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Abstract. Correlative microscopy is a methodology combining the func-
tionality of light microscopy with the high resolution of electron mi-
croscopy and other microscopy technologies for the same biological spec-
imen. In this paper, we propose an image registration method for correl-
ative microscopy, which is challenging due to the distinct appearance of
biological structures when imaged with di↵erent modalities. Our method
is based on image analogies and allows to transform images of a given
modality into the appearance-space of another modality. Hence, the reg-
istration between two di↵erent types of microscopy images can be trans-
formed to a mono-modality image registration. We use a sparse rep-
resentation model to obtain image analogies. The method makes use
of representative corresponding image training patches of two di↵erent
imaging modalities to learn a dictionary capturing appearance relations.
We test our approach on backscattered electron (BSE) Scanning Elec-
tron Microscopy (SEM)/confocal and Transmission Electron Microscopy
(TEM)/confocal images and show improvements over direct registration
using a mutual-information similarity measure to account for di↵erences
in image appearance.

1 Introduction

Correlative microscopy integrates di↵erent microscopy technologies including
conventional light-, confocal- and electron transmission microscopy [1] for the
improved examination of biological specimens. E.g., fluorescent markers can be
used to highlight regions of interest combined with an electron-microscopy im-
age to provide high-resolution structural information of the regions. To allow
such joint analysis requires the registration of multi-modal microscopy images.
This is a challenging problem due to (large) appearance di↵erences between
the image modalities. Fig. 1 shows an example of correlative microscopy for a
confocal/TEM image pair.

A solution for registration for correlative microscopy is to perform landmark-
based alignment, which can be greatly simplified by adding fiducial markers [2].
Fiducial markers cannot easily be added to some specimen, hence an alternative
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image-based method is needed. This can be accomplished in some cases by ap-
propriate image filtering. This filtering is designed to only preserve information
which is indicative of the desired transformation, to suppress spurious image
information, or to use knowledge about the image formation process to convert
an image from one modality to another. E.g., multichannel microscopy images of
cells can be registered by registering their cell segmentations [3]. However, such
image-based approaches are highly application-specific and di�cult to devise for
the non-expert.

(a) Confocal image (b) Boxed region (c) TEM Image

Fig. 1: Example of Correlative Microscopy. The goal is to align (b) to (c).

In this paper we therefore propose a method inspired by early work on texture
synthesis in computer graphics using image analogies [4]. Here, the objective is
to transform the appearance of one image to the appearance of another image
(for example transforming an expressionistic into an impressionistic painting).
The transformation rule is learned based on example image pairs. For image
registration this amounts to providing a set of (manually) aligned images of the
two modalities to be registered from which an appearance transformation rule
can be learned. A multi-modal registration problem can then be converted into
a mono-modal one. The learned transformation rule is still highly application-
specific, however it only requires manual alignment of sets of training images
which can easily be accomplished by a non-expert in image registration.

Arguably, transforming image appearance is not necessary if using an image
similarity measure which is invariant to the observed appearance di↵erences. In
medical imaging, mutual information (MI) [5] is the similarity measure of choice
for multi-modal image registration. We show for two correlative microscopy ex-
ample problems that MI registration is indeed beneficial, but that registration
results can be improved by combining MI with an image analogies approach.
To obtain a method with better generalizability than standard image analo-
gies [4] we devise an image-analogies method using ideas from sparse coding [6],
where corresponding image-patches are represented by a learned basis (a dictio-
nary). Dictionary elements capture correspondences between image patches from
di↵erent modalities and therefore allow to transform one modality to another
modality.

This paper is organized as follows: Sec. 2 describes the image analogies
method with sparse coding and our numerical solutions approach. Image reg-
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istration results are shown and discussed in Sec. 3. The paper concludes with a
summary of results and an outlook on future work in Sec. 4.

2 Image Analogies

The objective for image analogies [4] is to create an image B

0 from an image
B with a similar relation in appearance as a training image set (A,A

0). Fig. 2
shows an image analogies example. The standard image analogies algorithm [4]
achieves the mapping between B and B

0 by looking up best-matching patches for
each image location between A and B which then imply the patch appearance
for B0 from the corresponding patch A

0 (A and A

0 are assumed to be aligned).
These best patches are smoothly combined to generate the overall output image
B

0. To avoid costly lookups and to obtain a more generalizable model with
noise-reducing properties we propose a sparse coding image analogies approach.

A: training TEM A

0: training confocal B: input TEM B

0: output confocal

Fig. 2: Result of Image Analogy: Based on a training set (A,A

0) an input image
B can be transformed to B

0 which mimics A0 in appearance.

2.1 Sparse Representation Model

Sparse representation is a technique to reconstruct a signal as a linear combi-
nation of a few basis signals from a typically over-complete dictionary. A dic-
tionary is a collection of basis signals. The number of dictionary elements in an
over-complete dictionary exceeds the dimension of the signal space (here the di-
mension of an image patch). Suppose a dictionary D is pre-defined. To sparsely
represent a signal x the following optimization problem is solved [7]:

↵̂ = argmin
↵

k ↵ k
0

, s.t. k x�D↵ k
2

 ✏, (1)

where ↵ is a sparse vector that explains x as a linear combination of columns in
dictionary D with error ✏ and k · k

0

indicates the number of non-zero elements
in the vector ↵. Solving (1) is an NP-hard problem. One possible solution of this
problem is based on a relaxation that replaces k · k

0

by k · k
1

, where k · k
1

is
the L

1 norm of a vector, resulting in the optimization problem [7],

↵̂ = argmin
↵

k ↵ k
1

, s.t. k x�D↵ k
2

 ✏. (2)
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The equivalent Lagrangian form of (2) is

↵̂ = argmin
↵

� k ↵ k
1

+ k x�D↵ k2
2

, (3)

which is a convex optimization problem that can be solved e�ciently [6, 8]. We
adapt this formulation for our sparse coding image analogy method and learn
the dictionary D directly from aligned sets of training images.

2.2 Image Analogies with Sparse Representation Model

For image registration of correlative microscopy images, given two training im-
ages A and A

0 from di↵erent modalities, we can transform image B to the other
modality by synthesizing B

0. Consider the sparse, dictionary-based image de-
noising/reconstruction, u, given by minimizing

E(u, {↵
i

}) = �

Z
1

2
(Lu�f)2dx+

1

N

✓
NX

i=1

1

2
k R

i
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i

k2
V

+� k ↵

i

k
1

◆
, (4)

where f is the given (potentially noisy) image, D is the dictionary, {↵
i

} are the
patch coe�cients, R

i

selects the i-th patch from the image reconstruction u, �,
� > 0 are balancing constants, L is a linear operator (e.g., describing a convolu-
tion), and the norm is defined as k x k2

v

= x

T

V x, where V > 0 is positive definite.
Unlike most work in sparse coding, we are not computing alphas independently
per patch first, and then average the result [7]. Instead we jointly optimize for
the coe�cients and the reconstructed/denoised image. Formulation (4) can be
extended to image analogies by minimizing

E(u(1)

, u

(2)

,{↵
i
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(1))2 +
1

2
(L(2)

u

(2) � f
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(5)

where we have a set of two images {f (1)

, f

(2)}, their reconstructions {u(1)

, u

(2)}
and corresponding dictionaries {D(1)

, D

(2)}. Note that there is only one set of
coe�cients ↵

i

per patch, which indirectly relates the two reconstructions. This
is similar to estimating a super-resolution image from a low-resolution one [7].

Patch-based (non-sparse) denoising has also been proposed for the denoising
of fluorescence microscopy images [9]. A conceptually similar approach using
sparse coding and image patch transfer has been proposed to relate di↵erent
magnetic resonance images in [10]. However, this approach does not address
dictionary learning or spatial consistency considered in the sparse coding stage.
Our approach addresses both and learns the dictionaries D(1) and D

(2) jointly.

2.3 Sparse Coding

Assuming that the two dictionaries {D(1)

, D

(2)} are given, the objective is to
minimize (5). However, unlike for image denoising, when computing image analo-
gies only one of the images, f (1), is given and we are seeking a reconstruction of
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both, a denoised version of u(1) and f

(1) as well as the corresponding analogous
denoised image u

(2) (without the knowledge of f (2)). Hence, for sparse coding
(5) simplifies to

E(u(1)

, u

(2)
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(6)

which is a denoising of f (1) inducing a denoised reconstruction of the sought for
image u

(2). The problem is convex (for given D

(i)) which allows to compute a
globally optimal solution. Sec. 2.6 describes our numerical solution approach.

2.4 Dictionary Learning

Given sets of training patches {p(1)
i

, p

(2)

i

} We want to estimate the dictionaries
themselves as well as the coe�cients {↵

i

} for the sparse coding. The problem
is non-convex (bilinear in D and ↵

i

). The standard solution approach [7] is
alternating minimization, i.e., solving for ↵

i

keeping {D(1)

, D

(2)} fixed and vice
versa. Two cases need to be distinguished: (i) L locally invertible and (ii) L not
locally-invertible (e.g., due to convolution).

We only consider local dictionary learning here with L and V set to identi-
ties1. We assume that the training patches {p(1), p(2)} = {f (1)

, f

(2)} are unre-
lated, non-overlapping patches. Then the dictionary learning problem decouples
from the image reconstruction and requires minimization of

E

d
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(7)

The image analogy dictionary learning problem is identical to the one for image
denoising. The only di↵erence is a change in dimension for the dictionary and
the patches (which are stacked up for the corresponding image sets).

2.5 Numerical Solution

Sparse CodingWe use the simultaneous-direction method of multipliers (SDMM)
[8,11] which allows us to simplify the optimization problem, by breaking it into

1 Our approach can also be applied to L which are locally not invertible. However,
this complicates the dictionary learning.
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easier subparts. To apply SDMM, we write the image analogy problem as
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(8)
where we introduced separate copies of the transformed image reconstructions
u

(1) and u

(2) as well as of the patch coe�cients and ↵ denotes the stacked up
coe�cients of all patches (which allows imposing spatial coherence onto the ↵

i

through W if desired). Following [11] we can use SDMM to solve (8).
For the dictionary-based sparse coding we have three sets of transformed vari-
ables, u(1), u(2) and the ↵ copies. The images may even be of di↵erent dimen-
sionalities (for example when dealing with a color and a gray-scale image). In
our implementation of SDMM, we use L

(1) = L

(2) = I and W

i

= W = I.
Dictionary learning We use a dictionary based approach and hence need to be
able to learn a suitable dictionary from the data. We use alternating optimiza-

tion. Assuming that the coe�cients ↵
i

and the measured patches {p(1)
i

, p

(2)

i

} are
given, we compute the current best least-squares solution for the dictionary as

D = (
NX

i=1

p

i

↵

T

i
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↵

T
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)�1

. (9)

The optimization with respect to the ↵

i

terms follows (for each patch inde-
pendently) the SDMM algorithm. Since the local dictionary learning approach
assumes that patches to learn the dictionary from are given, the only terms re-

maining from Eq. (8) are, f̄ (p)

i

and f

(s)

i

. Hence the problem completely decouples
with respect to the coe�cients ↵

i

and we obtain
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(10)

Sparse coding Sparse coding follows the same numerical solution approaches
for dictionary learning. However, since the dictionaries are known at the sparse
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coding stage, no alternating optimization is necessary and we can simply solve
for u(1) and u

(2) using SDMM. The di↵erence is that for sparse coding for image

analogies the measurement of the second image f (2) is unknown. Hence, f (2)

D

(v(2))
is absent from the optimization and the reconstructed u

(2) is the prediction.

3 Results

We (i) reconstruct the “missing” analogous image and (ii) consistently denoise
the image to be registered with. We consider a�ne registration in our experi-
ments, but the method is applicable to other transformation models. The key is
that training image pairs represent expected appearance variations well.

3.1 Data

We use four pairs of 2D correlative SEM/confocal images containing 100 nm

gold fiducials. The confocal image is the same in the four datasets and the SEM
images are from the same area as the confocal image but for di↵erent views and
magnifications. We also have six pairs of TEM/confocal images of mouse brains
with resolutions 582.24 pixels per µm and 7.588 pixels per µm respectively.

3.2 Registration of SEM/confocal images (with fiducials)

Pre-processing The confocal image is denoised by the sparse representation-
based denoising method [7]. We use a landmark based registration on the fiducials
to get the gold standard alignment result.
Image Analogies (IA) Results We applied the standard image analogies
method and our method. We trained the dictionaries using a leave-one-out
method. In both image analogy methods we use 10 ⇥ 10 patches, and in our
proposed method we randomly sample 20000 patches and learn 800 dictionary
elements in the dictionary learning phase. We choose � = 0.2 and � = 1 in (6).
In Fig. 3, both IA methods can reconstruct the confocal image very well but our
proposed method preserves more structure than the standard IA method.
Image Registration Results We resampled the estimated confocal images
with up to ±600 nm(15 pixels) in translation in the x and y directions (at steps
of 1 pixel) and ±15� in rotation (at steps of 1 degree) with respect to the gold
standard alignment. Then we registered the resampled estimated confocal images
to the corresponding original confocal images. Tab. 1 summarizes the registration
results over all these experiments. Our method outperforms the standard image
analogy method as well as a direct use of mutual information on the original
images in terms of registration accuracy. Both image analogy methods achieve
subpixel accuracy.

3.3 Registration of TEM/confocal images (without fiducials)

Pre-processing We extracted the corresponding region of the confocal image
and resample both confocal and TEM images to an intermediate resolution. The
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(a) SEM Image (b) Confocal Image (c) Standard IA (d) Proposed IA

Fig. 3: Results of estimating a confocal (b) from an SEM image (a) using the
standard image analogy (c) and our proposed sparse image analogy method (d).

Table 1: Registration errors on translation and rotation( translation t

x

and t

y

are in nm, pixel size is 40nm; rotation r is in degree; RMS =
q
t

2

x

+ t

2

y

)

case r std

r

t

x

t

y

RMS std

RMS

1
Our method 0.171 0.191 14.687 28.451 33.5482 6.4561
Standard IA 0.134 0.252 15.26 27.677 32.6751 8.4876

Original SEM/confocal 0.401 0.157 30.584 85.708 94.2085 8.0601

2
Our method 0.165 0.258 15.537 26.462 30.6862 6.5831
Standard IA 0.268 0.212 14.756 28.238 32.0217 6.8241

Original SEM/confocal 0.557 0.530 56.392 70.312 90.5242 6.2284

3
Our method 0.246 0.537 19.924 80.512 83.7206 7.1757
Standard IA 0.368 0.511 20.548 79.821 84.7861 6.8433

Original SEM/confocal 0.368 0.372 33.452 109.054 114.469378 9.3514

4
Our method 0.226 0.583 17.069 19.024 26.3190 6.3156
Standard IA 0.232 0.640 13.954 25.35 29.9319 6.2327

Original SEM/confocal 1.27 0.776 46.278 58.724 75.3439 5.4435

final resolution is 14.52 pixels per µm, and the image size is about 200 ⇥ 200
pixels. The datasets are already roughly registered based on manually labeled
landmarks with a similarity transformation model.
Image Analogies Results We tested the standard image analogy method and
our proposed sparse method. For both image analogy methods we use 15 ⇥ 15
patches, and for our method we randomly sample 20000 patches and learn 900
dictionary elements in the dictionary learning phase. We choose � = 0.01 and
� = 1 in (6). The image analogies results in Fig. 4 show that our proposed method
preserves more local structure than the standard image analogy method.
Image Registration Results We manually determined 10 ⇠ 15 corresponding
landmark pairs on each dataset to establish a gold standard for registration. The
same type and magnitude of shifts and rotations as for the SEM experiment are
applied. The image registration results based on both image analogies methods
are compared to the landmark based image registration results using mean ab-
solute errors (MAE) and standard deviations (STD) of the absolute errors on all
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(a) TEM image (b) Confocal image (c) Standard IA (d) Proposed IA

Fig. 4: Result of estimating the confocal image (b) from the TEM image (a) for
the standard image analogy method (c) and the proposed sparse image analogy
method (d) which shows better preservation of structure.

the corresponding landmarks. We use both SSD and mutual information (MI)
as similarity measure. The registration results are displayed in Tab. 2. The land-
mark based image registration result is the best result achievable given the a�ne
transformation model. We show the results for both image analogy methods as
well as using the original TEM/confocal image pairs2. Tab. 2 shows that the
MI based image registration results are similar among the three methods and
also close to the landmark based registration results (best registration results).
For SSD based image registration, our proposed method is more robust than
the other two methods for the current datasets, for example, using the standard
image analogies method results in large MAE values in case 3 and case 4 while
using the original TEM/confocal images for registration results in large MAE
values in case 2 and case 6. While our method does not currently give the best
results for all the cases available to us, it appears to be the most consistent with
results close to the best among all the methods investigated for all cases.

Table 2: Image Registration Results (in µm, pixel size is 0.069 µm)

Our method Standard IA Original TEM/Confocal Landmark

case MAE STD MAE STD MAE STD MAE STD

1
SSD 0.3174 0.2698 0.3119 0.2622 0.3353 0.2519 0.2705 0.1835
MI 0.3146 0.2657 0.3036 0.2601 0.5161 0.2270

2
SSD 0.3912 0.1642 0.3767 0.2160 2.5420 1.6877 0.3091 0.1594
MI 0.4473 0.1869 0.4747 0.3567 0.4140 0.1780

3
SSD 0.4381 0.2291 1.8940 1.0447 0.4063 0.2318 0.3636 0.1746
MI 0.3864 0.2649 0.4761 0.2008 0.4078 0.2608

4
SSD 0.4451 0.2194 0.4416 0.2215 0.4671 0.2484 0.3823 0.2049
MI 0.4554 0.2298 0.4250 0.2408 0.4740 0.2374

5
SSD 0.3271 0.2505 1.2724 0.6734 0.7204 0.3899 0.2898 0.2008
MI 0.3843 0.2346 0.4175 0.2429 0.4030 0.2519

6
SSD 0.7832 0.5575 0.7169 0.4975 2.2080 1.4228 0.3643 0.1435
MI 0.7259 0.4809 1.2772 0.4285 0.7183 0.4430

2 We inverted the grayscale values of original TEM image for SSD based image regis-
tration of original TEM/confocal images.
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4 Conclusion

We developed a multi-modal registration method for correlative microscopy.
The method is based on image analogies with a sparse representation model.
It estimates the transformation from one modality to another based on training
datasets of two di↵erent modalities. Our image registration results suggest that
the sparse image analogy method can improve registration accuracy.
Our future work includes additional validation on a larger number of datasets
from di↵erent modalities. Our goal is also to estimate the local quality of the
image analogy result. This quality estimate could then be used to weight the
registration similarity metrics to focus on regions of high confidence. We will also
apply our sparse image analogy method to 3D images, which is straightforward.
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