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A time–frequency representation~TFR! is used to analyze the interaction of a multimode and
dispersive Lamb wave with a notch, and then serves as the basis for a correlation technique to locate
the notch. The experimental procedure uses a laser source and a dual-probe laser interferometer to
generate and detect Lamb waves in a notched plate. The high fidelity, broad-bandwidth, point-like
and noncontact nature of laser ultrasonics are critical to the success of this study, making it possible
to experimentally measure transient Lamb waves without any frequency biases. A specific TFR, the
reassigned spectrogram, is used to resolve the dispersion curves of the individual modes of the plate,
and then the slowness-frequency representation~SFR! of the plate is calculated from this reassigned
spectrogram. By considering the notch to be an additional~second! source, the reflected and
transmitted contributions of each Lamb mode are automatically identified using the SFRs. These
results are then used to develop a quantitative understanding of the interaction of an incident Lamb
wave with a notch, helping to identify mode conversion. Finally, two complementary, automated
localization techniques are developed based on this understanding of scattering of Lamb waves.
© 2003 Acoustical Society of America.@DOI: 10.1121/1.1593058#

PACS numbers: 43.20.Mv, 43.35.Cg@YHB#
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I. INTRODUCTION

Our objective in this research is to develop an automa
methodology that uses multimode and dispersive La
waves to locate a notch. The experimental procedure us
laser source and a dual-probe laser interferometer to gen
and detect Lamb waves in both notched and perfect pla
The high fidelity, broad-bandwidth, point-like, and nonco
tact nature of laser ultrasonics are critical to the succes
this study, making it possible to measure transient La
waves without any frequency biases. Experimentally m
sured time–domain Lamb waves are first transformed
the time–frequency domain by calculating the reassig
spectrogram, a time–frequency representation~TFR!; this
TFR resolves the individual modes of the plate and gener
its dispersion curves. The reassigned spectrogram is
normalized with respect to propagation distance by conv
ing it to a slowness-frequency representation~SFR!—this is
a quick and simple calculation.

A procedure is then developed to identify the reflec
and transmitted contributions of each Lamb mode by con
ering the notch to be an additional~second! source. The
SFRs from each of the interferometric probes~and in both

a!Author to whom correspondence should be addressed. Electronic
laurence.jacobs@ce.gatech.edu
J. Acoust. Soc. Am. 114 (2), August 2003 0001-4966/2003/114(2)/
d
b
s a
ate
s.

-
of
b
-
o
d

es
en
t-

d
-

the perfect and notched plates! are compared, and modes a
automatically classified into different cases, depending
their interaction with the notch. These results are used
develop a quantitative understanding of the interaction of
incident Lamb wave with a notch, helping to identify mod
conversion.

Finally, two complementary, automated localizatio
techniques are developed based on this understanding o
scattering of Lamb waves. One technique isolates the co
butions of the signal reflected from the notch by performi
a correlation of a series of SFR spectra, each calculated
different, assumed propagation distances. This correla
technique uses an understanding of Lamb wave scatterin
for example, the knowledge such as which modes are
flected, but not mode converted~and through which frequen
cies! helps refine the proposed correlation localizati
procedure. The second technique uses a goodness-of-fit
ric when allocating~identifying! the transmitted, and mod
converted wave field to determine the notch location. Th
two complementary techniques can be combined to prov
two independent predictions~and thus increase accuracy!, or
can be used separately. Considering the arbitrary natur
the geometric relationship between the notch, the source,
each of the receivers in a real application, this robustnes
especially important; the effectiveness of the proposed lo
il:
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ization procedure is not dependent on the notch being loc
between the laser source and the receivers.

Previous researchers have used Lamb waves for mat
characterization~see Chimenti1 for details!, but a Lamb
wave’s multimode and dispersive nature makes an inter
tation of time–domain signals difficult. In contrast, TFR
operate on time–domain signals, are capable of resolving
individual modes of a plate, and naturally lead to t
slowness-frequency representation. TFRs are well know
the signal processing community~see Cohen2 for a review of
TFRs!. Previous research has shown that TFRs based on
short-time Fourier transform~STFT!—spectrogram, reas
signed spectrogram3—and the ~pseudo! Wigner–Ville
distribution4 are particularly well suited for representin
Lamb waves. The spectrogram is effective in this applicat
because of its constant time–frequency resolution over
times and frequencies.3 Lemistre et al.5 and Wilcox et al.6

used the TFRs of Lamb waves for the damage detectio
composite plates, while Valleet al.7 used time-of-flight infor-
mation calculated from a reassigned spectrogram to lo
notches in cylinders. Hurlebauset al.8 used the TFRs of
Lamb waves and a correlation of the reflected contribution
localize notches in plates, but their research does not req
~nor was it developed with! an understanding of the scatte
ing of a Lamb wave by a notch.

Previous researchers have studied the interaction
guided Lamb waves with a crack. Liuet al.9 investigated
transient scattering of Lamb waves by a surface-break
crack, while Cho and Rose10 applied the boundary elemen
method to determine the transmission and reflection co
cients from a surface breaking defect. Lowe and Diligen11

and Diligent et al.12 examined the scattering of the lowe
symmetric (s0) mode from both a rectangular notch, an
from a through thickness hole, respectively. Castaingset al.13

used modal decomposition and an air-coupled ultrasonic
ceiver to model the interaction of Lamb waves with a cra
this study used the noncontact and high fidelity nature
air-coupled ultrasound, and generated selected mo
~through a limited frequency bandwidth! with an interdigital-
like ~IDT! transmitter. This is in contrast to the current r
search that generates a broadband, multimode Lamb w
and then relies on signal processing~the reassigned spectro
gram! to resolve the individual modes of the plate. Note th
an alternative approach is to use the two-dimensional Fou
transform~2D-FT!14,15 to develop the dispersion curves. Th
2D-FT is robust, but has the disadvantage that it requ
multiple, equally spaced waveforms. In contrast, the curr
approach only requires a single waveform, while the proce
ing involved in transforming this single time–domain Lam
wave to a SFR is computationally straightforward, and c
be easily automated.

II. EXPERIMENTAL PROCEDURE, TIME–FREQUENCY
AND SLOWNESS-FREQUENCY REPRESENTATIONS

The experimental procedure makes high fideli
resonance-free, point-like noncontact measurements of L
waves over a wide frequency range~100 kHz to 10 MHz!.
Broadband Lamb waves are generated with an Nd:YAG la
source~see Scruby and Drain16 for details on laser ultrason
678 J. Acoust. Soc. Am., Vol. 114, No. 2, August 2003
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ics!. Laser detection of these waves is accomplished wit
dual-probe, heterodyne laser interferometer originally dev
oped by Bruttomessoet al.,17 and extended by Hurlebaus18

to be a dual-probe receiver. This instrument uses the Dop
shift to simultaneously measure out-of-plane surface velo
~particle velocity! at two points on the surface of the plat
The Nd:YAG laser fires~at t50) and generates a Lam
wave at the source location~ablation source!. This Lamb
wave is independently measured by each of the interferom
ric probes~as a transient, time–domain signal!, discretized
using a digital oscilloscope with a sampling frequency of 1
MHz, low-passed filtered~a linear phase analog Bessel filte!
at 10 MHz, and averaged over 60 Nd:YAG shots~to increase
the signal-to-noise ratio!.

Two different plate specimens are considered in this
search. One plate specimen has no defects and is identifie
the ‘‘perfect plate,’’ while the second has a single mille
notch and is referred to as the ‘‘notched plate’’—the pla
are identical otherwise, made of 3003 aluminum, with
mensions of 305 mm3610 mm30.99 mm. The notch has
depth of 0.560.1 mm, a width,w, of 1.660.1 mm, a length
of 305 mm~full plate width! and is located on the centerlin
of the 610 mm dimension of the plate. The relatively lar
plate size (305 mm3610 mm) is needed to minimize th
interference of reflections from the plate edges and all m
surements are made in the center of the plate. Figure 1 sh
the notched plate specimen, together with the location of
laser source and each of the two interferometric probes—
source and probe 1 are always on one side of the no
while probe 2 is on the opposite side of the notch. Note t
the source and both receiving probes are on the same fa
the plate, while the notch is on the opposite~inaccessible!
face. d1 is the distance from source to probe 1,d0 is the
distance from probe 1 to the centerline of the notch, andd2 is
the distance from the centerline of the notch to probe
Define d35d11d0 , d45d31d2 , andd55d112d0 . Lamb
waves are measured at a variety of propagation distances~for
comparison and verification purposes! by holdingd0 andd2

fixed ~30 mm each, which is approximately 30 plate thic
nesses! for all experiments, and varyingd1 from 50 to 85
mm ~in 5 mm increments!.

A time–domain Lamb wave signal is transformed in
the time–frequency domain using the STFT, essentia
chopping the signal into a series of small overlapping piec
Each of these pieces is windowed and then individually F

FIG. 1. Experimental setup~dimensions in mm!.
Benz et al.: Localization of notches with Lamb waves
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rier transformed.2 The STFT of a time–domain signal,s(t),
is defined as

S~v,t !5
1

2p E
2`

`

e2 ivts~t!h~t2t !dt, ~1!

where h(t) is the window function andv is angular fre-
quency. The energy density spectrum of a STFT is define

Ed~v,t !5uS~v,t !u2, ~2!

and is called a spectrogram.
TFRs such as the spectrogram suffer from the Heis

berg uncertainty principle, making it impossible to simult
neously have perfect resolution in both time and frequen2

The resolutions in time and frequency are related to e
other, and limited by the inequality,s t

2sw
2 >0.25, wheres t

and sw are the standard deviations for time and frequen
respectively. The equality holds for a Gaussian wind
@h(t) in Eq. ~1!#; the current research uses a Hanning w
dow to compute the STFT because it allows for relativ
small signal distortion, while ensuring smoothness of
windowed signal.19 The time–frequency resolution of a spe
trogram is solely controlled by the window size and typ
and is independent of frequency. Choosing a narrow wind
provides for good resolution in time, but poor resolution
frequency, whereas a wide window leads to better freque
resolution and worse time resolution. This study uses a 3
point window for the time–domain signals measured at a
MHz sampling frequency~see Niethammeret al.3 for de-
tails!.

An improvement in the time–frequency resolution of
spectrogram is achieved by applying the reassignm
method, developed by Auger and Flandrin.20 The reassign-
ment method reduces the time–frequency spread of a s
trogram by relocating ‘‘energy’’ from its old position, coo
dinates~t, v!, to new, reassigned coordinates, (t̂ ,v̂).

The reassigned spectrogram transforms an experim
tally measured time–domain Lamb wave signal into
time–frequency domain. This transformation enables a m
quantitative interpretation of the Lamb wave,3 but it is still
difficult to compare reassigned spectrograms of meas
ments made with different propagation distances. This d
culty is due to the fact that arrival time is a function
propagation distance, which causes different time shifts
different propagation distances. It is possible to norma
these Lamb waves with respect to propagation distance
considering either the group velocity–frequency represe
tion, or the slowness-frequency representation~SFR!. Define
group velocity,cg , for any propagation distance,d, and time,
t ~for each frequency! as cg5d/t, while ~energy! slowness,
sle , is defined assle5t/d.

The calculation of group velocity from a TFR~like the
reassigned spectrogram! with a fixed propagation distanced
is a nonlinear operation int that transforms an equall
spaced time grid to an unequally spaced grid in group ve
ity, cg . This is in contrast to the slowness transformatio
which is a linear operation int—the equally spaced time gri
is transformed to an equally spaced grid in~energy! slow-
J. Acoust. Soc. Am., Vol. 114, No. 2, August 2003
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ness,sle . Transformation nonlinearities are avoided by s
lecting the SFR to represent the experimentally measu
time–domain Lamb wave signals.

III. EXPERIMENTAL INTERACTION OF A LAMB WAVE
WITH A NOTCH

Figure 2 shows the square root~for better visibility! of
the energy density spectrum of the SFR~obtained from the
reassigned spectrogram! measured in the perfect plate for
propagation distance of 70 mm, together with the theoret
Rayleigh–Lamb solution,21 presented as solid lines and ide
tified as either symmetric,si , or antisymmetric,ai , modes.
There is excellent definition of seven experimentally me
sured modes (s02s2 anda02a3) and all these experimenta
modes match the theoretical solution~no experimental
modes are unaccounted for!. Interference during the reas
signment procedure causes some ‘‘fuzziness’’ in the vicin
of the intersection of modes.3 Note that Fig. 2 is also a rep
resentation of the propensity of a particular mode to be
cited by the laser source~and noting that the laser interfer
ometer used in this study only measures out-of-pla
motion!, meaning that not all portions of a mode~e.g., a1

below 2 MHz! can be considered in this study. However, F
2 can be thought of as the SFR of the Lamb wave tha
incident on the notch~in the notched plate specimen!.

Now consider SFRs for the notched plate. Note that
notch location is now assumed to beknownin order to study
the scattering phenomena; this knowledge will then be u
to determine an unknown notch location in Sec. IV. Figu
3~a!–~b! show the SFRs for propagation distances of 70 m
(d1) and 130 mm (d4)—simultaneously measured by prob
1 and 2, respectively—together with the theoretical solut
for theperfect plate, presented as solid lines. Modes above
slowness of about 650ms/m in Fig. 3~b! that do not match
any theoretical mode lines are due to reflections from
plate edges, are spurious, and are not included in the foll
ing discussions. A comparison of SFRs of the perfect pl
and the notched plate shows that a significant portion of

FIG. 2. SFR of perfect plate.
679Benz et al.: Localization of notches with Lamb waves
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energy in the notched plate still corresponds to the theo
cal solution of the perfect plate. However, the notched p
SFRs show additional modes that are not present in the
fect plate SFR, and these additional modes do not fit
theoretical mode lines.

First, compare the probe 1 signal of the notched pl
@Fig. 3~a!# with the perfect plate~Fig. 2!. The SFR of the
notched plate has additional modes for slownesses la
than 500ms/m that are the contribution of the Lamb wa
that is reflected from the notch. The perfect plate SFR c
tains only the incident signal, while the probe 1 notched pl
SFR contains both the incident and reflected~from the notch!
signals. The reflected signal occurs at a later time~higher
slowness! because it has a longer propagation distance. If
probe 1 TFR was transformed with a propagation distanced,
that corresponds to the source to notch to receiver dista
d5 , instead of the source to receiver distance@d1 of 70 mm
used to calculate the SFR in Fig. 3~a!#, the resulting SFR

FIG. 3. ~a!. SFR of notched plate, Probe 1, source to receiver distanced1)
of 70 mm. ~b! SFR of notched plate, Probe 2, source to receiver dista
(d4) of 130 mm.
680 J. Acoust. Soc. Am., Vol. 114, No. 2, August 2003
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would highlight the reflected modes.19 The reflected~and
nonconverted! modes in this SFR would coincide with th
theoretical modes. This ‘‘reflected’’ SFR would also conta
modes that do not fit the theoretical solution—referred to
extraneous modes—which will be discussed in detail later.

Now, compare the probe 2 signal for the notched pl
@Fig. 3~b!# with the perfect plate~Fig. 2!. The probe 2 SFR
only contains the transmitted portion of the signal, and F
3~b! shows modes that do not fit the theoretical solutio
These modes~e.g., between 300–500ms/m, 2–4 MHz! are
also identified as extraneous modes, and are due to the i
action of the incident Lamb wave with the notch.

An explanation of extraneous modes is based on a
pothesis that treats the notch as an additional~second! source
that ‘‘creates’’ the reflected and transmitted modes. In ad
tion, this development recognizes that these reflected
transmitted modes all propagate within the same plate
they should all be able to be represented as the theore
modes of the perfect plate—all modes must satisfy
Rayleigh–Lamb equations of the perfect plate. These ex
neous modes violate this requirement~they do not fall on a
theoretical mode line! because the SFRs are calculated un
the ~possibly incorrect! assumption that the same mod
propagates from the laser source to the notch, and then f
the notch to the receiver~either probe 1 or probe 2!. If this
were truly the case, then there would be no extrane
modes present.

The scattering of Lamb waves by a notch is a comp
cated process, with mode conversion, and a number of o
phenomena possible. Mode conversion in this context me
that the energy propagates with modei during the propaga-
tion from the laser source to the notch, and with a differe
mode, j, during the propagation from notch to receiver. I
ternal reflections ~within the notch!,11 nonpropagating
modes,13 and local frequency~or phase! shifts are additional
phenomena that can also be part of this scattering proc
Instead of approaching this problem from an energy con
vation approach, this research develops a systematic pr
dure to identify which modes~and through which frequen
cies! are transmitted and reflected, with or without mo
conversion. Note that the proposed procedure does not
sider internal reflections or local frequency shifts, but t
success of the proposed localization technique~presented in
Sec. IV! shows that these contributions are probably re
tively small.

Consider a nomenclature where signals measured in
notched plate with probe 1 are classified as case P1a,
dent; case P1b, reflected and non-mode-converted; and
P1c, reflected and mode converted. Signals measured in
notched plate with probe 2 are classified as case P2b, tr
mitted and non-mode-converted; and case P2c, transm
and mode converted.

Since both the incident and the reflected signals
present in probe 1 measurements, case P1 is inherently m
complicated, so examine case P2~transmitted only! first.
Consider a procedure that is used to accentuate the m
that coincide with the theoretical solution. This procedu
entails multiplying a SFR with atheoretical mode matrix,
T(sle , f )—this theoretical mode matrix is a three

e

Benz et al.: Localization of notches with Lamb waves
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dimensional representation of the Rayleigh–Lamb equat
that accounts for possible measurement uncertain
T(sle , f ) equals unity on the set of slowness-frequency pa
that correspond to the solution of the Rayleigh–Lamb eq
tions, and is smoothed out by Gaussian filtering in the slo
ness and frequency directions. Each mode is filtered in
vidually, the respective maxima~the ridge values! are set
equal to unity, and the individual modes are combined
taking the maximum over all modes~this guarantees a valu
of unity at mode intersections!. The inverse theoretical mode
matrix—a value of zero at the theoretical mode valu
~Gaussian curve!, unity everywhere else—is obtained b
subtracting the theoretical mode matrix from a matrix co
pletely populated with ones.

Modes that belong to case P2b are comparatively eas
identify; modes that lie close to the theoretical mode lines
the SFR of the probe 2 signal, calculated with propagat
distanced4 , are not mode converted at the notch. Thus,
SFR of Fig. 3~b! is multiplied by the theoretical mode ma
trix, and Fig. 4 shows the result—modes that are transmi
and not mode converted.

Modes not assigned to case P2b are considered t
extraneous and portions of these modes are systemati
identified as belonging to case P2c. First, remove case
modes from the signal measured by probe 2 by multiply
the SFR in Fig. 3~b! with the inverse theoretical mode ma
trix. Define the propagation time from source to probe 2
time t4 , and express this time as the sum of the time fr
source to notch,t3 , plus the time from notch to probe 2,t2 ,
or t45t31t2 . The slowness associated with the propagat
over distanced3 , from source to notch, is defined assle3

5t3 /d3 , and the slowness associated with the propaga
from notch to probe 2 issle25t2 /d2 . Finally, the slowness
from source to probe 2 issle45t4 /d4—this is the slowness
shown in the SFR of Fig. 3~b!. These slownesses are com
bined, and, after some simple algebra,

FIG. 4. SFR of modes belonging to case P2b, transmitted and non-m
converted.
J. Acoust. Soc. Am., Vol. 114, No. 2, August 2003
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Equation~3! relates theunknownslowness from source to
notch (sle3), to theknownslowness from source to receive
(sle4), and anassumedslowness from notch to receive
(sle2). The unknown slownesssle3 can be calculated for ev
ery possible slowness-frequency combination through
relevant slowness range and frequency bandwidth. Cons
only six modes—a0 , a1 , a2 , s0 , s1 , ands2—these modes
carry most of the experimentally measured energy. Six n
SFRs are calculated~one for each of these six modes!, each
assuming all of the energy propagates from the notch
probe 2 with that particular mode. The slowness-freque
values for these modes are obtained from the theore
solution21 and go into Eq.~3! as the assumedsle2 . All dis-
tances andsle4 areknownand thus the slownesssle3 can be
calculated for each frequency.

An algorithm that follows this procedure is programm
into MATLAB to develop an automated and objective way
~possibly! allocate the extraneous modes into one of these
possible transmitted modes. First, separate the modes
belong to case P2c, and then pick any point on the P2c S
and do the following.

~1! Computesle3 for this point for each of the six pos
sible modes:a02a2 ands02s2 .

~2! Next, compare the magnitude of the theoretical mo
matrix, T(sle3 , f ), at each of the six slowness-frequen
pairs calculated in step 1. Select the slowness-frequency
that has the largest magnitude. This defines the mode
propagating from laser source to notch. This is a modifi
probabilistic approach that searches for the mode that is m
likely to be the match, sinceT(sle3 , f ) is similar to a two-
dimensional probability distribution function, although not
the strict mathematical sense.

~3! The entire propagation path is now defined—fro
laser source to notch with the slowness corresponding to
mode selected in step~2!, and then from the notch to th
receiver~probe 2!, by looking at the mode that it is mappe
from.

For example, Fig. 5~a! shows the subset of the origina
extraneous modes, at their new slowness-frequency coo
nates, which fit the theoretical solution, assuming that m
a0 propagates from the notch to probe 2. The two circ
regions show where significant energy matches the theo
cal mode matrix—these regions propagate as modes0 from
laser source to notch, and are converted at the notch toa0

~and propagate asa0 from notch to probe 2!. Figure 5~b!
shows the same modes as Fig. 5~a!, but at their original
slowness-frequency coordinates. Note that the energy of
incidents0 mode below 1 MHz is much lower than the inc
dent energy in thea0 mode in the same frequency range,
this incidents0 contribution is not obvious in Fig. 2. Figure
is a summary of the contributions of all six possible mod
and represents case P2c, with the circles specifying how
original incident Lamb wave is mode converted at the not

Now consider the probe 1 measurements that contain
incident and reflected signals. The incident modes~case P1a!
are the SFR of probe 1, normalized with propagation d

e-
681Benz et al.: Localization of notches with Lamb waves
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tanced1 and shown in Fig. 3~a!. The modes in Fig. 3~a! that
are close to the theoretical mode lines can be accentuate
multiplying this SFR with the theoretical mode matrix an
the resulting SFR is almost identical to Fig. 2, the SFR
the perfect plate.19 The reflected and non-mode-convert
portion ~case P1b! of the probe 1 signal is identified by ca
culating a SFR with the propagation distanced5 , and multi-
plying with the theoretical mode matrix~to accentuate the
modes coinciding with the theoretical solution!. These case
P1b modes are shown in Fig. 7.

In a procedure similar to case P2c, extraneous mo
that cannot be allocated to case P1a~incident modes! or case
P1b ~reflected, non-mode-converted! are extracted by multi-
plying the SFR of the reflected signal with the inverse th
retical mode matrix. An automated algorithm similar to t
one used for case P2c is developed for case P1c, usi
modified version of Eq.~3!. The SFR that shows the mode
belonging to case P1c, including their converted mode
signment~notch to probe 1! is shown in Fig. 8.

FIG. 5. ~a!. Subset of extraneous modes~transmitted! assuming mode con-
version to modea0 , new coordinates.~b! The subset of extraneous mode
~transmitted! assuming mode conversion to modea0 , original coordinates.
682 J. Acoust. Soc. Am., Vol. 114, No. 2, August 2003
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The non-mode-converted, transmitted, and reflec
SFRs~Figs. 4 and 7! are very similar to each other and d
not appear to show any definite pattern that can be assoc
with notch width or depth. There are subtle differences
such as modea1 from 2–3 MHz and modes1 below 4 MHz
are reflected but not transmitted—but it is difficult to make
quantitative interpretation as to how the incident Lamb wa
is scattered into reflected and transmitted portions withou
predictive theoretical model. However, this comparison
not an objective of this research. More importantly, note t
the mode conversion at the notch for both the transmit
and reflected cases are very similar to each other—com
Figs. 6 and 8. This behavior validates the hypothesis that
notch acts as an additional source. Finally, note that a
majority of the extraneous mode energy is identified w
mode conversion,19 so the amount of incident signal energ
that is scattered at the notch as a local frequency shift o
an internal reflection is probably small in comparison.

FIG. 6. SFR of modes belonging to case P2c, transmitted and conver

FIG. 7. SFR of modes belonging to case P1b, reflected and non-m
converted.
Benz et al.: Localization of notches with Lamb waves
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IV. LOCALIZATION OF THE NOTCH

An automated localization methodology is now dev
oped based on the understanding of the interaction of a L
wave with a notch—note that the notch location is now
sumed to be unknown. Previous research8 formulated a cor-
relation technique that uses the non-mode-converted par
the reflected modes to locate a notch in a plate. This co
lation procedure does not require~nor was it developed with!
an understanding of the scattering of a Lamb wave b
notch, and this procedure identifies the position where
non-mode-converted portions~and only these portions! of
the reflected modes coincide with the incident modes. T
current research uses an understanding of scattering to
tend this technique, using, for example, a targeted freque
bandwidth to help refine the localization procedure.

Up until this point, the current research has neglec
the width of the notch~the notch is treated as being infinite
thin!, and has defined the location of the notch by its cen
line ~see Fig. 1!. The proposed localization technique will b
more accurate if the finite width of the notch is taken in
account. Introduce three new distances (d̂0 ,d̂3 ,d̂5) that are
based on the near edge~in relation to the laser source! of the
notch:d̂05d02w/2, d̂35d32w/2, andd̂55d52w, wherew
is the notch width. Note that there is no difference in t
visual appearanceof a SFR that is calculated withd̂i instead
of di—this small change in propagation distance has no
ible effect on the SFRs presented in Figs. 2–8.

First, localize the notch with the reflected wave field
considering the probe 1 signal. Assume thatDd̂0 is the un-
known distance from probe 1 to the notch. By systematica
varying Dd̂0 ~and the associated propagation distanced

5d112Dd̂0), SFRs are calculated for each distance. Ne
correlate each of these SFRs with the incident modes~the
SFR calculated with distanced1), or

Corr~d!5(
sle

(
f

SFR~sle , f ,d1!3SFR~sle , f ,d!, ;d.

~4!

FIG. 8. SFR of modes belonging to case P1c, reflected and converte
J. Acoust. Soc. Am., Vol. 114, No. 2, August 2003
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Obviously, this correlation reaches its maximum for a rep
sentation calculated withDd̂050 ~the correlation of two
identical signals!, but reflections~from both the notch and
any plate edges! will introduce local maxima in the correla
tion curve at certainDd̂0’s. These local maxima occur whe
the reflected modes within the SFR coincide with the in
dent modes—which, in turn, provides a measure of the
ceiver to notch distance. AtDd̂0 equal to the exact receive
to notch distanceDd̂05d̂0 , the reflected~but not mode con-
verted, case P1b! contribution matches the incident wav
field.

Figure 9 shows the correlation of the SFRs of t
notched plate~the dot–dashed line! for Dd̂0 varying between
0 and 120 mm with an increment step of 0.2 mm. Each
these SFRs~calculated with a propagation distanced5d1

12Dd̂0) are correlated with the same SFR, calculated w
d5d1 , as defined by Eq.~4!. This procedure is repeated fo
the perfect plate~correlated with the incident modes of th
perfect plate! and shown as the dashed line in Fig. 9. T
solid line in Fig. 9 represents the ratio of the notched pl
correlation curve divided by the perfect plate correlati
curve. This ratio curve emphasizes the local maxima cau
by features that exist in the notched plate, but not in
perfect plate; maxima in the perfect plate can only be cau
by the edges, while maxima in the notched plate can
caused by the notch or the edges. As a result, the maxim
of the ratio curve represents the reflection from the notch
the ratio curve has a single dominant peak atDd̂0529 mm
~the actual distance isd̂0529.2 mm). This correlation proce
dure calculates the receiver to notch distance with outsta
ing accuracy, and the error~0.2 mm! is on the order of the
tolerance of the width of the notch.

Further improvement in localization accuracy
achieved using a frequency-limited bandwidth~such as from
0–2 MHz! of the SFRs for the correlations—the results a
shown in Fig. 10. Note that the correlations in Fig. 9 use

.
FIG. 9. Correlation curves for the perfect plate, notched plate, and a divi
of both curves, 0–10 MHz frequency bandwidth, reflected contribution.
683Benz et al.: Localization of notches with Lamb waves
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entire frequency bandwidth, 0–10 MHz. This particu
~limited-! frequency bandwidth is selected because the c
P1b~reflected and non-mode-converted! SFR in Fig. 7 shows
significant energy in the frequency bandwidth from 0
MHz—the same is also true for the SFR of the incide
modes. The peak of the curve representing the ratio
notched/perfect plate in Fig. 10 is still at the same locati
but it is now even sharper and its value is almost five tim
higher than in Fig. 9—the sharpness and value of the m
mum are measures of the preciseness of the results. The
nificance of this frequency bandwidth~0–2 MHz! becomes
more evident when correlation curves for the remain
bandwidth~2–10 MHz! are considered, which results in
much wider peak, on the order of 8 mm.19 Note that the
correlation curves in Figs. 9 and 10 are more accurate
definitive than the results presented in Hurlebauset al.8

These improvements are due to the use of the reassi
spectrogram in this study~as opposed to the unreassign
spectrogram in Hurlebauset al.8! as the basis for the SFRs
and the ability to identify a targeted frequency range t
contains significant P1b energy.19

Now, consider a second localization technique that u
the transmitted wave field of probe 2. Unfortunately, a c
relation technique in terms of the case P2b transmitted, n
mode-converted modes is not possible, because the case
SFR is calculated with distanced4 , which is independent o
notch location. Instead, consider a technique based on
goodness-of-fit when allocating the extraneous modes to
P2c, transmitted and mode converted. Assume thatDd̂3 is
the unknown source to notch distance; varyingDd̂3 can be
used to define a measure~as a function of distance! of how
well portions of the extraneous modes can be allocated
case P2c. For eachDd̂3 , a modified version of the allocatio
algorithm for case P2c@that uses Eq.~3! and is described in
the previous section# is performed on the transmitted signa
Specifically, the goodness-of-fit for anyDd̂3 is given by
summing the maximum possible magnitudes of the theor
cal mode matrix,T(sle , f ), for the mapping of all the

FIG. 10. Correlation curves for the perfect plate, notched plate, and a
sion of both curves, 0–2 MHz frequency bandwidth, reflected contribut
684 J. Acoust. Soc. Am., Vol. 114, No. 2, August 2003
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slowness-frequency pairs specified by the extraneous
modes being classified. Dividing this value by the number
slowness-frequency pairs to be mapped is the goodness-
measure. A value of 100% means perfect mapping, with
the extraneous modes mapped perfectly to the theoretica
lution. In reality, lower percentages will be obtained becau
of experimental uncertainties and the possibility that an
traneous mode is mapped to, but not exactly on top of
theoretical Rayleigh–Lamb solution.

Figure 11 shows the curve representing the percen
of energy that is allocated to the extraneous modes, a
function of source to notch distance,Dd̂3—there is a clear
peak near the correct distance,Dd̂35d3599.2 mm. Note
that this technique does not require an experimental sig
from the perfect plate, but it does need the theoretical so
tion of Lamb modes in a perfect plate. Additionally, the su
cess of this technique validates the accuracy of the ass
ment of the extraneous modes into case P2c in Sec. III.

V. CONCLUSION

This research establishes the effectiveness of combin
laser ultrasonic techniques with a SFR to locate a notch
plate. The high fidelity, broad-bandwidth, point-like, an
noncontact nature of laser ultrasonics are critical to the s
cess of this study. The dual-probe laser interferometer allo
for the simultaneous interrogation of both the reflected a
transmitted wave fields. The distance invariance of a S
enables a quantitative interpretation of the scattering o
broadband, incident Lamb wave by a notch. The system
~and unbiased! mode allocation procedure developed in th
research establishes which modes are transmitted and
flected by the notch~and through which frequencies!, and
identifies which modes are mode converted.

Two automated localization methodologies are dev
oped using this understanding of the scattering of La
waves. One technique isolates the contributions of the sig

i-
.FIG. 11. Goodness-of-fit~as a function of percent allocated! of the alloca-
tion of extraneous modes to case P2c, used to locate the notch with a t
mitted contribution.
Benz et al.: Localization of notches with Lamb waves
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reflected from the notch by performing a correlation of
series of SFR spectra, each calculated with different,
sumed propagation distances. This correlation techniqu
refined with an understanding of which modes are reflec
but not mode converted~and through which frequencies!. A
second localization technique uses a goodness-of-fit m
when determining how the transmitted extraneous modes
mode converted. A combination of these two localizati
techniques is very robust, because it can use either the
flected or transmitted wave fields, or both—this allows
two independent measures of notch location, and can in
rogate a variety of source, receiver, and notch, geome
relationships.
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