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Abstract

Brain extraction from 3D medical images is a common pre-processing step. A variety of approaches exist,
but they are frequently only designed to perform brain extraction from images without strong pathologies.
Extracting the brain from images exhibiting strong pathologies, for example, the presence of a brain tumor
or of a traumatic brain injury (TBI), is challenging. In such cases, tissue appearance may substantially
deviate from normal tissue appearance and hence violates algorithmic assumptions for standard approaches
to brain extraction; consequently, the brain may not be correctly extracted.

This paper proposes a brain extraction approach which can explicitly account for pathologies by jointly
modeling normal tissue appearance and pathologies. Specifically, our model uses a three-part image de-
composition: (1) normal tissue appearance is captured by a statistical appearance model (via principal
component analysis (PCA)), (2) pathologies are captured via a total variation term, and (3) the skull and
surrounding tissue is captured by a sparsity term. Due to its convexity, the resulting decomposition model
allows for efficient optimization. Decomposition and image registration steps are alternated to allow statis-
tical modeling of normal tissue appearance in a fixed atlas coordinate system. As a beneficial side effect, the
decomposition model allows for the identification of potentially pathological areas and the reconstruction of
a quasi-normal image in atlas space.

We demonstrate the effectiveness of our approach on four datasets: the publicly available IBSR and
LPBA40 datasets which show normal image appearance, the BRATS dataset containing imaging with brain
tumors, and a dataset containing clinical TBI images. We compare the performance with other popular
brain extraction models: ROBEX, BET, BSE and a recently proposed deep learning approach. Our model
performs better than these competing approaches on all four datasets. Hence, our approach is an effective
method for brain extraction for a wide variety of images with high-quality brain extraction results.
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1. Introduction

Brain extraction1 from volumetric magnetic res-
onance (MR) or computed tomography images is a

∗Corresponding author
Email address: xhs400@cs.unc.edu (Xu Han)

1We avoid the commonly used term skull stripping. We
are typically interested in removing more than the skull from
an image and are instead interested only in retaining the
parts of an image corresponding to the brain.

common pre-processing step in neuroimaging as it
allows to spatially focus further analyses on the ar-
eas of interest. The most straightforward approach
to brain extraction is by manual expert delineation.
Unfortunately, such expert segmentations are time
consuming and very labor intensive and therefore
not suitable for large-scale imaging studies. More-
over, brain extraction is complicated by differences
in image acquisitions and the presence of tumors

Preprint submitted to NeuroImage November 15, 2017



and other pathologies that add to inter-expert seg-
mentation variations.

Many methods have been proposed to replace
manual delineation by automatic brain extraction.
In this paper, we focus on and compare with the fol-
lowing four widely-used or recently published brain
extraction methods, which cover a wide range of
existing approaches:

• Brain Extraction Tool (BET): BET [1] is part
of FSL (FMRIB Software Library) and is a
widely used method for brain extraction. BET
first finds a rough threshold based on the image
intensity histogram, which is then used to esti-
mate the center-of-gravity (COG) of the brain.
Subsequently, BET extracts the brain bound-
ary via a surface evolution approach, starting
from a sphere centered at the estimated COG.

• Brain Surface Extraction (BSE): BSE [2] is
part of BrainSuite2. BSE uses a sequence
of low-level operations to isolate and classify
brain tissue within T1-weighted MR images.
Specifically, BSE uses a combination of diffu-
sion filtering, edge detection and morphologi-
cal operations to segment the brain.

• Robust Learning-based Brain Extraction Sys-
tem (ROBEX): ROBEX [3] is another widely
used method which uses a random forest clas-
sifier as the discriminative model to detect the
boundary between the brain and surrounding
tissue. It then uses an active shape model to
obtain a plausible result.

• Deep Brain Extraction: We additionally com-
pare against a recently proposed deep learn-
ing approach for brain extraction [4] which
uses a 3D convolutional neural network (CNN)
trained on normal images and images with mild
pathologies. Specifically, it is trained on IBSR
v2.03, LPBA40 [5] and OASIS [6] datasets. We
use this model as is without additional fine-
tuning for other datasets.

In addition to these methods, many other ap-
proaches have been proposed. For example,
Segonne et al. [7] proposed a hybrid approach

2http://brainsuite.org
3Available at https://www.nitrc.org/projects/ibsr.

This is a different dataset than the IBSR dataset that we
use in this paper.

which combines watershed segmentation with a de-
formable surface model. Watershed segmentation
is used to obtain an initial estimate of the brain
region which is then refined via a surface evolu-
tion process. Another recently proposed method is
the Brain Extraction Based on non-local Segmenta-
tion Technique (BEaST) [8] approach. BEaST is in-
spired by patch-based segmentation techniques. In
particular, it identifies brain patches by assessing
candidate patches based on their sum-of-squared-
difference (SSD) distance to known brain patches.
However, as mentioned by the authors, tumors and
lesions may create problems for BEaST. 3dSkull-
Strip is part of the AFNI (Analysis of Functional
Neuro Images) package [9]. It is a modified ver-
sion of BET. In contrast to BET, it uses image
data inside and outside the brain during the sur-
face evolution to avoid segmenting the eyes and
the ventricles. Lastly, Multi-Atlas Skull-Stripping
(MASS) [10] is an another approach for brain seg-
mentation which has shown excellent performance
on normal (IBSR, LBPA40) and close to normal
(OASIS) image datasets. One of its main disadvan-
tages is its runtime.

Even though all these brain extraction methods
exist and are regularly used, a number of challenges
for automatic brain extraction remain:

• Many methods show varying performances on
different datasets due to differences in image
acquisition (e.g., slightly different sequences or
differing voxel sizes). Hence, a method which
can reliably extract the brain from images ac-
quired with a variety of different imaging pro-
tocols would be desirable.

• Most methods only work for images which
appear normal or show very minor patholo-
gies. Strong pathologies, however, may induce
strong brain deformations or strong localized
changes in image appearance, which can im-
pact brain extraction. For example, for meth-
ods based on registration, the accuracy of brain
extraction will depend on the accuracy of the
registration, which can be severely affected in
the presence of pathologies. Hence, a brain
extraction method which works reliably even
in the presence of pathologies (such as brain
tumors or traumatic brain injuries) would be
desirable.

Inspired by the low-rank + sparse (LRS) im-
age registration framework proposed by Liu et
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al. [11] and our prior work on image registration
in the presence of pathologies [12], we propose a
brain extraction approach which can tolerate image
pathologies (by explicitly modeling them) while re-
taining excellent brain extraction performance in
the absence of pathologies. Specifically, in our
registration approach for pathological images [12],
we decompose an image into a pathological and a
quasi-normal part. The quasi-normal part is de-
signed to be close to the appearance space of nor-
mal images (as captured by an appearance model
via PCA of a set of normal images in atlas space).
This quasi-normal image is then used for the regis-
tration to atlas space, thereby largely avoiding reg-
istration issues caused by the presence of patholo-
gies. The decomposition and registration steps are
repeated to convergence.

Our proposed brain extraction approach makes
use of a similar alternating decomposition and regis-
tration strategy. However, the decomposition splits
an image into three different parts: (i) a quasi-
normal part which is close to the PCA-space of a
set of normal brains (for example, the brains ex-
tracted in the OASIS dataset), (ii) a total varia-
tion (TV) part which captures pathologies inside
the brain, and (iii) a sparse part which captures
regions outside the brain (including the skull, for
example). The TV and the sparse parts are locally
weighted so that the TV part of the decomposition
only captures pathologies inside the brain and the
sparse part captures any non-brain regions outside
the brain. These weightings and the quasi-normal
appearance are effectively captured in atlas space
and the image will automatically be atlas-aligned.

1.1. Contributions

The contributions of our work are as follows:

• (Robust) brain extraction: Our method can re-
liably extract the brain from a wide variety
of images. We achieve state-of-the-art results
on images with normal appearance, slight, and
strong pathologies. Hence our method is a
generic brain extraction approach.

• Pathology identification: Our method captures
pathologies via a total variation term in the
decomposition model.

• Quasi-normal estimation: Our model allows
the reconstruction of a quasi-normal image,

which has the appearance of a correspond-
ing pathology-free or pathology-reduced im-
age. This quasi-normal image also allows for
accurate registrations to, e.g., a normal atlas.

• Extensive validation: We extensively validate
our approach on four different datasets, two of
which exhibit strong pathologies. We demon-
strate that our method achieves state-of-the-
art results on all these datasets using a single
fixed parameter setting.

• Open source: Our approach is available as
open-source software.

1.2. Organization

The remainder of the paper is organized as fol-
lows. Section 2 introduces the datasets that we
use and discusses our proposed model, including
the pre-processing, the decomposition and registra-
tion, and the post-processing procedures. Section 3
presents experimental results on 3D MRI datasets
demonstrating that our method consistently per-
forms better than BET, BSE, ROBEX, and the
deep learning approach for all four datasets. Sec-
tion 4 concludes the paper with a discussion and an
outlook on possible future work.

2. Materials and Methods

2.1. Datasets

We use the ICBM 152 non-linear atlas
(2009a) [13] as our normal control atlas. ICBM 152
is a 1x1x1 mm template with 197×233×189 voxels,
obtained from T1-weighted MRIs. Importantly, it
also includes the brain mask. As the ICBM 152
atlas image itself contains the skull, we can obtain
a brain-only atlas simply by applying the provided
brain mask.

We use five different datasets for our experi-
ments. Specifically, we use one (OASIS, see below)
of the datasets to build our PCA model and the re-
maining four to test our brain extraction approach.

OASIS. We use images from the Open Access Se-
ries of Imaging Studies (OASIS)4 [6] to build the
PCA model for our brain extraction approach. The
OASIS cross-sectional MRI dataset consists of 416

4The OASIS data is available online at http://www.

oasis-brains.org.
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sagittal T1-weighted MRI scans from subjects be-
tween 18 and 96 years of age. In this data cor-
pus, 100 of the subjects over 60 years old have been
diagnosed with very mild to mild Alzheimer’s dis-
ease (AD). The original scans were obtained with
in-plane resolution 1×1 mm (256×256), slice thick-
ness = 1.25 mm and slice number = 128. For each
subject, a gain-field corrected atlas-registered im-
age and its corresponding masked image in which
all non-brain voxels have been assigned an inten-
sity of zero are available. Each image is resam-
pled to 1× 1× 1 mm isotropic voxels and is of size
176× 208× 176.

We randomly pick 100 images and their brain
masks to build our PCA model of the brain.
Specifically, we register the brain-masked images
to the brain-masked ICBM atlas using a B-spline
registration. We use NiftyReg [14] to perform
the B-spline registration with normalized cross-
correlation (NCC) as similarity measure. To nor-
malize image intensities, we apply an affine trans-
form to the image intensities of the warped images
so that the 1st percentile is mapped to 0.01 and
99th percentile is mapped to 0.99 and then crop
the image intensities to be within [0, 1]. We then
perform PCA on the now registered and normalized
images and retain the top 50 PCA modes for our
statistical appearance model. This is similar to an
active appearance model [15].

We evaluate our approach on four datasets, which
all provide brain masks. Although, in our study, we
focus on T1-weighted images only, our model can
be applied to other modalities as long as the PCA
model is also built from data acquired by the same
modality. The datasets we use for validation are
described below.

IBSR. The Internet Brain Segmentation Reposi-
tory (IBSR)5 contains MR images from 20 healthy
subjects of age 29.1±4.8 years including their man-
ual brain segmentations, provided by the Center for
Morphometric Analysis at Massachusetts General
Hospital. All coronal 3D T1-weighted spoiled gradi-
ent echo MRI scans were acquired using two differ-
ent MR systems: ten scans (4 males and 6 females)
were performed on a 1.5T Siemens Magnetom MR
system (with in-plane resolution of 1 × 1 mm and
slice thickness of 3.1 mm); another ten scans (6
males and 4 females) were acquired from a 1.5T

5The IBSR data is freely available online at https://www.
nitrc.org/projects/ibsr.

General Electric Signa MR system (with in-plane
resolution of 1×1 mm and slice thickness of 3 mm).
Segmentations of the brain images into white mat-
ter, grey matter and cerebrospinal fluid (CSF) are
provided. While, in principle, the union of the seg-
mentations of white matter, grey matter and CSF
should represent the desired brain mask, this is not
exactly the case (see Fig. 1). To alleviate this issue
for each segmentation, we use morphological closing
to fill in remaining gaps and holes inside the brain
mask and, in particular, to disconnect the back-
ground inside the brain mask from the surrounding
image background. The structuring element we use
for closing is a ball with a radius of 1 voxel using an
18-connected neighborhood6. We then find the con-
nected component for the background and consider
its complement the brain mask. Fig. 1 shows the
pre-processing result after these refinement steps,
compared to the original IBSR segmentation (i.e.,
the union of whiter matter, grey matter, and the
CSF).

(a) (b) (c)

Figure 1: Example coronal slice of (a) an IBSR MR brain
image, (b) the corresponding original IBSR brain segmenta-
tion (i.e., union of white matter, grey matter and CSF) and
(c) the refined brain segmentation result.

LPBA40. The LONI Probabilistic Brain At-
las (LPBA40) dataset of the Laboratory of Neuro
Imaging (LONI) [5] consists of 40 normal human
brain volumes. LPBA40 contains images of 20
males and 20 females of age 29.20 ± 6.30 years.
Coronal T1-weighted images with slice thickness 1.5
mm were acquired using a 1.5T GE system. Im-
ages for 38 of the subjects have in-plane resolution
of 0.86 × 0.86 mm; the images for the remaining
two subjects have a resolution of 0.78 × 0.78 mm.
A manually segmented brain mask is available for
each image.

BRATS: We use twenty representative image vol-
umes of low and high grade glioma patients from

6The 18-voxel connectivity is also used for other morpho-
logical operations in this paper
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the Brain Tumor Segmentation (BRATS 2016)
dataset [16] that include cases with large tumors,
deformations, or resection cavities. We do not use
the BRATS images available as part of the BRATS
challenge as these have already been pre-processed
(i.e., brain-extracted and co-registered). Instead,
we obtain a subset of twenty of the originally ac-
quired images. The BRATS dataset is challeng-
ing as the images were acquired with different clin-
ical protocols and various different scanners from
multiple (n = 19) institutions. Furthermore, the
BRATS images have comparatively low resolution
and some of them contain as few as 25 axial slices
(with slice thickness as large as 7mm). The in-plane
resolutions vary from 0.47×0.47 mm to 0.94×0.94
mm with image grid sizes between 256×256 and
512×512 pixels. We manually segment the brain in
these images to obtain an accurate brain mask for
validation.

TBI. Finally, we use our own Traumatic Brain In-
jury (TBI) dataset which contains 8 TBI images
as well as manual brain segmentations. These im-
ages have been resampled to 1×1×1 mm isotropic
voxel size with image size between 192× 228× 170
and 256 × 256 × 176. Segmentations are available
for healthy brain, hemorrhage, edema and necro-
sis. To generate the brain masks, we always use the
union of healthy tissue and necrosis. We also in-
clude hemorrhage and edema if they are contained
within healthy brain tissue.

Fig. 2 shows example images from each dataset
to illustrate image variability. IBSR and LPBA40
contain images from normal subjects and include
large portions of the neck; BRATS has very low out-
of-plane resolution; and the TBI dataset contains
large pathologies and abnormal skulls.

2.2. Review of related models

As mentioned previously, brain extraction is chal-
lenging because it requires the identification of all
non-brain tissue which can be highly variable (cf.
Fig. 2). Our brain extraction approach is based on
image alignment to an atlas space where a brain
mask is available. However, this requires a reliable
registration approach which can tolerate variable
image appearance as well as pathologies (i.e., brain
tumors, traumatic brain injuries, or general head
injuries resulting in skull deformations and frac-
tures). In both cases, no one-to-one mapping be-
tween image and atlas space may be available and a

Figure 2: Illustration of image appearance variability on
a selection of images from each (evaluation) database. From
top to bottom: IBSR, LPBA40, BRATS and TBI.

direct application of standard image similarity mea-
sures for image registration may be inappropriate.

A variety of approaches have been proposed to
address the registration of pathological images. For
example, cost function masking [17] and geomet-
ric metamorphosis [18] exclude the pathological re-
gions when measuring image similarities. However,
these approaches require prior segmentations of the
pathologies, which can be non-trivial and/or labor
intensive. A conceptually different approach is to
learn the normal image appearance from population
data and to estimate a quasi-normal image from
a pathological image. Then, the quasi-normal im-
age can be used for registration [19]. The low-rank
+ sparse (LRS) image registration framework, pro-
posed by Liu et al. [11], follows this idea by itera-
tively registering the low-rank components from the
input images to the atlas, and then re-computes the
low-rank components. After convergence, the im-
age is well-aligned with the atlas.

Our proposed brain extraction model builds upon
our previous PCA-based approach for pathological
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image registration [12] which, in turn, builds upon
and removes many shortcomings of the low-rank +
sparse approach of Liu et al. [11]. We therefore
briefly review the low-rank + sparse technique in
Sec. 2.2.1 and the PCA approach for pathological
image registration in Sec. 2.2.2. We discuss our
proposed model for brain extraction in Sec. 2.3.

2.2.1. Low-Rank + Sparse (LRS)

The standard LRS decomposition requires mini-
mization of the energy

E(L, S) = ‖L‖∗+ λ‖S‖1, s.t. D = L+S , (1)

where D is a given data matrix, ‖ · ‖∗ is the nuclear
norm (i.e., a convex approximation for the matrix
rank), and λ > 0 weighs the contribution of the
sparse part, S, in relation to the low-rank part L.
In imaging applications, D contains all the (vector-
ized) images: each image is represented as a column
of D. The low-rank term captures common infor-
mation across columns. The sparse term, on the
other hand, captures uncommon/unusual informa-
tion. As Eq. (1) is convex, minimization results in
a global minimum.

In practice, applying the LRS model requires
forming the matrix D from all the images. D is
of size m × n, where m is the number of voxels,
and n is the number of images. For 3D images,
m � n (typically). Assuming all images are spa-
tially well-aligned, L captures the quasi-normal ap-
pearance of the images whereas S contains patholo-
gies which are not shared across the images. Of
course, in practice, the objective is image alignment
and hence the images in D cannot be assumed to
be aligned a-priori. Hence, Liu et al. [11] alter-
nate LRS decomposition steps with image regis-
tration steps. Here the registrations are between
all the low-rank images (which are assumed to be
approximately pathology-free) and an atlas image.
This approach is effective in practice, but can be
computationally costly, may require large amounts
of memory, and has the tendency to lose fine im-
age detail in the quasi-normal image reconstruc-
tions, L. In detail, the matrix D has a large num-
ber of rows for typical 3D images, hence it can be
costly to store. Furthermore, optimizing the LRS
decomposition involves a singular value decomposi-
tion (SVD) at each iteration with a complexity of
O(min{mn2,m2n}) [20] for an m×n matrix. While
large datasets are beneficial to capturing data vari-
ation, the quadratic complexity renders LRS com-
putationally challenging in these situations.

However, it is possible to overcome many of these
shortcomings while staying close to the initial mo-
tivation of the original LRS approach. The follow-
ing Section 2.2.2 discusses how this can be accom-
plished.

2.2.2. Joint PCA-TV model

To avoid the memory and computational issues
of the low-rank + sparse decomposition discussed
above, we previously proposed a joint PCA/Image-
Reconstruction model [12] for improved and more
efficient registration of images with pathologies. In
this model, we have a collection of normal images
and register all the normal images to the atlas once,
using a standard image similarity measure. These
normal images do not need to be re-registered dur-
ing the iterative approach. We mimic the low-rank
part of the LRS by a PCA decomposition of the
atlas-aligned normal images from which we obtain
the PCA basis and the mean image. Let us consider
the case when we are now given a single pathologi-
cal image I. Let Î denote the pathological image af-
ter subtracting the mean image M and B the PCA
basis matrix. L̂ and T are images of the same size
as I7. Specifically, we minimize

E(T, L̂,α) =
1

2
‖L̂−Bα‖22 + γ‖∇T‖2,1,

s.t. Î = L̂+ T
(2)

where ‖∇T‖2,1 =
∑

i ‖∇Ti‖2 and i denotes spa-
tial location. This model is similar to the Rudin-
Osher-Fatemi (ROF) image denoising model [21].
It results in a total variation (TV) term, T , which
captures the parts of Î that are (i) relatively large,
(ii) spatially contiguous, and (iii) cannot be ex-
plained by the PCA basis, e.g., pathological re-
gions. The quasi-low-rank part L̂ remains close to
the PCA space but retains fine image detail. The
quasi-normal image L can then be reconstructed as
L = M + L̂. We refer to this model as our joint
PCA-TV model.

As in the LRS approach, we can register the
quasi-normal image L to atlas space and alternate
decomposition and registration steps. However, in
contrast to the LRS model, the PCA-TV model
registers only one image (L) in each registration
step and consequently requires less time and mem-
ory to compute. Furthermore, the reconstructed

7Images are vectorized for computational purposes; but
the spatial gradient ∇ denotes the gradient in the spatial
domain.

6



quasi-normal image, L, retains fine image detail
as pathologies are captured via the total variation
term in the PCA-TV model.

2.3. Proposed brain extraction approach

The following sections describe how our proposed
brain extraction approach builds upon the prin-
ciples of the PCA-TV model (Section 2.3.1), and
discusses image pre-processing (Section 2.3.2), the
overall registration framework (Section 2.3.3), and
post-processing steps (Section 2.3.4).

2.3.1. Joint PCA-Sparse-TV model

The PCA-TV model captures the pathological in-
formation well, but it does not model non-brain re-
gions (such as the skull) appropriately. The skull
is, for example, usually a thin, shell-shape struc-
ture and other non-brain tissue may be irregularly
shaped with various intensities. The only common-
ality is that all these structures surround the brain.
Specifically, if a test image is aligned to the atlas
well, these non-brain tissues should all be located
outside the atlas’ brain mask. Hence, we reject
these non-brain regions via a spatially distributed
sparse term. We penalize sparsity heavily inside
the brain and relatively little on the outside of the
brain. This has the effect that it is very cheap to
assign voxels outside the brain to the sparse term;
hence, these are implicitly declared as brain out-
liers. Of course, if we would already have a reliable
brain mask we would not need to go through any
modeling. Instead, we assume that our initial affine
registration provides a good initial alignment of the
image, but that it will be inaccurate at the bound-
aries. We therefore add a constant penalty close
to the boundary of the atlas brain mask. Specif-
ically, we create two masks: a two-voxel-eroded
brain mask, which we are confident is within the
brain and a one-voxel-dilated brain mask, which we
are confident includes the entire brain. We then ob-
tain the following model:

E(S, T, L̂,α) =
1

2
‖L̂−Bα‖22 + γ‖∇T‖2,1

+ ‖Λ� S‖1,
s.t. Î = L̂+ S + T

(3)

where Λ = Λ(x) ≥ 0 is a spatially varying weight

Λ(x) =


∞, x ∈ Eroded Mask (inside)

λ, x ∈ Dilated Mask and

x /∈ Eroded Mask (at boundary)

0, x /∈ Dilated Mask (outside)

(4)
with x denoting the spatial location. Further, in
Eq. (3), � indicates an element-wise product and
γ ≥ 0 weighs the total variation term.

We refer to this model as our joint PCA-Sparse-
TV model. It decomposes the image into three
parts. Similar to the PCA-TV model, the quasi-
low-rank part L̂ remains close to the PCA space
and the TV term, T , captures pathological re-
gions. Here, the PCA basis is generated from nor-
mal images that have been already brain-extracted.
Therefore L̂ only contains the brain tissue. Differ-
ent from the previous model, we add a spatially
distributed sparse term, S, which captures tissue
outside the brain, e.g., the skull. In effect, since Λ
is very large inside the eroded mask, none of the
image inside the eroded mask will be assigned to
the sparse part. Conversely, all of the image outside
the dilated mask will be assigned to the sparse part.
We then integrate this PCA-Sparse-TV model into
the low-rank registration framework. This includes
three parts: pre-processing, iterative registration
and decomposition, and post-processing as we will
discuss in the following.

2.3.2. Pre-processing

Fig. 3 shows a flowchart of our pre-processing ap-
proach as discussed in the following paragraphs.

Intensity normalization. Given a test image
from which we want to extract the brain, we first
affinely transform the image intensities to standard-
ize the intensity range to [0, 1000]. The goal of this
step is to remove negative and small intensity values
(< 1), which is required as an input to subsequent
bias field correction which log tranforms image in-
tensities for processing. Specifically, we first com-
pute the 1st and the 99th percentile of the voxel
intensities. We then affinely transform the image
intensities of the entire image such that the inten-
sity of the 1st percentile is mapped to 100 and of
the 99th percentile to 900. As this may result in
intensities smaller than zero or larger than 1000 for
the extreme ends of the intensity distribution, we
crop the intensities to be within [0, 1000].
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Input
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Non Brain-Extracted
Atlas

Brain-Extracted
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PCA
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Output
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Bias
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Histogram
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Figure 3: Preprocessing flow chart: Input image is the original image. Eventually, the output image will be fed into the
registration/decomposition framework.

Atlas registration. Next, we first align the
intensity-normalized input image to the non brain-
extracted atlas. Then, we affinely register the re-
sult from the first step to the brain-extracted atlas,
but this time using a one-voxel-dilated brain mask
in atlas space; this step has the effect of ignoring
parts of the image which are not close to the brain
in the registration and it gives us a better align-
ment in the brain region. For both steps we use
reg aladin of NiftyReg [22] disabling symmetric
registration (-noSym). The first registration initial-
izes the transformation using the center of gravity
(CoG) of the image.

Bias field correction. Next, we use N4ITK [23], a
variant of the popular non-parametric non-uniform
intensity normalization (N3) algorithm [24], to per-
form bias field correction. As the image has
been affinely aligned to the atlas in the previous
step, we use our two-voxel-eroded brain mask as
the region for bias field estimation. Specifically,
we use the N4BiasFieldCorrection function in
SimpleITK [25], with its default settings.

Histogram matching: The final step of the pre-
processing is histogram matching. We match the
histograms of the bias corrected image with the his-
togram of the mean image of the population data
only within the two-voxel-eroded brain mask. This
histogram matched image is then the starting point
for our brain extraction algorithm.

2.3.3. Registration framework

Similar to the PCA-TV model, we alternate be-
tween image decomposition steps using the PCA-
Sparse-TV model and registration to the brain-

extracted atlas. We use a total of six iterations
in our framework. In the first iteration (k = 1),
the images are in the original space. We decom-
pose the input image I1 = I, into the quasi-normal
(L1 = L̂1+M), sparse (S1), and total variation (T1)
images by minimizing the energy from Eq. (3). We
then obtain a pathology-free or pathology-reduced
image, R1, by adding the sparse and the quasi-
normal images of the decomposition: R1 = L1+S1.

For the next two iterations (k = {2, 3}), we first
find the affine transform Φk by affinely registering
the pathology-reduced images from the previous it-
eration, Rk−1 (i.e., Rk−1 = Lk−1 + Sk−1), to the
brain-extracted atlas. We use the one-voxel-dilated
brain mask for cost-function masking which allows
the registration to focus only on the brain tissue.
We then apply the transform Φk to transform the
previous input images to atlas space and obtain new
input images, Ik, (i.e., Ik = Ik−1 ◦ Φk). We min-
imize Eq. (3) again to obtain new decomposition
results (Lk, Sk, Tk). These decomposition/affine-
registration steps are repeated two times, which is
empirically determined to be sufficient for conver-
gence. These affine registration steps result in a
substantially improved alignment in comparison to
the initial affine registration by itself.

The last three iterations (k = {4, 5, 6}) repeat the
same process, but are different in the following as-
pects: (i) we now use a b-spline registration instead
of the affine registration; (ii) we use the pathology-
reduced image and cost function masking only for
the first B-spline registration step, as we did in the
previous affine steps. For the remaining two steps,
we use the quasi-normal images Lk:k={5,6} as the
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moving images and we do not use the mask dur-
ing the registrations. The use of the mask is no
longer necessary as registrations are now performed
using the quasi-normal image; (iii) we use the non-
greedy registration strategy of the original low-rank
+ sparse framework [26], in which we deform the
quasi-normal image back to the image space of the
third iteration (after the affine steps) in order to
avoid accumulating deformation errors.

These steps further refine the alignment, in par-
ticular, close to the boundary of the brain mask.
After the last iteration, the image is well-aligned
to the atlas and we have all the transforms from
the original image space to atlas space. As a side
effect, the algorithm also results in a quasi-normal
reconstruction of the image, L6, an estimate of the
pathology, T6, and an image of the non-brain tissue
S6, all in atlas space.

The overall algorithm steps are listed below:

• 0) Pre-processing steps: prepare the input image
I1, as described in Section 2.3.2.

• 1) First step: decompose input image I1 into
{L1, S1, T1}, and obtain the pathology-free image
R1.

• 2) Affine steps (k = {2, 3}): (i) find the affine
transform Φk, that maps the Rk−1 to the brain-
extracted atlas with cost function masking; (ii) ap-
ply the transform Φk to update the input images:
Ik = Ik−1 ◦Φk; (iii) decompose the input image Ik
into {Lk, Sk, Tk} and obtain pathology-free image
Rk.

• 3) B-spline step (k = 4): (i) find the b-spline
transform Φ4, that maps R3 to the brain-extracted
atlas with cost function masking; (ii) apply the
transform Φ4 to update the input images: I4 =
I3 ◦ Φ4; (iii) decompose the input image I4 into
{L4, S4, T4}.

• 4) B-spline steps (k = {5, 6}): (i) find the b-spline
transform Φk, that maps Lk−1 ◦ (Φk−1)−1 to the
brain-extracted atlas; (ii) apply the transform Φk

to update the input image: Ik = Ik−1 ◦ Φk; (iii)
decompose the input image Ik into {Lk, Sk, Tk}.

• 5) Post-processing steps: generate the resulting
brain-extracted image and the brain mask in the
original image space (see below).

2.3.4. Post-processing

Post-processing consists of applying to the at-
las mask the inverse transforms of the affine regis-
trations in the pre-processing step and the inverse
transforms of the registrations generated in the

framework described in section 2.3.3. The warped-
back atlas mask is the brain mask for the original
image. To extract the brain in the original image
space, we simply apply the brain mask on the orig-
inal input image. All subsequent validations are
performed in the original image space.

3. Experimental results

3.1. Experimental setup

We evaluate our method on all four evaluation
datasets. For comparison, we also assess the perfor-
mance of BET, BSE, ROBEX and CNN8 on these
datasets. We use BET v2.1 as part of FSL 5.0, BSE
v.17a from BrainSuite and ROBEX v1.2. We solve
our PCA model via a primal-dual hybrid gradient
method [27]. In addition, we implement the de-
composition on the GPU and run it on an NVIDIA
Titan X GPU [28] [29].

3.2. Evaluation Measures

We evaluate the brain extraction approaches us-
ing the measures listed below.

Dice coefficient. Given two sets X and Y (contain-
ing the spatial voxel positions of a segmentation),
the Dice coefficient D(X,Y ) is defined as

D(X,Y ) =
2|X ∪ Y |
|X|+ |Y |

, (5)

where X ∪ Y denotes set union between X and Y
and |X| denotes the cardinality of set X.

Average, maximum and 95% surface distance. We
also measure the symmetric surface distances be-
tween the automatic brain segmentation and the
gold-standard brain segmentation. This is defined
as follows: the distance of a point x to a set of
points (or set of points of a triangulated surface
SA) is defined as

d(x, SA) = min
y∈SA

d(x, y), (6)

where d(x, y) is the Euclidean distance between the
point x and y. The average symmetric surface dis-

8https://github.com/GUR9000/Deep_MRI_brain_

extraction
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tances between two surfaces SA and SB is then de-
fined as

ASD(SA, SB) =

1

|SA|+ |SB |
× (

∑
x∈SA

d(x, SB) +
∑
y∈SB

d(y, SA)),

(7)

where |SA| denotes the cardinality of SA [30] (i.e.,
number of elements if represented as a set or sur-
face area if represented in the continuum). To as-
sess behavior at the extremes, we also report the
maximum symmetric surface distance as well as the
95th percentile symmetric surface distance, which
is less prone to outliers. These are defined in anal-
ogy, i.e., by computing all distances from surface
SA to SB and vice versa followed by the compu-
tation of the maximum and the 95th percentile of
these distances.

Sensitivity and specificity. We also measure sensi-
tivity (i.e., true positive (TP) rate) and specificity
(i.e., true negative (TN) rate). Here TP denotes the
brain voxels which are correctly labeled as brain;
TN denotes the non-brain voxels correctly labeled
as such. Furthermore, the false negatives (FN) are
the brain voxels incorrectly labeled as non-brain
and the false positives (FP) are the non-brain vox-
els which are incorrectly labeled as brain. Let V be
the set of all voxels of an image, and X and Y the
automatic brain segmentation and gold-standard
brain segmentation, respectively. The sensitivity
and specificity are then defined as follows [31] :

sensitivity =
TP

TP + FN
=

|X ∩ Y |
|Y |

(8)

specificity =
TN

TN + FP
=
|V | − |X ∪ Y |
|V | − |Y |

(9)

3.3. Datasets of normal images: IBSR/LPBA40

IBSR results: Figure 4 shows the box-plots sum-
marizing the results for the IBSR dataset. Overall,
ROBEX, BSE, BET and our model perform well
on this dataset, with a median dice coefficient above
0.95. CNN does not perform satisfactorily, with low
Dice scores, low sensitivity, large distance errors,
and overall high variance. Our PCA model outper-
forms all other methods with respect to Dice scores
(median close to 0.97) and distance measures. BSE
also works well on most cases, but it shows larger
variability and exhibits two outliers which represent

failure cases. ROBEX and BET show the highest
sensitivity, but reduced specificity. Conversely, our
PCA model, BSE, and CNN have high specificity
but reduced sensitivity (the CNN model dramati-
cally so). Table 3 (top) shows the means and stan-
dard deviations for the test results on this dataset.
Our PCA model achieves the highest mean Dice
overlap score (at 0.97) with the smallest standard
deviation. ROBEX and BET show slightly reduced
Dice overlap measures (mean around 0.95). BSE
and CNN show the lowest performance. Our PCA
model also performs best for the surface distance
measures; it has the lowest mean average distance,
95% distance and the lowest maximum surface dis-
tance. Overall our PCA model performs best.

In addition, we perform a one-tailed paired t-
test to compare results between methods. We test
the null hypothesis that the results coming from
our PCA model have a mean equal to the mean of
the other methods, against the alternative that the
mean of the PCA model is better9 than the mean
of the others. Table 1 (left) shows the correspond-
ing results. We use the Benjamini-Hochberg proce-
dure [32] for all the tests in this paper, in order to
reduce the false discovery rate for multiple compar-
isons. We select an overall false discovery rate of
0.05 which results in an effective significance level
of α ≈ 0.0396.

We outperform ROBEX, BET and CNN on Dice
overlap scores and all distance measures with statis-
tical significance. The comparison results with BSE
are not significant due to the outliers of BSE. Our
approach performs better than CNN on sensitivity
and better than ROBEX and BSE on specificity.

LPBA40 results: Figure 5 shows the box-plots
summarizing the validation results for the LPBA40
dataset. All five methods perform well. ROBEX,
BET and BSE all have a median Dice score between
0.96 and 0.97. Our PCA model obtains the highest
median Dice score (above 0.97). All methods ex-
cept for the CNN approach have a median average
surface distance smaller than 1 mm. Table 3 (sec-
ond top) shows the means and standard deviations
for all validation measures for this dataset. Again,
all methods have satisfactory mean Dice scores and
surface distances with low variances. Compared
with other methods, the PCA model achieves the
best results.

9Better means higher for the Dice overlap scores, smaller
for the surface distances.
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Figure 4: Box plot results for the IBSR normal dataset. Due to the poor results of CNN and the outliers of BSE on this
dataset, we limit the range of the plots for better visibility. The dashed line indicates this cut-off. ROBEX, BET, and BSE
show similar performance, but BSE exhibits two outliers. CNN performs poorly on this dataset. Our PCA model performs
best on the Dice scores and surface distances. Although ROBEX and BET show slightly better sensitivity, our method shows
better specificity.

Figure 5: Box plot results for the LPBA40 normal dataset. All five methods work well on this dataset. Our PCA model has
the best Dice and surface distances. ROBEX, BET and BSE show similar performance but BET exhibits larger variance and
BSE exhibits two failed outliers. The CNN model shows overall slightly worse performance than the other methods.

Table 1 (right) shows the one-sided paired t-test
results. Again we use the Benjamini-Hochberg pro-
cedure, resulting in a significance level α ≈ 0.0395.

All methods perform well on this dataset, but our
PCA approach still shows statistically significant
improvement. We outperform other methods on
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Dataset: IBSR
ROBEX BET BSE CNN

Dice 2.47e-8 7.19e-10 7.13e-2 6.05e-6
Avg Dist 7.53e-8 2.46e-9 8.46e-2 8.83e-7
95% Dist 1.15e-5 3.41e-5 2.88e-2 1.19e-8
Max Dist 2.89-8 3.66e-10 1.05e-2 2.98e-9
Sensitivity 0.979 0.655 2.89e-2 1.09e-7
Specificity 1.10e-6 5.85e-7 0.219 1.000

Dataset: LPBA40
ROBEX BET BSE CNN

Dice 4.27-12 6.22e-5 4.11e-3 3.79e-15
Avg Dist 5.67e-12 1.09e-6 8.70e-3 3.52e-12
95% Dist 2.18e-15 5.67e-10 1.64e-2 3.49e-6
Max Dist 3.57e-16 2.73-10 6.37e-4 6.04e-8
Sensitivity 6.01e-3 1.00 1.38e-4 3.18e-17
Specificity 7.75e-7 9.38e-14 1.00 1.00

Table 1: p-values for IBSR and LPBA40 datasets. We perform a one-tailed paired t-test, where the null-hypothesis (H0) is
that the results coming from our PCA model have a mean equal to the mean of the compared method, against the alternative
(H1) that the mean of the PCA model is better than the mean of the compared method. Here, better means a higher Dice
score or lower surface distances. In addition, we perform the Benjamini-Hochberg procedure to reduce the false discovery rate
(FDR). We highlight in green the results where our PCA model performs statistically significantly better. The results show
that our PCA model outperforms ROBEX, BET, and CNN, but does not show a statistical differences over BSE on IBSR.
This may be due to the outliers of BSE.

Dice and surface distances with statistical signifi-
cance. We perform better than all other methods
except BET on sensitivity and except ROBEX and
BET on specificity.

Figure 9 (top) visualizes the average brain mask
errors for ISBR and LPBA40. All images are first
affinely registered to the atlas. Then we transform
the gold-standard expert segmentations as well as
the automatically obtained brain masks of the dif-
ferent methods to atlas space. We compare the
segmentations by counting the average over- and
under-segmentation errors over all cases at each
voxel. This results in a visualization for areas of
likely mis-segmentation. Our PCA model, ROBEX
and BET perform well on these two datasets.
ROBEX and BET consistently show localized er-
rors, e.g., at the boundary of the parietal lobe, the
occipital lobe and the cerebellum. While BSE and
CNN perform well on the LPBA40 dataset, they
perform poorly on the IBSR dataset. This is in
particular the case for the CNN approach.

3.4. Datasets with strong pathologies: BRATS/TBI

BRATS results: Figure 6 shows the box-plots
for the validation measures for the BRATS dataset.
BSE and CNN, using their default settings, do not
work well on the BRATS dataset. This may be
because of the data quality of the BRATS data.
Many of the BRATS images have relatively low
out-of-plane resolutions. BSE results may be im-
proved by a better parameter setting. However, as
our goal is to evaluate all methods with the same
parameter setting across all datasets, we do not
explore dataset specific parameter tuning. BET
shows good performance, but suffers from a few out-
liers. ROBEX works generally well, with a median

Dice score around 0.95 and an average distance er-
ror of 1.5 mm. However, as for IBSR and LPBA40,
our PCA model performs generally the best with a
median Dice score 0.96 and a 1 mm average distance
error. The PCA model results also show lower vari-
ance, as shown in table 3 (second bottom), under-
lining the very consistent behavior of our approach.
Table 2 (left) shows (via a one-sided paired t-test
with a correction for multiple comparisons using
a false discovery rate of 0.05) that our model has
statistically significantly better performance than
ROBEX on all measures. The improvements over
BET are not statistically significant. However, our
approach is statistically significantly better on all
measures (except specificity) than BSE and CNN.

TBI results: Figure 7 shows the box-plots for
the results on our TBI dataset. Our PCA model
still outperforms all other methods. Our method
achieves the largest Dice scores and the lowest sur-
face errors among all methods (best mean and low-
est variance in table 3 (bottom)). Table 2 (right)
shows the one-sided paired t-test results with mul-
tiple comparisons correction (with a false discovery
rate of 0.05). Our model performs significantly bet-
ter than the other methods on almost all measures.

Finally, Figure 9 (bottom) shows the average seg-
mentation errors on the BRATS and TBI datasets:
our PCA method shows less errors than other meth-
ods in these two abnormal datasets. ROBEX and
BET exhibit large errors at the boundary of the
brain. CNN and BSE particularly show large er-
rors for the BRATS dataset presumably again due
to the coarse resolution of the BRATS data.

In addition to extracting the brain from patho-
logical datasets, our method also allows for the es-
timation of a corresponding quasi-normal image in
atlas space, although this is not the main goal of
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Figure 6: Box plot results for the BRATS tumor dataset. BSE and CNN fail on this dataset. BET shows better performance,
but also exhibits outliers. ROBEX and our PCA model work well on this dataset. Overall our model works best.

Figure 7: Box plot results for the TBI dataset. Our PCA model shows the best evaluation results. BET and ROBEX also
perform reasonably well. BSE and CNN do not perform well on this dataset.

this paper. Figure 8 shows an example of the re-
constructed quasi-normal image (L) for an image of
the BRATS dataset, as well as an estimation of the
pathology (pathology image T and non-brain image
S). Compared to the original image, the pathology
shown in the quasi-normal image has been greatly
reduced. Hence this image can be used for the reg-

istration with a normal image or a normal atlas.
This has been shown to improve registration accu-
racy for the registration of pathological images [12].
Furthermore, an estimate of the pathology (here a
tumor) is also obtained which may be useful for fur-
ther analysis. Note that in this example image the
total variation term captures more than just the
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(a) (b) (c) (d)

Figure 8: Example BRATS image with its decomposition
result in atlas space. (a) Input image after pre-processing;
(b) quasi-normal image L + M ; (c) non-brain image S; (d)
pathology image T .

tumor. This may be due to inconsistencies in the
image appearance between the normal images (ob-
tained from OASIS data) and the test dataset. As
our goal is atlas alignment rather than quasi-normal
image reconstruction or pathology segmentation,
such a decomposition is acceptable, although we
could improve this by tuning the parameters or ap-
plying regularization steps as in [12].

4. Discussion

We presented a PCA-based model specifically de-
signed for brain extraction from pathological im-
ages. The model decomposes an image into three
parts. Non-brain tissue outside of the brain is cap-
tured by a sparse term, normal brain tissue is re-
constructed as a quasi-normal image close to a nor-
mal PCA space, and brain pathologies are captured
by a total-variation term. The quasi-normal image
allows for registration to an atlas space, which in
turn allows registering the original image to atlas
space and hence to perform brain extraction. Al-
though our approach is designed for reliable brain
extraction from strongly pathological images, it
also performs well for brain extraction from nor-
mal images, or from images with subtle patholo-
gies. In fact, we validated our brain extraction
method using four different datasets (two of them
with strong pathologies: brain tumors and trau-
matic brain injuries). On all four datasets our ap-
proach either performs best or is among the best
methods using a fixed set of parameters. Hence,
our approach can achieve good brain extraction re-
sults on a variety of different datasets and, un-
like some of the competing methods, can toler-
ate pathologies as well as differing image appear-
ances much better. Future work could focus on
the reconstruction of the quasi-normal image us-
ing regularization steps or using the quasi-normal

image to compare images longitudinally, for exam-
ple the chronic and the acute phases of TBI. Our
software is freely available as open source code at
https://github.com/uncbiag/pstrip.
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Dataset: IBSR

PCA ROBEX BET BSE CNN

Dice(%) 96.99±0.53 94.98±1.17 95.16±0.96 89.54±21.76 82.91±16.63

Avg Dist(mm) 0.79±0.27 1.51±0.56 1.49±0.47 4.16±10.53 5.43±4.73

95% Dist(mm) 2.84±0.43 4.50±1.58 4.22±1.39 12.27±20.83 22.25±9.41

Max Dist(mm) 11.97±8.14 17.30±8.40 17.91±7.85 24.93±23.32 39.86±10.73

Sensitivity(%) 98.99±0.46 99.33±0.54 99.09±0.93 88.68±22.86 74.76±19.25

Specificity(%) 99.44±0.21 ±0.51 98.98±0.46 99.15±1.67 99.78±0.22

Dataset: LPBA40

PCA ROBEX BET BSE CNN

Dice(%) 97.32±0.42 96.74±0.24 96.70±0.78 96.29±2.26 95.70±0.74

Avg Dist(mm) 0.79±0.12 0.97±0.07 1.06±0.27 1.11±0.81 1.32±0.33

95% Dist(mm) 2.27±0.32 2.96±0.26 3.92±1.24 3.46±3.38 3.56±1.56

Max Dist(mm) 10.83±3.76 13.81±3.47 15.14±3.75 15.54±7.74 18.22±6.14

Sensitivity(%) 96.81±1.23 96.33±0.85 98.66±0.54 94.02±4.10 92.62±1.46

Specificity(%) 99.61±0.16 99.49±0.16 99.04±0.34 99.79±0.09 99.83±0.07

Dataset: BRATS

PCA ROBEX BET BSE CNN

Dice(%) 96.16±0.92 94.83±1.49 90.95±13.41 84.91±8.89 21.89±29.54

Avg Dist(mm) 1.00±0.31 1.54±0.70 7.58±25.30 4.37±3.61 44.87±29.05

95% Dist(mm) 4.35±1.27 6.03±2.50 6.18±3.53 13.92±13.00 73.85±38.77

Max Dist(mm) 15.26±9.32 16.42±8.80 22.78±22.61 32.02±22.38 86.60±36.92

Sensitivity(%) 96.17±1.84 94.95±2.88 94.77±3.82 77.80±13.43 16.17±24.73

Specificity(%) 99.29±0.25 98.98±0.65 93.69±22.08 99.29±2.38 99.97±0.05

Dataset: TBI

PCA ROBEX BET BSE CNN

Dice(%) 96.28±0.85 93.60±1.00 95.14±1.12 91.00±4.31 90.40±5.07

Avg Dist(mm) 1.22±0.30 2.20±0.40 1.57±0.40 3.15±1.66 3.46±1.75

95% Dist(mm) 3.41±0.85 5.99±0.97 5.57±1.91 13.07±7.11 16.04±8.72

Max Dist(mm) 15.54±5.03 18.89±5.12 18.54±4.59 31.96±12.71 37.06±10.09

Sensitivity(%) 97.76±0.92 98.64±0.93 93.65±1.87 85.65±8.17 83.77±8.58

Specificity(%) 99.07±0.26 97.75±0.93 99.44±0.11 99.54±0.86 99.81±0.07

Table 3: Means and standard deviations for validation measures for all the methods and all the datasets. We highlight the
best results in red based on the mean values. Among all datasets, our PCA model has the best mean and lowest variance
on Dice overlap scores and surface distances, except for LPBA40 where ROBEX shows lower variance for the average surface
distances.
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Figure 9: Example of 3D volumes of average errors for the normal IBSR and LPBA40 datasets as well as for the pathological
BRATS and TBI datasets. Images and their brain masks are first affinely aligned to the atlas. At each location we then
calculate the proportion of segmentation errors among all the segmented cases of a dataset (both over- and under-segmentation
errors). Lower values are better (a 0 indicates perfect results over all images) and higher values indicate poorer performance (a
value of 1 indicates failure on all cases). Clearly, BSE and CNN struggle with the BRATS dataset whereas our PCA method
shows good performance across all datasets.
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Appendix A. NiftyReg Settings

This section introduces the settings for NiftyReg
used in this paper. We mainly use the affine reg-
istration reg aladin and the B-spline registration
reg f3d.

Affine Registration:. For affine registration, we use
reg aladin in NiftyReg. The options for affine
registration are -ref, -flo, -aff, -res, which
stand for reference image, floating image, affine
transform output, warped result image, respec-
tively. If the symmetric version is disabled, we add
”-noSym”. If center of gravity is used for the initial
transformation, we add ”-cog”.

B-spline Registration:. For b-spline registration, we
use reg f3d in NiftyReg. In addition to the op-
tions as shown in affine (except for reg f3d we use
-cpp for output transform), we also use options -sx
10, --lncc 40, -pad 0, which include local nor-
malized cross correlation with standard deviation
of the Gaussian kernel of 40, grid spacing of 10 mm
along all axes, and padding 0.

Appendix B. Methods settings

This section introduces the settings that are used
for all methods.

PCA. We use λ = 0.1 for the sparse penalty and
γ = 0.5 for the total variation penalty.

Robex/CNN. ROBEX and CNN do not require pa-
rameter tuning. Therefore we use the default set-
tings, and for ROBEX we add a seed value of 1 for
all datasets.

BET. We use the suggested parameter settings
in the literature [3][4] for the IBSR and LPBA40
datasets. For the BRATS and TBI datasets, we
choose the option "-B" for BET, which corrects the
bias field and “cleans-up” the neck.

BSE. We use the suggested parameter settings in
the literature [3][4] for the IBSR and LPBA40
datasets. For the BRATS and TBI datasets, we
use the default settings.
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