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Abstract

Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution
of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we pro-
pose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of
biological structures when imaged with different modalities. Our method is based on image analogies and allows to
transform images of a given modality into the appearance-space of another modality. Hence, the registration between
two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse
representation model to obtain image analogies. The method makes use of corresponding image training patches
of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on
backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy
(TEM)/confocal images. We perform rigid, affine , and deformable registration via B-splines and show improvements
over direct registration using both mutual information and sum of squared differences similarity measures to account
for differences in image appearance.

Keywords: multi-modal registration, correlative microscopy, image analogies, sparse representation models

1. Introduction

Correlative microscopy integrates different mi-
croscopy technologies including conventional light-,
confocal- and electron transmission microscopy (Ca-
plan et al., 2011) for the improved examination of bi-
ological specimens. E.g., fluorescent markers can be
used to highlight regions of interest combined with an
electron-microscopy image to provide high-resolution
structural information of the regions. To allow such
joint analysis requires the registration of multi-modal
microscopy images. This is a challenging problem due
to (large) appearance differences between the image
modalities. Fig. 1 shows an example of correlative mi-
croscopy for a confocal/TEM image pair.

Image registration estimates spatial transformations
between images (to align them) and is an essential part
of many image analysis approaches. The registration
of correlative microscopic images is very challenging:
images should carry distinct information to combine,
for example, knowledge about protein locations (using

fluorescence microscopy) and high-resolution structural
data (using electron microscopy). However, this pre-
cludes the use of simple alignment measures such as the
sum of squared intensity differences because intensity
patterns do not correspond well or a multi-channel im-
age has to be registered to a gray-valued image.

A solution for registration for correlative microscopy
is to perform landmark-based alignment, which can be
greatly simplified by adding fiducial markers (Fronczek
et al., 2011). Fiducial markers cannot easily be added
to some specimen, hence an alternative image-based
method is needed. This can be accomplished in some
cases by appropriate image filtering. This filtering is
designed to only preserve information which is indica-
tive of the desired transformation, to suppress spurious
image information, or to use knowledge about the image
formation process to convert an image from one modal-
ity to another. E.g., multichannel microscopy images of
cells can be registered by registering their cell segmen-
tations (Yang et al., 2008). However, such image-based
approaches are highly application-specific and difficult
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to devise for the non-expert.

(a) Confocal Microscopic Image (b) Resampling of Region in (a)

(c) TEM Image

Figure 1: Example of Correlative Microscopy. (a) is a stained confo-
cal brain slice, where the red box shows an example of a neuron cell
and (b) is a resampled image of the boxed region in (a). The goal is to
align (b) to (c).

In this paper we therefore propose a method inspired
by early work on texture synthesis in computer graphics
using image analogies (Hertzmann et al., 2001). Here,
the objective is to transform the appearance of one im-
age to the appearance of another image (for example
transforming an expressionistic into an impressionis-
tic painting). The transformation rule is learned based
on example image pairs. For image registration this
amounts to providing a set of (manually) aligned im-
ages of the two modalities to be registered from which
an appearance transformation rule can be learned. A
multi-modal registration problem can then be converted
into a mono-modal one. The learned transformation
rule is still highly application-specific, however it only
requires manual alignment of sets of training images
which can easily be accomplished by a domain special-
ist who does not need to be an expert in image registra-
tion.

Arguably, transforming image appearance is not nec-
essary if using an image similarity measure which is
invariant to the observed appearance differences. In
medical imaging, mutual information (MI) (Wells III
et al., 1996) is the similarity measure of choice for
multi-modal image registration. We show for two cor-

relative microscopy example problems that MI registra-
tion is indeed beneficial, but that registration results can
be improved by combining MI with an image analo-
gies approach. To obtain a method with better gener-
alizability than standard image analogies (Hertzmann
et al., 2001) we devise an image-analogies method us-
ing ideas from sparse coding (Bruckstein et al., 2009),
where corresponding image-patches are represented by
a learned basis (a dictionary). Dictionary elements cap-
ture correspondences between image patches from dif-
ferent modalities and therefore allow to transform one
modality to another modality.

This paper is organized as follows: First, we briefly
introduce some related work in Section 2. Section 3 de-
scribes the image analogies method with sparse coding
and our numerical solution approach. Image registration
results are shown and discussed in Section 4. The paper
concludes with a summary of results and an outlook on
future work in Section 5.

2. Related Work

2.1. Multi-modal Image Registration for Correlative
Microscopy

Since correlative microscopy combines different mi-
croscopy modalities, resolution differences between im-
ages are common. This poses challenges with respect to
finding corresponding regions in the images. If the im-
ages are structurally similar (for example when align-
ing EM images of different resolutions (Kaynig et al.,
2007), standard feature point detectors can be used.

There are two groups of methods for more general
multi-modal image registration (Wachinger and Navab,
2010). The first set of approaches applies advanced sim-
ilarity measures, such as mutual information (Wells III
et al., 1996). The second group of techniques in-
cludes methods that transform a multi-modal to a mono-
modal registration (Wein et al., 2008). For exam-
ple, Wachinger introduced entropy images and Lapla-
cian images which are general structural representations
(Wachinger and Navab, 2010). The motivation of our
proposed method is similar to Wachinger’s approach,
i.e. transform the modality of one image to another, but
we use image analogies to achieve this goal thereby al-
lowing for the reconstruction of a microscopy image in
the appearance space of another.

2.2. Image Analogies and Sparse Representation

Image analogies, first introduced in (Hertzmann et al.,
2001), have been widely used in texture synthesis. In
this method, a pair of images A and A′ are provided as
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training data, where A′ is a “filtered” version of A. The
“filter” is learned from A and A′ and is later applied to
a different image B in order to generate an “analogous”
filtered image. Fig. 2 shows an example of image analo-
gies.

(a) A: training TEM (b) A′: training confocal

(c) B: input TEM (d) B′: output confocal

Figure 2: Result of Image Analogies: Based on a training set (A, A′)
an input image B can be transformed to B′ which mimics A′ in ap-
pearance. The red circles in (d) show inconsistent regions.

For multi-modal image registration, this method can
be used to transfer a given image from one modality to
another using the trained “filter”. Then the multi-modal
image registration problem simplifies to a mono-modal
one. However, since this method uses a nearest neighbor
(NN) search of the image patch centered at each pixel,
the resulting images are usually noisy because the L2
norm based NN search does not preserve the local con-
sistency well (see Fig. 2 (d)) (Hertzmann et al., 2001).
This problem can be partially solved by a multi-scale
search and a coherence search which enforce local con-
sistency among neighboring pixels, but an effective so-
lution is still missing. We introduce a sparse represen-
tation model to address this problem.

Sparse representation is a powerful model for rep-
resenting and compressing high-dimensional signals
(Wright et al., 2010; Huang et al., 2011b). It represents
the signal with sparse combinations of some fixed bases
which usually are not orthogonal to each other and are
overcomplete to ensure its reconstruction power (Elad
et al., 2010). It has been successfully applied many
computer vision applications such as object recogni-
tion and classification in (Wright et al., 2009; Huang
and Aviyente, 2007; Huang et al., 2011a; Zhang et al.,
2012a,b; Fang et al., 2013; Cao et al., 2013). (Yang

et al., 2010) also applied sparse representation to su-
per resolution which is similar to our method. The
differences between sparse representation based super
resolution and image analogies are reconstruction con-
straints and the used data. In super resolution, the recon-
struction constraint is between two images with differ-
ent resolutions (the original low resolution image and
predicted high resolution image). In order to make
these two images comparable, additional blurring and
downsampling operators are applied to the high resolu-
tion image, while in our method, we can direct com-
pute the reconstruction error from the original image
and reconstructed image from the sparse representation.
Efficient algorithms based on convex optimization or
greedy pursuit are available for computing sparse rep-
resentations (Bruckstein et al., 2009).

The contribution of this paper is two-fold. First,
we introduce a sparse representation model for im-
age analogies which aims at improving the generaliza-
tion ability and estimation result. Second, we simplify
multi-modal image registration by using the image anal-
ogy approach to convert the registration problem to a
mono-modal registration problem. The original idea in
this paper was published in WBIR 2012 (Cao et al.,
2012). This paper provides additional experiments, de-
tails of our method, and a more extensive review of re-
lated work. The flowchart of our method is shown in
Fig. 3.

3. Method

3.1. Standard Image Analogies

The objective for image analogies is to create an im-
age B′ from an image B with a similar relation in ap-
pearance as a training image set (A, A′) (Hertzmann
et al., 2001). The standard image analogies algorithm
achieves the mapping between B and B′ by looking up
best-matching patches for each image location between
A and B which then imply the patch appearance for B′

from the corresponding patch A′ (A and A′ are assumed
to be aligned). These best patches are smoothly com-
bined to generate the overall output image B′. The algo-
rithm description is presented in Alg. 1. To avoid costly
lookups and to obtain a more generalizable model with
noise-reducing properties we propose a sparse coding
image analogies approach.

3.2. Sparse Representation Model

Sparse representation is a technique to reconstruct a
signal as a linear combination of a few basis signals
from a typically over-complete dictionary. A dictionary
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Figure 3: Flowchart of our proposed method. This method has three components: 1. dictionary learning: learning multi-modal dictionaries for
both training images from different modalities; 2. sparse coding: computing sparse coefficients for the learned dictionaries to reconstruct the
source image while at the same time using the same coefficients to transfer the source image to another modality; 3. registration: registering both
transferred source image and target image.

Algorithm 1 Image Analogies.

Input:
Training images: A and A′;
Source image: B.

Output:
’Filtered’ source B′.

1: Construct Gaussian pyramids for A, A′ and B;
2: Generate features for A, A′ and B;
3: for each level l starting from coarsest do
4: for each pixel q ∈ B′l , in scan-line order do
5: Find best matching pixel p of q in Al and A′l ;
6: Assign the value of pixel p in A′ to the value

of pixel q in B′l ;
7: Record the position of p.
8: end for
9: end for

10: Return B′L where L is the finest level.

is a collection of basis signals. The number of dictio-
nary elements in an over-complete dictionary exceeds
the dimension of the signal space (here the dimension of
an image patch). Suppose a dictionary D is pre-defined.
To sparsely represent a signal x the following optimiza-
tion problem is solved (Elad, 2010):

α̂ = arg min
α
‖α‖0, s.t. ‖x − Dα‖2 ≤ ε, (1)

where α is a sparse vector that explains x as a linear
combination of columns in dictionary D with error ε and
‖ · ‖0 indicates the number of non-zero elements in the
vector α. Solving (1) is an NP-hard problem. One pos-
sible solution of this problem is based on a relaxation
that replaces ‖ · ‖0 by ‖ · ‖1, where ‖ · ‖1 is the 1-norm of
a vector, resulting in the optimization problem,

α̂ = arg min
α
‖α‖1, s.t. ‖x − Dα‖2 ≤ ε. (2)

The equivalent Lagrangian form of (2) is

α̂ = arg min
α
λ‖α‖1 + ‖x − Dα‖22, (3)

which is a convex optimization problem that can be
solved efficiently (Bruckstein et al., 2009; Boyd et al.,
2010; Lee et al., 2006; Mairal et al., 2009).

A more general sparse representation model opti-
mizes both α and the dictionary D,

{α̂, D̂} = arg min
α,D

λ‖α‖1 + ‖x − Dα‖22. (4)

The optimization problem (3) is a sparse coding prob-
lem which finds the sparse codes α to represent x. Gen-
erating the dictionary D from a training dataset is called
dictionary learning.
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3.3. Image Analogies with Sparse Representation
Model

For the registration of correlative microscopy im-
ages, given two training images A and A′ from differ-
ent modalities, we can transform image B to the other
modality by synthesizing B′. This idea is also applied
to image colorization and demosaicing in (Mairal et al.,
2007). Consider the sparse dictionary-based image de-
noising/reconstruction, u, given by minimizing

E(u, {αi}) =
γ

2
‖Lu − f ‖22

+
1
2

N∑
i=1

‖Riu − Dαi‖
2
V + λ‖αi‖1,

(5)

where f is the given (potentially noisy) image, D is the
dictionary, {αi} are the patch coefficients, Ri selects the
i-th patch from the image reconstruction u, γ, λ > 0
are balancing constants, L is a linear operator (e.g.,
describing a convolution), and the norm is defined as
‖ x ‖2v= xT V x, where V > 0 is positive definite. We
jointly optimize for the coefficients and the reconstruct-
ed/denoised image. Formulation (5) can be extended to
images analogies by minimizing

E(u(1), u(2), {αi}) =
γ

2
‖L(1)u(1) − f (1)‖22

+
1
2

N∑
i=1

‖Ri

(
u(1)

u(2)

)
−

(
D(1)

D(2)

)
αi‖

2
V + λ‖αi‖1,

(6)

where we have corresponding dictionaries {D(1),D(2)}

and only one image f (1) is given and we are seeking a re-
construction of a denoised version of f (1), u(1), as well as
the corresponding analogous denoised image u(2) (with-
out the knowledge of f (2)). Note that there is only one
set of coefficients αi per patch, which indirectly relates
the two reconstructions. The problem is convex (for
given D(i)) which allows to compute a globally optimal
solution. Section 3.5 describes our numerical solution
approach.

Patch-based (non-sparse) denoising has also been
proposed for the denoising of fluorescence microscopy
images (Boulanger et al., 2010). A conceptually simi-
lar approach using sparse coding and image patch trans-
fer has been proposed to relate different magnetic reso-
nance images in (Roy et al., 2011). However, this ap-
proach does not address dictionary learning or spatial
consistency considered in the sparse coding stage. Our
approach addresses both and learns the dictionaries D(1)

and D(2) explicitly.

3.4. Dictionary Learning

Given sets of training patches {p(1)
i , p(2)

i } We want to
estimate the dictionaries themselves as well as the coef-
ficients {αi} for the sparse coding. The problem is non-
convex (bilinear in D and αi). The standard solution
approach (Elad, 2010) is alternating minimization, i.e.,
solving for αi keeping {D(1),D(2)} fixed and vice versa.
Two cases need to be distinguished: (i) L locally in-
vertible (or the identity) and (ii) L not locally-invertible
(e.g., blurring due to convolution for a signal with the
point spread function of a microscope). In the former
case we can assume that the training patches are unre-
lated patches and we can compute local patch estimates
{p(1)

i , p(2)
i } directly by locally inverting the operator L for

the given measurement { f (1), f (2)} for each patch. In the
latter case, we need to consider patch size (for example
for convolution) and can therefore not easily be inverted
patch by patch. The non-local case is significantly more
complicated, because the dictionary learning step needs
to consider spatial dependencies between patches.

We only consider local dictionary learning here with
L and V set to identities1. We assume that the training
patches {p(1)

i , p(2)
i } = { f (1)

i , f (2)
i } are unrelated patches.

Then the dictionary learning problem decouples from
the image reconstruction and requires minimization of

E(D, {αi}) =
1
N

N∑
i=1

1
2
‖

(
p(1)

i
p(2)

i

)
−

(
D(1)

D(2)

)
αi‖

2
2 + λ‖αi‖1

=
1
N

N∑
i=1

1
2
‖pi − Dαi‖

2
2 + λ‖αi‖1.

(7)
The image analogy dictionary learning problem is iden-
tical to the one for image denoising. The only differ-
ence is a change in dimension for the dictionary and the
patches (which are stacked up for the corresponding im-
age sets). Usually to avoid D being arbitrarily large, a
common constraint is added to each column of D where
the l2 norm of each column in D is less than or equal
to one, i.e. dT

j d j ≤ 1, j = 1, ...,m,D = {d1, d2, ..., dm} ∈

Rnxm. Similar to (6), we use a single α in (7) to en-
force the correspondence of the dictionaries between
two modalities.

3.5. Numerical Solution

To simplify the optimization process of (6), we ap-
ply an alternating optimization approach (Elad, 2010)

1Our approach can also be applied to L which are locally not in-
vertible. However, this complicates the dictionary learning.
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which initializes u(1) = f (1) and u(2) = D(2)α at the be-
ginning, and then computes the optimal α (the dictio-
nary D(1) and D(2) are assumed known here). Thus the
minimization problem breaks into many smaller sub-
parts, for each subproblem we have,

α̂ = arg min
α

1
2
‖Riu(1) − D(1)αi‖

2
2 + λ‖αi‖1, i ∈ 1, ...N.

(8)
Following (Li and Osher, 2009) we use a coordinate de-
scent algorithm to solve (8).

Given A = D(1), x = αi and b = Riu(1), then (8) can
be rewritten in the general form

x̂ = arg min
x

1
2
‖b − Ax‖22 + λ‖x‖1. (9)

The coordinate descent algorithm to solve (9) is de-
scribed in Alg. 2. This algorithm minimizes (9) with
respect to one component of x in one step, keeping all
other components constant. This step is repeated until
convergence.

Algorithm 2 Coordinate Descent

Input: x = 0, λ > 0, β = AT b
Output: x

while not converged do
1. x̃ = S λ(β)1;
2. j = arg maxi |xi − x̃i|, where i is the index of the
component in x and x̃;
3. xk+1

i = xk
i , i , j, and xk+1

j = x̃ j;
4. βk+1 = βk−|xk

j− x̃ j|(AT A) j, and βk+1
j = βk

j, where
(AT A) j is the jth column of (AT A).

end while

After solving (8), we can fix α and then update u(1).
Now the optimization of (6) can be changed to

û(1) = arg min
u(1)

γ

2
‖u(1) − f (1)‖22 +

N∑
i=1

1
2
‖Riu(1) − D(1)αi‖

2
2.

(10)
The closed-form solution of (10) is as follows2,

û(1) = (γI +

N∑
i=1

RT
i Ri)−1(γ f (1) +

N∑
i=1

RT
i D(1)αi). (11)

1S a(v) is soft thresholding operator where S a(v) = (v−a)+− (−v−
a)+.

2Refer to appendix 1 for more details.

We iterate the optimization with respect to u(1) and α to
convergence. Then u(2) = D(2)α̂.

3.5.1. Dictionary Learning
We use a dictionary based approach and hence need

to be able to learn a suitable dictionary from the data.
We use alternating optimization. Assuming that the co-
efficients αi and the measured patches {p(1)

i , p(2)
i } are

given, we compute the current best least-squares solu-
tion for the dictionary as 3

D = (
N∑

i=1

piα
T
i )(

N∑
i=1

αiα
T
i )−1. (12)

The columns are normalized according to

d j = d j/max(‖d j‖2, 1), j = 1, ...,m, (13)

where D = {d1, d2, ...dm} ∈ Rnxm. The optimization with
respect to the αi terms follows (for each patch indepen-
dently) the coordinate descent algorithm. Since the lo-
cal dictionary learning approach assumes that patches to
learn the dictionary from are given, the problem com-
pletely decouples with respect to the coefficients αi and
we obtain

E =
1
N

N∑
i=1

1
2
‖pi − Dαi‖

2
2 + λ‖αi‖1 (14)

where pi = {p(1)
i , p(2)

i } and D = {D(1),D(2)}.

3.6. Intensity Normalization

The image analogy approach may not be able to
achieve a perfect prediction because: a) image inten-
sities are normalized and hence the original dynamic
range of the images is not preserved and b) image con-
trast may be lost as the reconstruction is based on the
weighted averaging of patches. To reduce the intensity
distribution discrepancy between the predicted image
and original image, in our method, we apply intensity
normalization (normalize the different dynamic ranges
of different images to the same scale for example [0, 1])
to the training images before dictionary learning, and
also to the image analogy results.

3.7. Use in Image Registration

For image registration, we (i) reconstruct the “miss-
ing” analogous image and (ii) consistently denoise the
given image to be registered with (Elad and Aharon,

3Refer to appendix 2 for more details.
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2006). By denoising the target image using the learned
dictionary for the target image from the joint dictionary
learning step we obtain two consistently denoised im-
ages: the denoised target image and the predicted source
image. The image registration is applied to the anal-
ogous image and the target image. We consider rigid
followed by affine and B-spline registrations in this pa-
per and use elastix’s implementation (Klein et al., 2010;
Ibanez et al., 2005). As similarity measures we use sum
of squared differences (SSD) and mutual information
(MI). A standard gradient descent is used for optimiza-
tion. For B-spline registration, we use displacement
magnitude regularization which penalizes ‖T (x) − x‖2,
where T (x) is the transformation of coordinate x in an
image (Klein et al., 2010). This is justified as we do not
expect large deformations between the images as they
represent the same structure. Hence, small displace-
ments are expected, which are favored by this form of
regularization.

4. Results

4.1. Data

We use both 2D correlative SEM/confocal images
with fiducials and TEM/confocal images of mouse
brains in our experiment. All the experiments are per-
formed on a Dell OptiPlex 980 computer with an Intel
Core i7 860 2.9GHz CPU. The data description is shown
in Tab. 1.

Table 1: Data Description

Data Types
SEM/confocal TEM/confocal

Number of datasets 8 6
Fiducial 100 nm gold none

Pixel Size 40 nm 0.069µm

4.2. Registration of SEM/confocal images (with fidu-
cials)

4.2.1. Pre-processing
The confocal images are denoised by the sparse

representation-based denoising method (Elad, 2010).
We use a landmark based registration on the fiducials to
obtain the gold standard alignment results. The image
size is about 400 × 400 pixels.

4.2.2. Image Analogies (IA) Results

We applied the standard IA method and our proposed
method. We trained the dictionaries using a leave-one-
out approach. The training image patches are extracted
from pre-registered SEM/confocal images as part of
the preprocessing described in Section 4.2.1. In both
IA methods we use 10 × 10 patches, and in our pro-
posed method we randomly sample 50000 patches and
learn 1000 dictionary elements in the dictionary learn-
ing phase. The learned dictionaries are shown in Fig. 5.
We choose γ = 1 and λ = 0.15 in (6). In Fig. 8, both
IA methods can reconstruct the confocal image very
well but our proposed method preserves more structure
than the standard IA method. We also show the predic-
tion errors and the statistical scores of our proposed IA
method and standard IA method for SEM/confocal im-
ages in Tab. 2. The prediction error is defined as the
sum of squared intensity differences between the pre-
dicted confocal image and the original confocal image.
Our method is based on patch-by-patch prediction us-
ing the learned multi-modal dictionary. Given a partic-
ular patch-size the number of sparse coding problems
in our model changes linearly with the number of pix-
els in an image. Our method is much faster than the
standard image analogies method which involves an ex-
haustive search of the whole training set as our method
is based on a dictionary representation. For example,
our method takes about 500 secs for a 1024x1024 image
with image patch size 10x10 and dictionary size 1000
while the standard image analogy method takes more
than 30 mins for the same patch size. The CPU pro-
cessing time for SEM/confocal data is shown in Tab. 3.
We also illustrate the convergence of solving (14) for
both SEM/confocal and TEM/confocal images in Fig. 7
which shows that 100 iterations are sufficient for both
datasets.
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Figure 4: Prediction errors with respect to different λ values for SEM/-
confocal image. The λ values are tested from 0.05-1.0 with step size
0.05.
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Figure 6: Box plot for the registration results of SEM/confocal images on landmark errors of different methods with three transformation models:
rigid, affine and B-spline. The registration methods include: Original Image SSD and Original Image MI, registrations with original images based
on SSD and MI metrics respectively; Standard IA SSD and Standard IA MI, registration with standard IA algorithm based on SSD and MI metrics
respectively; Proposed IA SSD and Proposed IA MI, registration with our proposed IA algorithm based on SSD and MI metrics respectively. The
bottom and top edges of the boxes are the 25th and 75th percentiles, the central red lines are the medians.

Figure 5: Results of dictionary learning: the left dictionary is learned
from the SEM and the corresponding right dictionary is learned from
the confocal image.

4.2.3. Image Registration Results

We resampled the estimated confocal images with
up to ±600 nm (15 pixels) in translation in the x and
y directions (at steps of 5 pixel) and ±15◦ in rotation
(at steps of 5 degree) with respect to the gold standard
alignment. Then we registered the resampled estimated
confocal images to the corresponding original confocal
images. The goal of this experiment is to test the ability
of our methods to recover from misalignments by trans-
lating and rotating the pre-aligned image within a prac-
tically reasonable range. Such a rough initial automatic
alignment can for example be achieved by image cor-
relation. The image registration results based on both
image analogy methods are compared to registration re-
sults using original images using both SSD and MI as
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Figure 7: Convergence test on SEM/confocal and TEM/confocal im-
ages. The objective function is defined as in (14). The maximum
iteration number is 100. The patch size for SEM/confocal images and
TEM/confocal images are 10 × 10 and 15 × 15 respectively.
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Table 2: Prediction results for SEM/confocal images. Prediction is
based on the proposed IA and standard IA methods, and we use sum of
squared prediction residuals (SSR) to evaluate the prediction results.
The p-value is computed using a paired t-test.

Method mean std p-value
Proposed IA 1.52 × 105 5.79 × 104

0.0002Standard IA 2.83 × 105 7.11 × 104

Table 3: CPU time (in seconds) for SEM/confocal images. The p-
value is computed using a paired t-test.

Method mean std p-value
Proposed IA 82.2 6.7 0.00006Standard IA 407.3 10.1

similarity measures1. Tab. 4 summarizes the registration
results on translation and rotation errors based on the
rigid transformation model for each image pair over all
these experiments. The results are reported as physical
distances instead of pixels. We also perform registra-
tions using affine and B-spline transformation models.
These registrations are initialized with the result from
the rigid registration. Fig. 6 shows the box plot for all
the registration results.

(a) SEM Image (b) Confocal Image

(c) Standard IA (d) Proposed IA

Figure 8: Results of estimating a confocal (b) from an SEM image (a)
using the standard IA (c) and our proposed IA method (d).

1We inverted the grayscale values of the original SEM image for
SSD based image registration of the SEM/confocal images.

4.2.4. Hypothesis Test on Registration Results
In order to check whether the registration results

from different methods are statistically different with
each other, we use hypothesis testing (Weiss and Weiss,
2012). We assume the registration results (rotations and
translations) are independent and normally distributed
random variables with means µi and variances σ2

i . For
the results from 2 different methods, the null hypothe-
sis (H0) is µ1 = µ2, and the alternative hypothesis (H1)
is µ1 ≤ µ2. We apply the one-sided paired sample t-
test for equal means using MATLAB (MATLAB, 2012).
The level of significance is set at 5%. Based on the
hypothesis test results in Tab. 5, our proposed method
shows significant differences with respect to the stan-
dard IA method for the registration error with respect
to the SSD metric on rigid registration and both MI and
SSD metrics for affine and B-spline registrations. Ta-
bles 4 and 5 also show that our method outperforms the
standard image analogy method as well as the direct use
of mutual information on the original images in terms
of registration accuracy. However, as deformations are
generally relatively rigid no statistically significant im-
provements in registration results could be found within
a given method relative to the different transformation
models as illustrated in Tab. 6.

4.2.5. Discussion
From Fig. 6, the improvement of registration results

from rigid registration to affine and B-spline registra-
tions are not significant due to the fact that both SEM/-
confocal images are acquired from the same piece of
tissue section. The rigid transformation model can cap-
ture the deformation well enough, though small im-
provements can visually be observed using more flex-
ible transformation models as illustrated in the compo-
sition images between the registered SEM images using
three registration methods (direct registration and the
two IA methods) and the registered SEM images based
on fiducials of Fig. 9. Our proposed method can achieve
the best results for all the three registration models. See
also Tab. 6.

4.3. Registration of TEM/confocal images (without
fiducials)

4.3.1. Pre-processing
We extract the corresponding region of the confocal

image and resample both confocal and TEM images to
an intermediate resolution. The final resolution is 14.52
pixels per µm, and the image size is about 256×256 pix-
els. The datasets are already roughly registered based on
manually labeled landmarks with a rigid transformation
model.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9: Results of registration for SEM/confocal images using MI similarity measure with direct registration (first row), standard IA (second row)
and our proposed IA method (third row) for (a,d,g) rigid registration (b,e,h) affine registration and (c,f,i) b-spline registration. Some regions are
zoomed in to highlight the distances between corresponding fiducials. The images show the compositions of the registered SEM images using the
three registration methods (direct registration, standard IA and proposed IA methods) and the registered SEM image based on fiducials respectively.
Differences are generally very small indicating that for these images a rigid transformation model may already be sufficiently good.
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Table 4: SEM/confocal rigid registration errors on translation (t) and rotation (r)( t =

√
t2x + t2y where tx and ty are translation errors in x and y

directions respectively; t is in nm; pixel size is 40nm; r is in degree.) Here, the registration methods include: Original Image SSD and Original
Image MI, registrations with original images based on SSD and MI metrics respectively; Standard IA SSD and Standard IA MI, registration with
standard IA algorithm based on SSD and MI metrics respectively; Proposed IA SSD and Proposed IA MI, registration with our proposed IA
algorithm based on SSD and MI metrics respectively.

rmean rmedian rstd tmean tmedian tstd

Proposed IA SSD 0.357 0.255 0.226 92.457 91.940 56.178
Proposed IA MI 0.239 0.227 0.077 83.299 81.526 54.310
Standard IA SSD 0.377 0.319 0.215 178.782 104.362 162.266
Standard IA MI 0.3396 0.332 0.133 140.401 82.667 135.065

Original Image SSD 0.635 0.571 0.215 170.484 110.317 117.371
Original Image MI 0.516 0.423 0.320 176.203 104.574 116.290

Table 5: Hypothesis test results (p-values) with multiple testing correction results (FDR corrected p-values in parentheses) for registration results
evaluated via landmark errors for SEM/confocal images. We use a one-sided paired t-test. Comparison of different image types (original image,
standard IA, proposed IA) using the same registration models (rigid, affine, B-spline). The proposed model shows the best performance for all
transformation models. (Bold indicates statistically significant improvement at significance level α = 0.05 after correcting for multiple comparisons
with FDR (Benjamini and Hochberg, 1995).)

Original Image/Standard IA Original Image/Proposed IA Standard IA/Proposed IA

Rigid SSD 0.5017 (0.5236) 0.0040 (0.0102) 0.0482 (0.0668)
MI 0.0747 (0.0961) 0.0014 (0.0052) 0.0888(0.1065)

Affine SSD 0.5236 (0.5236) 0.0013 (0.0052) 0.0357 (0.0535)
MI 0.0298 (0.0488) 0.0048 (0.0108) 0.0258 (0.0465)

B-spline SSD 0.0017 (0.0052) 0.0001 (0.0023) 0.0089 (0.0179)
MI 0.1491 (0.1678) 0.0002 (0.0024) 0.0017 (0.0052)

Table 6: Hypothesis test results (p-values) with multiple testing correction results (FDR corrected p-values in parentheses) for registration results
measured via landmark errors for SEM/confocal images. We use a one-sided paired t-test. Comparison of different registration models (rigid, affine,
B-spline) within the same image types (original image, standard IA, proposed IA). Results are not statistically significantly better after correcting
for multiple comparisons with FDR.)

Rigid/Affine Rigid/B-spline Affine/B-spline

Original Image SSD 0.7918 (0.8908) 0.3974 (0.6596) 0.1631 (0.5873)
MI 0.6122 (0.7952) 0.3902 (0.6596) 0.3635 (0.6596)

Standard IA SSD 0.9181 (0.9371) 0.1593 (0.5873) 0.0726 (0.5873)
MI 0.5043 (0.7564) 0.6185 (0.7952) 0.7459 (0.8908)

Proposed IA SSD 0.9371 (0.9371) 0.3742 (0.6596) 0.0448 (0.5873)
MI 0.4031 (0.6596) 0.1616 (0.5873) 0.2726 (0.6596)
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4.3.2. Image Analogies Results
We tested the standard image analogy method and our

proposed sparse method. For both image analogy meth-
ods we use 15× 15 patches, and for our method we ran-
domly sample 50000 patches and learn 1000 dictionary
elements in the dictionary learning phase. The learned
dictionaries are shown in Fig. 11. We choose γ = 1
and λ = 0.1 in (6). The image analogies results in Fig.
12 show that our proposed method preserves more local
structure than the standard image analogy method. We
show the prediction error of our proposed IA method
and standard IA method for TEM/confocal images in
Tab. 7. The CPU processing time for the TEM/confocal
data is given in Tab. 8.
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Figure 10: Prediction errors for different λ values for TEM/confocal
image. The λ values are tested from 0.05-1.0 with step size 0.05.

Figure 11: Results of dictionary learning: the left dictionary is learned
from the TEM and the corresponding right dictionary is learned from
the confocal image.

4.3.3. Image Registration Results
We manually determined 10 ∼ 15 corresponding

landmark pairs on each dataset to establish a gold stan-
dard for registration. The same type and magnitude of
shifts and rotations as for the SEM/confocal experiment
are applied. The image registration results based on
both image analogy methods are compared to the land-
mark based image registration results using mean abso-
lute errors (MAE) and standard deviations (STD) of the
absolute errors on all the corresponding landmarks. We

(a) TEM image (b) Confocal image

(c) Standard IA (d) Proposed IA

Figure 12: Result of estimating the confocal image (b) from the TEM
image (a) for the standard image analogy method (c) and the proposed
sparse image analogy method (d) which shows better preservation of
structure.

Table 7: Prediction results for TEM/confocal images. Prediction is
based on the proposed IA and standard IA methods, and we use SSR
to evaluate the prediction results. The p-value is computed using a
paired t-test.

Method mean std p-value
Proposed IA 7.43 × 104 4.72 × 103

0.0015Standard IA 8.62 × 104 6.37 × 103

use both SSD and mutual information (MI) as similar-
ity measures. The registration results are displayed in
Fig. 14 and Table 9. The landmark based image reg-
istration result is the best result achievable given the
affine transformation model. We show the results for
both image analogy methods as well as using the origi-
nal TEM/confocal image pairs1. Fig. 14 shows that the
MI based image registration results are similar among
the three methods and our proposed method performs
slightly better. The results are reported as physical dis-
tances instead of pixels. Also the results of our method
are close to the landmark based registration results (best
registration results). For SSD based image registration,
our proposed method is more robust than the other two
methods for the current dataset.

4.3.4. Hypothesis Test on Registration Results
We use the same hypothesis test method as in Sec-

tion 4.2.4, and test the means of different methods

1We inverted the grayscale values of original TEM image for SSD
based image registration of original TEM/confocal images.
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Figure 13: Results of registration for TEM/confocal images using MI similarity measure with directly registration (first row) and our proposed IA
method (second and third rows) using (a,d,g) rigid registration (b,e,h) affine registration and (c,f,i) b-spline registration. The results are shown in a
checkerboard image for comparison. Here, first and second rows show the checkerboard images of the original TEM/confocal images 1 while the
third row shows the checkerboard image of the results of our proposed IA method. Differences are generally small, but some improvements can be
observed for B-spline registration.
1The grayscale values of original TEM image are inverted for better visualization
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Table 8: CPU time (in seconds) for TEM/confocal images. The p-
value is computed using a paired t-test.

Method mean std p-value
Proposed IA 35.2 4.4 0.00019Standard IA 196.4 8.1

on MAE of corresponding landmarks. Table 10 and
11 indicate that the registration result of our proposed
method shows significant improvement over the result
using original images with both SSD and MI metric.
Also, the result of our proposed method is significantly
better than the standard IA method with MI metric.

4.3.5. Discussion
In Fig. 14, the affine and B-spline registrations us-

ing our proposed IA method show significant improve-
ment compared with affine and B-spline registrations on
the original images. In comparison to the SEM/confo-
cal experiment (Fig. 9) the checkerboard image shown
in Fig. 13 shows slightly stronger deformations for the
more flexible B-spline model leading to slightly better
local alignment. Our proposed method still achieves the
best results for the three registration models.

5. Conclusion

We developed a multi-modal registration method for
correlative microscopy. The method is based on im-
age analogies with a sparse representation model. Our
method can be regarded as learning a mapping between
image modalities such that either an SSD or MI image
similarity measure becomes appropriate for image reg-
istration. Any desired image registration model could
be combined with our method as long as it supports ei-
ther SSD or a MI as an image similarity measure. Our
method then becomes an image pre-processing step.
We tested our method on SEM/confocal and TEM/con-
focal image pairs with rigid registration followed by
affine and B-spline registrations. The image registra-
tion results from Fig. 6, 14 suggest that the sparse im-
age analogy method can improve registration robust-
ness and accuracy. While our method does not show
improvements for every individual dataset, our method
improved registration results significantly for the SEM/-
confocal experiments for all transformation models and
for the TEM/confocal experiments for affine and B-
spline registration. Furthermore, when using our im-
age analogy method multi-modal registration based on
SSD becomes feasible. We also compared the runtime
between the standard IA and the proposed IA methods.

Our proposed method runs about 5 times faster than the
standard method. While the runtime is far from real-
time performance, the method is sufficiently fast for cor-
relative microscopy applications.

Our future work includes additional validation on a
larger number of datasets from different modalities. Our
goal is also to estimate the local quality of the image
analogy result. This quality estimate could then be used
to weight the registration similarity metrics to focus on
regions of high confidence. Other similarity measures
can be modulated similarly. We will also apply our
sparse image analogy method to 3D images.
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Appendix A. Updating u(1) (reconstruction of f (1))

The sparse representation based image analogies
method is defined as the minimization of

E(u(1), u(2), {αi}) =
γ

2
‖u(1) − f (1)‖22

+
1
2

N∑
i=1

‖Ri

(
u(1)

u(2)

)
−

(
D(1)

D(2)

)
αi‖

2
2 + λ‖αi‖1.

(A.1)

We use an alternating optimization method to
solve (A.1). Given a dictionary D(1) and corre-
sponding coefficients α, we want to update u(1) by
minimizing the following energy function

ED(1),α(u(1)) =
γ

2
‖u(1) − f (1)‖22 +

1
2

N∑
i=1

‖Riu(1) − D(1)αi‖
2
2.

Differentiating the energy yields

∂E
∂u(1) = γ(u(1) − f (1)) +

N∑
i=1

RT
i (Riu(1) − D(1)αi) = 0.

After rearranging, we get

u(1) = (γI +

N∑
i=1

RT
i Ri)−1(γ f (1) +

N∑
i=1

RT
i D(1)αi).
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Table 9: TEM/confocal rigid registration results (in µm, pixel size is 0.069 µm).

Proposed IA Standard IA Original Image Landmark

case MAE STD MAE STD MAE STD MAE STD

1 SSD 0.3174 0.2698 0.3219 0.2622 0.4352 0.2519 0.2705 0.1835
MI 0.3146 0.2657 0.3132 0.2601 0.5161 0.2270

2 SSD 0.4911 0.1642 0.5759 0.2160 2.5420 1.6877 0.3091 0.1594
MI 0.4473 0.1869 0.4747 0.3567 1.4245 0.1780

3 SSD 0.5379 0.2291 1.8940 1.0447 0.5067 0.2318 0.3636 0.1746
MI 0.3864 0.2649 0.5261 0.2008 0.4078 0.2608

4 SSD 0.4451 0.2194 0.4516 0.2215 0.4671 0.2484 0.3823 0.2049
MI 0.4554 0.2298 0.4250 0.2408 0.4740 0.2374

5 SSD 0.6268 0.2505 1.2724 0.6734 1.3174 0.3899 0.2898 0.2008
MI 0.3843 0.2346 0.6172 0.2429 0.7018 0.2519

6 SSD 0.7832 0.5575 0.8159 0.4975 2.2080 1.4228 0.3643 0.1435
MI 0.7259 0.4809 1.2772 0.4285 0.8383 0.4430

Figure 14: Box plot for the registration results of TEM/confocal images for different methods. The bottom and top edges of the boxes are 25th and
75th percentiles, the central red lines indicate the medians.

Table 10: Hypothesis test results (p-values) with multiple testing correction results (FDR corrected p-values in parentheses) for registration results
measured via landmark errors for TEM/confocal images. We use a one-sided paired t-test. Comparison of different image types (original image,
standard IA, proposed IA) using the same registration models (rigid, affine, B-spline). The proposed image analogy method performs better for
affine and B-spline deformation models. (Bold indicates statistically significant improvement at a significance level α = 0.05 after correcting for
multiple comparisons with FDR.)

Original Image/Standard IA Original Image/Proposed IA Standard IA/Proposed IA

Rigid SSD 0.2458 (0.2919) 0.0488 (0.1069) 0.0869 (0.1303)
MI 0.2594 (0.2919) 0.0478 (0.1069) 0.0594 (0.1069)

Affine SSD 0.5864 (0.5864) 0.0148 (0.0445) 0.0750 (0.1226)
MI 0.1593 (0.2048) 0.0137 (0.0445) 0.0556 (0.1069)

B-spline SSD 0.0083 (0.0445) 0.0085 (0.0445) 0.3597 (0.3809)
MI 0.0148 (0.0445) 0.0054 (0.0445) 0.1164 (0.1611)
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Table 11: Hypothesis test results (p-values) with multiple testing correction results (FDR corrected p-values in parentheses) for registration results
evaluated via landmark errors for TEM/confocal images. We use a one-sided paired t-test. Comparison of different image types (original image,
standard IA, proposed IA) using the same registration models (rigid, affine, B-spline). Results are overall suggestive of the benefit of B-spline
registration, but except for the standard IA do not reach significance after correction for multiple comparisons. This may be due to the limited
sample size. (Bold indicates statistically significant improvement after correcting for multiple comparisons with FDR.)

Rigid/Affine Rigid/B-spline Affine/B-spline

Original Image SSD 0.0792(0.1583) 0.1149(0.2069) 0.3058(0.4865)
MI 0.4325(0.4865) 0.4091(0.4865) 0.3996(0.4865)

Standard IA SSD 0.3818(0.4865) 0.0289(0.1041) 0.0280(0.1041)
MI 0.4899(0.5188) 0.0742(0.1583) 0.0009(0.0177)

Proposed IA SSD 0.3823(0.4865) 0.0365(0.1096) 0.0216(0.1041)
MI 0.5431(0.5431) 0.0595(0.1531) 0.0150(0.1041)

Appendix B. Updating the Dictionary

Assume we are given current patch estimates and dic-
tionary coefficients. The patch estimates can be ob-
tained from an underlying solution step for the non-local
dictionary approach or given directly for local dictio-
nary learning. The dictionary-dependent energy can be
rewritten as

Ed(D, {αi}) =

N∑
i=1

1
2

(pi − Dαi)T (pi − Dαi) + λ‖αi‖1

=

N∑
i=1

1
2

(pT
i pi − pT

i Dαi − α
T
i DT pi + αT

i DT Dαi) + λ‖αi‖1.

Using the derivation rules ((Petersen and Pedersen,
2008))

∂aT Xb
∂X

= abT ,
∂aT XT b
∂X

= baT ,
bT XT Xc
∂X

= XbcT +XcbT ,

we obtain

∂Ed(D, {αi})
∂D

=

N∑
i=1

(Dαi − pi)αT
i = 0.

After some rearranging, we obtain

D
N∑

i=1

αiα
T
i︸    ︷︷    ︸

=A

=

N∑
i=1

piα
T
i︸    ︷︷    ︸

=B

.

If A is invertible we obtain

D = (
N∑

i=1

piα
T
i )(

N∑
i=1

αiα
T
i )−1 = BA−1.
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