved by least-squares. (We will only use least-squares tensor estimation in this

paper, since it is unclear at this point what noise model should be used for tensor estimation after noise ’removal’

in the DWI domain.)

A variety of scalar measures have been defined for diffusion tensors [36], most prominently fractional anisotropy,

which is proportional to the ratio of the Frobenius norms of the tensor deviatoric and the tensor itself [37]. While

some of the measures may be computed without an explicit computation of the tensor eigenvalues, rotationally

invariant measures may be written in terms of the tensor eigenvalues. To study the effect of the filtering on these

eigenvalues, we created two different synthetic data sets, one two-dimensional and the other three-dimensional.

A synthetic 128× 128 2D tensor field was created; see Fig. 9-(a) where tensors are depicted using ellipses [36].

The eigenvalues were chosen as

λ = {[1.9 · 10−3, 0.4 · 10−3], [2 · 10−3, 0.1 · 10−3], [2 · 10−3, 2 · 10−3]}
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(a) Original Tensor Field (b) Noisy

(c) Gaussian (d) Wiener

(e) LMMSE (f) RLMMSE (5)

Fig. 9. Synthetic vector field used in the experiments. σn = 100 (SNR=2.62dB), 5 different gradients.

and the diffusion weighted images were simulated using the Stejskal-Tanner equation 20. We consider different

numbers of gradients (antipodal pairs uniformly distributed on the unit circle) and use a constant baseline image

with signal intensity 1000. The DWIs are corrupted with Rician noise, Fig. 9-(b), and the tensors are re-estimated,

using the Least Squares approach. Different values of σn were used.

Four restoration methods were applied to the noisy DWIs:
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1) Gaussian smoothing, using a 11 × 11 kernel with σ = 1.5. This method was chosen to illustrate the effect

of the smoothing on the DWI. As was shown in Section III-A, some Rician-based methods also exhibit this

behavior.

2) Adaptive Wiener filtering, using a 7 × 7 neighborhood, and manually setting σn to its actual value. This

method was chosen because it showed a similar behavior to the LMMSE in structural MRI filtering.

3) LMMSE estimation, using a 7× 7 neighborhood and manually setting σn to its actual value.

4) RLMMSE filtering with a 7× 7 neighborhood, 5 iterations. As there is no background present, the noise is

estimated over the DWIs using eq. (17).

For the experiments we consider 3, 5 and 15 gradient directions and σn ∈ [30, 210]. To calculate the SNR we

use eq. 19, and define the power of the signal as

S2 = min
(
S2

i,j,k

)
.

We obtain S2 = 1.83 ·104. The error is defined as the absolute distance of the estimated eigenvalues to the original

values. For each number of gradients and each σn the average of 100 experiments is considered. In Fig. 10 the

mean and the standard deviation of the error are shown. In all cases, the estimation bias is smaller when using the

LMMSE filter. The variance of the estimation, though also small is slightly larger than for the Wiener filtering,

though the latter shows a greater bias. The RLMMSE shows a smaller bias but a greater variance than the other

filtering methods.

As an illustration, results for σn = 100 (SNR=2.62dB) and 5 different gradients are shown in Figure 9 (tensor

field) and in Fig. 11 where the distribution of the eigenvalues is depicted in a 2D histogram. The original eigenvalues

are depicted as a green dot. These figures lead to similar conclusions. Notice that the LMMSE histogram is practically

centered in the original values, while the Wiener and Gaussian ones are biased, i.e. there is an underestimation of

the principal eigenvalue. In addition, the Gaussian output (Fig. 11-(b)) shows more clusters than centroids, as a

consequence of the soft transition at the boundaries. These soft transitions (banding artifacts) can be observed in

Figure 9 and are caused by the Gaussian smoothing which tries to reconcile tensors that are spatially close, but

have vastly different shapes and orientations.

The next experiment tests the ability of the filter to correct the eigenvector direction. Specifically in this

experiments we focus on the direction of the first eigenvector. A new synthetic 128×128 2D tensor field was created

–now without isotropic areas–; see Fig. 12 where tensors are depicted using ellipses. We consider 5 gradients, a

constant baseline image with signal intensity 1000 and Rician noise with σn = 100. The tensors are estimated, using

the Least Squares approach. The noise DWIs are filtered using a LMMSE filter and Gaussian smoothing. Results

are shown in Fig. 13; 100 different realizations have been considered. The histogram normalized by its maximum

value is depicted. The LMMSE is able to reduce the variance of estimation in the direction of the eigenvector.

Notice that the Gaussian filter distribution shows some lobules between the actual vales. They are due to the fact

that this filtering makes soft transitions between vectors that translate into intermediate orientations.

To validate the method on a three-dimensional dataset, we created a synthetic diffusion weighted image volume

January 21, 2008 DRAFT



18

−4−2024681012
0

1

2

3

4

5

6

7

8
x 10

−4

SNR

m
ea

n(
E

rr
or

)

 

 

Original
LMMSE
RLMMSE
Gaussian
Wiener

(a) Mean of the error, 3 directions
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(b) Standard deviation of the error, 3 directions

−4−2024681012
0

1

2

3

4

5

6

7

8
x 10

−4

SNR

m
ea

n(
E

rr
or

)

 

 

Original
LMMSE
RLMMSE
Gaussian
Wiener

(c) Mean of the error, 5 directions
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(d) Standard deviation of the error, 5 directions
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(e) Mean of the error, 15 directions
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(f) Standard deviation of the error, 15 directions

Fig. 10. Mean (left) and standard deviation (right) of the error of estimation of the eigenvalues for 3, 5 and 15 gradient directions.

modeling a three-dimensional logarithmic spiral. The core of the created bundle is parametrized by

x(p) =
(
aebp cos p aebp sin p cp

)
, (21)

with a = 40, b = −0.05, c = 3. This results in a spiral with radius 40 for p = 0 which gets tighter and tighter with

increasing p and thus models fiber bundles of different curvatures (see Fig. 14). At every point p of Eq. 21 we use
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(d) LMMSE
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(e) RLMMSE (5 steps)

Fig. 11. Two dimensional histograms of the distribution of the estimated eigenvalues. σn = 100 (SNR=2.62dB), 5 different gradients. In

green the original eigenvalues. The proposed methods (LMMSE and RLMMSE) show a smaller bias in the estimation.

the Frenet trihedron induced by the Frenet equations [38] to orient a tensor T in space (where the tangent direction

is aligned with the major eigenvector of T and the binormal direction is associated with the minor eigenvector of
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(a) Original (b) Noisy

Fig. 12. Synthetic 2D tensor field for the eigenvector experiment.
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Fig. 13. Original eigenvector direction (bold). Normalized histogram for the angle distribution of the eigenvectors of the noisy tensor field

(black), after LMMSE estimation (red) and after Gaussian smoothing (blue).

T ). The eigenvalues of T were chosen as λi = {6 · 10−3, 2 · 10−3, 10−3} and the diffusion weighted images were

simulated using the Stejskal-Tanner equation. We used the same 51 gradient directions and 8 baseline scheme as for

the real echo planar images. The resulting synthetic volume is of dimension 128× 128× 100 with isotropic voxels

of side length 1 mm. To create tensor values away from the core parametrized by Eq. 21, voxels were assigned the

closest tensor on the core. The trace of the tensors was scaled based on this closest distance to the core. Voxels

at a distance larger than 5 mm were assigned the zero tensor, voxels closer than 3 mm were assigned the original

closest tensor on the core. Voxels in between were weighted using a Gaussian with standard deviation of one.

Rician noise with σ = 70 was added to the noise-free diffusion weighted images. The diffusion weighted images

were then filtered for 15 iterations with the RLMMSE filter (with 7x7 axial filtering and estimation neighborhoods),

as well as with a Gaussian filter with a standard deviation of 1.5.

Figures 15, 16 show the spectral deviations (i.e., the differences of the estimated eigenvalues to the nominal
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eigenvalues) to the synthetic groundtruth for the proposed method and the Gaussian filter. All results were obtained

after applying a mask, removing all tensors with a trace smaller than 0.001. The RLMMSE results are clearly

superior to Gaussian smoothing. The estimation of the principal eigenvalue is greatly improved and the overall

estimation is less biased.
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Fig. 14. Logarithmic spiral.
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Fig. 15. Logarithmic histogram of spectral deviations with respect to the ground truth for different filtering methodologies (Gaussian and

RLMMSE) with subsequent linear tensor estimation. The proposed method leads to a much better estimation of the tensor eigenvalues.
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Fig. 16. Two-dimensional logarithmic histograms of spectral deviations with respect to the ground truth for different filtering methodologies

(Gaussian and RLMMSE; the axes are mean of the smallest eigenvalues over the major eigenvalue).The proposed method leads to a much better

estimation of the tensor eigenvalues.

(a) Original volume (b) RLMMSE (10 iterations)

Fig. 17. Main eigenvector over fractional anisotropy. The filtered vector field is more homogeneous than the noisy one.

D. DWI filtering and DTI applications

To conclude the results section we show some examples of the qualitative performance of the LMMSE estimator

for different DTI applications. We use the real data volume of section III-B. The following experiments were

performed:

• Fractional anisotropy and main eigenvector computation. In Fig. 17 we show the FA and the main eigenvector

scaled by the main eigenvalue of both the original data set and the data set after 10 iterations of the RLMMSE

using a 7× 7 neighborhood. The RLMMSE filter results in a regularization of the vector directions.

• Color by orientation computation. Fig. 18 shows the orientation of the first eigenvector using color coding, for
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(a) Original (b) LMMSE

(c) Original (d) LMMSE

Fig. 18. DTI data, color by orientation of the main eigenvector, two different slices. RED means anterior-posterior direction (X axis), GREEN

left-right (Y axis) and BLUE inferior-superior (Z axis). Original data (left) and after LMMSE filtering (right).

two different slices of the volume, for both the original data and the data after an LMMSE filtering using a

7× 7 neighborhood. In this case RED means anterior-posterior direction (X axis), GREEN left-right (Y axis)

and BLUE inferior-superior (Z axis). Results indicate a clear reduction of the noise without significant loss of

structure.

• Tractography computation. We performed tractography for the Uncinate Fasciculus, starting in the same seed-

point for both the original data set and the data set filtered using LMMSE (7× 7 neighborhood). Results are

shown in Fig. 19. Fig. 19 demonstrates the advantage of the noise reduction procedure in tracing the uncinate

fasciculus. Anatomically, this fiber bundle has a U-like shape, and connects orbital frontal with anterior temporal

regions. Fig. 19(a) shows results of tractography on unfiltered data, where tracts originating from the frontal

lobe are mostly terminating before they curve and cross the temporal stem into the temporal lobe. Fig. 19(b)

shows that after noise reduction, the uncinate fasciculus tracts are continuing all the way into the temporal
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(a) Original data

(b) Data after filtering

Fig. 19. Automatic tractography of the Uncinate Fasciculus. Tractography on the filtered data set follows the shape of the bundle better.

lobe. Not only are fibers on average longer and have a more homogeneous distribution after filtering, but they

are also more anatomically correct.

IV. CONCLUSIONS

This paper introduced a one-step and a recursive Linear Minimum Mean Squared Error estimator for signal

estimation and noise removal in magnetic resonance images assuming a Rician noise model. Unlike other existing

schemes, the LMMSE has a closed-form expression, is computationally efficient, easy to use and easy to implement.

Various validation experiments have been performed and the filter has been tested against a number of competing

techniques. Diffusion information is based on the interplay between diffusion weighted images with a corresponding

baseline image, thus validation was performed using real and synthetic data for diffusion weighted magnetic

resonance images as well as for structural magnetic resonance images.
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Structural similarity and quality index tests revealed superior image denoising results for the LMMSE estimators

in comparison to a set of competing methods: overall noise was reduced while keeping structural information

and minimizing blurring effects. All testing was performed assuming that only one measurement realization is

available for each voxel, a scenario that the LMMSE estimators are designed for, but which puts methods designed

for multiple acquisitions at a disadvantage. However, this is an important scenario, especially when considering

diffusion weighted image acquisitions with high angular and spatial resolution where overall acquisition time may

become an issue. The LMMSE estimators led to qualitatively good results for the diffusion weighted images

themselves as well as for derived quantities (such as FA images and tractography results). Further, a testing of the

proposed filtering methodology on synthetic DWI datasets showed significant reductions in estimation bias for the

tensor spectrum as well as a beneficial smoothing effect on the tensor field.

A possible future extension would be an anisotropic Rician LMMSE scheme in analogy to the recent approach

by Martin-Fernandez et al. [17] as well as an in-depth investigation into the noise-properties of the filtered image

data.
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APPENDIX I

ABOUT THE RLMMSE

One important issue in the RLMMSE definition is how long the assumption of Rician distributed data may hold

when recursive filtering is considered. A priori, nothing assures that the data remains Rician once filtered. To test

the filter behavior, we corrupted a 256 × 256 constant image of value 100 with Rician noise with σn = 40. To

study the evolution of the distribution, the image is filtered with a LMMSE estimator using σn/2 instead of σn.

This way, the image is not totally denoised. Five iterations are performed, and after each one the value of the noise

variance is re-estimated. Results are depicted in Fig. 20, where the actual distribution of the data is compared with

the Rician distribution and Gaussian distribution for each iteration.

There is a slight mismatch with increasing numbers of iterations, but the Rician assumption is still reasonable.

Furthermore, when the SNR gets smaller, the Rician and Gaussian converges as expected for high SNR values.

This is similar to the Gaussian distribution, but not exactly the same.

Another important issue for the RLMMSE is the stability of the K parameter, which is defined as (see eq. (15))

K = 1−
4σ2

n

(
〈M2〉 − σ2

n

)
〈M4〉 − 〈M2〉2

.
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(b) 1 iteration (cσn = 26)
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(c) 2 iterations (cσn = 18)
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(d) 3 iterations (cσn = 15)
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(e) 4 iterations (cσn = 12)
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(f) 5 iterations (cσn = 9)

Fig. 20. Experiment with synthetic noise.

Taking into account that [28]

E{M2} = E{A2}+ 2σ2
n

E{M4} = E{A4}+ 8σ2
nE{A2}+ 8σ4

n

this equation may be rewritten as a function of the original data:

K =
E{A4} − E{A2}2

E{A4} − E{A2}2 + 4σ2
n (E{A2}+ σ2

n)
=

Var(A2)
Var(A2) + 4σ2

n (E{A2}+ σ2
n)

In the uniform areas of the original image the variance is very small or zero, i.e. Var(A2) → 0, and accordingly

K → 0 and

Â2 = E{M2} − 2σ2
n = E{A2}

The estimator for the uniform areas is just the mean. On the other hand, when the level of noise is very low, i.e.

σ2
n → 0 then K → 1, and therefore

Â2 = M2

If no noise is present, the estimator is the image itself. One problem may arise if both Var(A2) and σ2
n tend to 0.

However, in that case, both estimators are correct, so, in a uniform area

Â2 = M2 = E{M2} − 2σ2
n = E{A2} = E{M2}

In practical experiments, there can be cases in which, due to numerical artifacts, K is negative; this may be more

common when the real image does not completely follow the Rician model. In this case it is useful to add the
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following restriction:

K = max{K, 0}.

APPENDIX II

ABOUT THE NOISE ESTIMATORS

FiXme: (Reviewer 3: Some more details about the estimators should be forthcoming (on page 5). The authors

refer to their paper in IP but this paper is in review. Hence for the sake of readability and completely, some details

of these estimators and derivations should be presented in the appendix.)

Both noise estimators used in this paper have been previously introduced and studied in [28]. For the sake of

completeness, a brief explanation of them is included in this appendix.

Due to the influence of the pixels in the background of an MR image, the local mean distribution of a non-noisy

MRI presents a maximum around zero (see Fig. 21-(a), solid line). When the image is corrupted with Rician noise,

this maximum is now shifted to a value related to σn (see the dotted line in Fig. 21-(a)). As the mean of a Rayleigh

distribution is defined as µ1 = σn

√
π/2, we can define a σn estimator

σ̂n =

√
2
π

arg max{p(µ̂1)}

where p(µ̂1) the distribution of the sample local mean. The maximum may be calculated as the mode of the

distribution:

σ̂n =

√
2
π

mode(µ̂1i,j) =

√
2
π

mode(〈Ii,j〉) (22)

This assumption can be proved by analyzing the mode of the distribution of the mean of Rayleigh random variables.

The sum of Rayleigh variables is a classical problem in communications. Some approximations are usually employed,

as the one in [39].

The effect of changing the size for the window used for estimation –see Fig. 21-(b)– is a change in the width

of the distribution, but in any case, the maximum stays at the same value. Accordingly, the mode does not change

and neither does the estimation.

The starting point of the variance-based estimator is that, if no texture is present, the distribution of the local

variances of an image will have its maximum value around zero. With this assumption in mind, we will first

approximate the variance of a Rician model as

σ2
M ≈ σ2

n

(
1− 5

4
σ4

n

A2
− · · ·

)
.

If E{A2
ij} > σ2

n, and even if E{A2
ij} � σ4

n we can say that

σ2
Mij

≈ σ2
n

and accordingly, if the variance of the signal is estimated locally, the variance of noise can be estimated as

σ̂2
n = mode(σ2

Mij
).
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Fig. 21. (a) Sample local mean distribution of the image without noise (solid-bold) and with noise (dashed), with σn = 10. (b) Normalized

distribution of
q

2
π
〈Ii,j〉 of the noisy image with σn = 10. Window size: 3 × 3 (dashed), 7 × 7 (solid), 11 × 11 (dash-dotted) and 21 × 21

(dotted).

This is similar to considering the rough approximation of the noise being Gaussian when the SNR is high. This

way, the sample variance has a gamma distribution with mode

mode(σ2
M ) = σ2

n

N − 3
N − 1

.

To completely justify this result, the distribution of the sample variance for the Rician model must be calculated.
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