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Abstract. We propose a robust multimodal dictionary learning method
for multimodal images. Joint dictionary learning for both modalities may
be impaired by lack of correspondence between image modalities in train-
ing data, for example due to areas of low quality in one of the modalities.
Dictionaries learned with such non-corresponding data will induce un-
certainty about image representation. In this paper, we propose a proba-
bilistic model that accounts for image areas that are poorly correspond-
ing between the image modalities. We cast the problem of learning a
dictionary in presence of problematic image patches as a likelihood max-
imization problem and solve it with a variant of the EM algorithm. Our
algorithm iterates identification of poorly corresponding patches and re-
finements of the dictionary. We tested our method on synthetic and real
data. We show improvements in image prediction quality and alignment
accuracy when using the method for multimodal image registration.

1 Introduction

Sparse representation model represents a signal with sparse combinations of
items in a dictionary and shows its power in numerous low-level image process-
ing applications such as denoising and inpainting [4] as well as discriminative
tasks such as face and object recognition [10]. Dictionary learning plays a key
role in applications using sparse models. Hence, many dictionary learning meth-
ods have been introduced [1, 11, 6, 7]. In [1], a dictionary is learned for image
denoising, while in [6], supervised learning is performed for classification and
recognition tasks. In [7], a multimodal dictionary is learned from audio-visual
data. Mutltimodal dictionaries can be applied to super-resolution [11], multi-
modal image registration [3] and tissue synthesis [9].

However, multimodal dictionary learning is challenging: it may fail or provide
inferior dictionary quality without sufficient correspondences between modali-
ties in the training data. This problem has so far not been addressed in the
literature. For example, a low quality image deteriorated by noise in one modal-
ity can hardly match a high quality image in another modality. Furthermore,
training images are pre-registered. Resulting registration error may harm image
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correspondence and hence dictionary learning. Such noise- and correspondence-
corrupted dictionaries will consequentially produce inferior results for image re-
construction or prediction. Fig. 1 shows an example of multimodal dictionary
learning for both perfect and imperfect corresponding image pairs.
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Fig. 1: An illustration of perfect (left) and imperfect (right) correspondence be-
tween multimodal images and their learned dictionaries. The imperfect corre-
spondence (gray part in right images) could result in learning an imperfect dic-
tionary (gray dictionary words) which is not desirable. Our goal is to robustly
recover a compact dictionary of corresponding elements.

In this paper, instead of directly learning a multimodal dictionary from train-
ing data [3], we distinguish between image regions with and without good cor-
respondence in the learning process. Our main contributions are as follows

• We propose a probabilistic model for dictionary learning which discriminates
between corresponding and non-corresponding patches. This model is gener-
ally applicable to multimodal dictionary learning.

• We provide a method robust to noise and mis-correspondences. We demon-
strate this using real and synthetic data and obtain “cleaner” dictionaries.

• We demonstrate consistency of performance for a wide range of parameter
settings. This indicates the practicality of our approach.

The paper is organized as follows: Sec. 2 describes the multimodal dictionary
learning method and its probabilistic model. Sec. 3 provides an interpretation
of the proposed model. We apply the model to synthetic and real data in Sec 4.
The paper concludes with a summary of results and an outlook on future work.

2 Dictionary Learning Method

Let I1 and I2 be two different training images acquired from different modalities
for the same area or object. Assume the two images have been registered already.

2.1 Sparse Multimodal Dictionary Learning

To learn a multimodal dictionary D̃ using a sparse representation, one solves

{ ˆ̃D, α̂} = arg min
D̃,α

N∑
i=1

1

2
‖x̃i − D̃αi‖22 + λ‖αi‖1, (1)
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where ‖.‖1 is the `1 norm of a vector and the `1 regularization induces sparsity
in α, N is the number of training samples, D̃ = [D1, D2]T is the corresponding
multimodal dictionary (dictionaries are stacked for the two modalities) and x̃i =
Ri[I1, I2]T (Ri is an operator to select the ith image patch). Note that there is
only one set of coefficients αi per patch, which relates the two dictionaries.

2.2 Confidence Measure for Image Patch

The confidence can be defined as a conditional probability p(h|xi). Given im-
age patches {xi}Ni=1 we want to reconstruct them with our learned multimodal
dictionary. Here, h is the hypothesis of whether the reconstruction of xi uses
some ’noise’ dictionary items (i.e. non-corresponding dictionary items); h = 1
indicates that the reconstruction xi uses ’noise’ dictionary elements.

Applying Bayes Rule [8, 2], p(h = 1|xi) can be represented as,

p(h = 1|xi) =
p(xi|h = 1)p(h = 1)

p(xi|h = 1)p(h = 1) + p(xi|h = 0)p(h = 0)
. (2)

Assuming the independence of each image patch xi and that the pixels in each
patch follow a Gaussian distribution, for p(xi|h) we assume

p(xi|h = 1, θ1) = N (xi;µ1, σ
2
1), p(xi|h = 0, θ0;D,αi) = N (xi−Dαi; 0, σ2

0). (3)

The parameters we need to estimate are θ1 = {µ1, σ1} and θ0 = σ0, as well as
the prior probability p(h), where p(h = 1) = π and p(h = 0) = 1− π.

Based on the assumption of conditional independence of the random variable
xi given h and θ [8], we can use either maximum likelihood (ML) or maximum
a posteriori (MAP) estimation for these parameters [8].

2.3 Robust Multimodal Dictionary Learning based on EM

For robust multimodal dictionary learning, we want to estimate θ = {D̃, α} con-
sidering the latent variable h. Based on the probabilistic framework of dictionary
learning [1], we have p(x̃|θ) =

∑
h p(x̃, h|θ). The ML estimation for θ is as follows

θ̂ = arg max
θ
p(x̃|θ) = arg max

θ
log

∑
h

p(x̃, h|θ) = arg max
θ
`(θ). (4)

Instead of directly maximizing `(θ), we maximize the lower bound Q(θ) =∑
h p(h|x̃, θ) log p(x̃, h|θ) [8]. p(h|x̃, θ) is the confidence in section 2.2. We can

apply the following EM algorithm to maximize Q(θ),

E-step : Q(θ|θ(t)) = E[log p(x̃, h|θ(t))]; M-step : θ(t+1) = arg max
θ
E[log p(x̃, h|θ)].

In the E-step we compute p(hi|x̃, θ), hi ∈ {1, 0}, which provides a confidence
level for each training patch given D̃ and α. In the M-step p(hi|x̃, θ) is a weight
for each image patch for updating θ. We use a variant of the EM algorithm
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for multimodal dictionary learning. We replace p(hi|x̃, θ) by δp(p(hi|x̃, θ)). Here,
δp(p) is an indicator function and δp(p) = 1, if p ≥ 0.5, δp(p) = 0, otherwise.
Thus in each iteration we rule out the image patches which have high confidence
that they are noise patches. We then refine the multimodal dictionary using the
corresponding training samples. The detailed algorithm is shown in Alg. 1.

Algorithm 1 EM algorithm for Multimodal Dictionary Learning

Input: Training multimodal image patches: {x̃i}, i ∈ 1, ..., N ;
Initialize multimodal dictionary D̃ = D̃0, D̃0 is trained on all of the x̃i;

Output: Refined dictionary ˆ̃D
1: (E-step) compute δp(p(h = 0|x̃i, θ)), where

δp(p) =

{
1, if p ≥ 0.5,
0, otherwise.

(5)

p(h = 0|x̃i, θ) =
p(x̃i|h = 0, θ)p(h = 0)

p(x̃i|h = 1, θ)p(h = 1) + p(x̃i|h = 0, θ)p(h = 0)
. (6)

update θ1 and θ0 in (3) based on δp(p(h = 0|x̃i, θ)).
2: (M-step) update D̃ and α as follows1,

D̃(t) = arg min
D̃

N∑
i=1

δp(p(h = 0|x̃i, θ))(
1

2
‖x̃i − D̃αi‖22 + λ‖αi‖1),

s.t. ‖D̃j‖22 ≤ 1, j = 1, 2, ..., k.

α
(t)
i = arg min

αi

δp(p(h = 0|x̃i, θ))(
1

2
‖x̃i − D̃(t)αi‖22 + λ‖αi‖1).

(7)

3: Iterate E and M steps until convergence reached.

3 Interpreting the Model

If there is no prior information about p(h), we assume p(h = 1) = p(h = 0) = 0.5.
If p(h = 0|x̃i, θ) > 0.5, based on (3), (5), (6), we have

‖x̃i − D̃α‖22 ≤ σ2
0/σ

2
1‖x̃i − µi1‖22 = c‖x̃i − µi1‖22. (8)

Here ‖x̃i−D̃α‖22 is the sum of squares of reconstruction residuals of image patch
x̃i, and ‖x̃i−µi1‖22 is the sum of squares of centered intensity values (with mean
µi1 removed) in x̃i.

Thus equation (8) defines the criterion for corresponding multimodal image
patches as those patches which can be explained by the multimodal dictionary D̃
better than the patch’s mean intensity, i.e. the sum of squared residuals should
be smaller than a threshold T , and T is dependent on the variance of x̃i, σ

2
1 , and

the variance of the reconstruction residual, σ2
0 .

1 We use SPAMS (http://spams-devel.gforge.inria.fr) for dictionary learning and
sparse coding[5].
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Intuitively, a small σ1 favors more corresponding image patches and a large
σ1 considers more image patches as non-corresponding.

4 Experimental Validation

We consider the image prediction problem (for a known dictionary D̃) solving

{α̂i} = arg min
αi

N∑
i

‖x̃′i − D̃αi‖22 + λ‖αi‖1. (9)

Unlike for eq. 1, where x̃i = Ri[I1, I2]T , here x̃′i = Ri[I1, u2]T where u2 is the
prediction of I2. Since I2 is not measured, we can effectively set Riu2 = D2αi
or equivalently remove it from the optimization. Given {α̂i} we can then com-
pute the predicted image. Most applications using multimodal dictionary are
concerned about the prediction residuals, such as super-resolution and multi-
modal registration [11, 3]. We therefore first validate our algorithm based on the
resulting sum of squares of prediction residuals (SSR).

We test our proposed multimodal dictionary learning method on synthetic
and real data. For the synthetic data, we generate non-corresponding multimodal
image patches using the following generative model. We choose p(h = 1) which
defines the noise level in the training set, i.e. the percentage of non-corresponding
multimodal image patches in the training set. For each non-corresponding patch
x1i , we generate µi1 as the mean of all training patches and add Gaussian noise
εµ. We generate a noise patch by adding Gaussian noise εx1

i
to the mean µi1.

4.1 Synthetic Experiment on Textures

We create multimodal textures by smoothing a given texture with a Gaussian
kernel and inverting the intensity of the smoothed image. Fig. 2 shows an ex-
ample of our generated multimodal textures. We generate both training and
testing multimodal textures from Fig. 2, i.e. use half of the multimodal textures
for training (add noise as non-correspondence regions) and the other half of the
multimodal textures for testing. We extract 10×10 image patches in both train-
ing images, and add ’noise’ with non-corresponding image patches to replace
corresponding patches. The σ for the Gaussian noise is set to 0.2.

We test how σ1 influences our dictionary learning method at a fixed noise
level p(h = 1) = 0.5. Fig. 2 shows the result. In practice, we can either learn
σ1 with an EM algorithm or manually choose it. When σ1 is close to 0.2 (the
σ for the noise), to be specific, σ1 ∈ (0.15, 0.4), we get consistently lower SSRs.
This indicates that our algorithm is robust for a wide range of σ1 values and
noise. For σ1 < 0.15, all the patches are considered as corresponding patches
while for σ1 > 0.4, all the patches are classified as non-corresponding patches.
Our method has the same performance as the standard method in [3] in these
two cases. The learned multimodal dictionaries are illustrated in Fig. 2 showing
that our algorithm successfully removes non-corresponding patches.
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(a) training textures and learned D̃
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Fig. 2: D̃ is learned from training images with Gaussian noise (left). Stan-
dard method cannot distinguish corresponding patches and non-corresponding
patches while our proposed method can remove non-corresponding patches in
the dictionary learning process. The curve (right) shows the robustness with
respect to σ1. The vertical green dashed line indicates the learned σ1.

(a) training images and learned D̃
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Fig. 3: D̃ is learned from training SEM/confocal images with Gaussian noise
(left). The curve (right) shows the robustness with respect to σ1. The vertical
green dashed line indicates the learned σ1.

4.2 Synthetic Experiment on Multimodal Microscope Images

We also test the proposed algorithm on correlative microscope images. We have
8 pairs of Scanning Electron Microscopy (SEM) and confocal images. Image
pairs have been aligned with fiducials. Fig. 3 (a) illustrates an example of
SEM/confocal images. We add non-corresponding patches using the same method
as in sec. 4.1. Fig 3 (a) shows the results. The dictionary learned with our method
shows better structure and less noise compared with the standard dictionary
learning method. Fig. 3 (b) shows the interaction between σ1 and SSR with
fixed p(h = 1) = 0.5. For σ1 < 0.16, all the image patches are categorized as
corresponding patches while for σ1 > 0.6, all the patches are classified as non-
corresponding patches. Our method has the same performance as the standard
method under these conditions. We observe a large range of σ1 values resulting
in improved reconstruction results indicating robustness.
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4.3 Multimodal Registration on Correlative Microscopy

(a) TEM (b) Confocal

Fig. 4: TEM/Confocal images

We use the proposed multimodal dic-
tionary learning algorithm for mul-
timodal registration [3]. The mul-
timodal image registration problem
simplifies to a monomodal one us-
ing the multimodal dictionary in
a sparse representation framework.
The test data is Transmission Elec-
tron Microscopy (TEM) and confo-
cal microscopy. We have six pairs of
TEM/confocal images. We train the
multimodal dictionary using leave-
one-out cross-validation. Fig. 4 shows an example of our test data. We first
registered the training images with manually chosen landmarks (no ground truth
available), then learned the multimodal dictionary and applied it to predict the
corresponding image for a given source image. We resampled the predicted im-
ages with up to ±2.07µm (30 pixels) in translation in the x and y directions (at
steps of 10 pixels) and ±20◦ in rotation (at steps of 10 degrees). Then we reg-
istered the resampled predicted image to the corresponding target using a rigid
transformation model. σ1 is chosen as 0.15 based on cross-validation for the pre-
diction errors in this experiment. Tab. 1 shows a comparison of our method with
the method in [3]. The result shows about 15% improvement in prediction error
and a statistically significant improvement in registration errors.

Table 1: Prediction and registration results. Prediction is based on the method
in [3], and we use SSR to evaluate the prediction results. Here, MD denotes our
proposed multimodal dictionary learning method and ST denotes the dictionary
learning method in [3]. The registrations use Sum of Squared Differences (SSD)
and mutual information (MI) similarity measures. We report the results of mean
and standard deviation of the absolute error of corresponding landmarks in mi-
cron (0.069 micron = 1 pixel). The p-value is computed using a paired t-test.

Metric Method mean std p-value

Prediction SSR
MD 6.28× 104 3.61× 103

ST 7.43× 104 4.72× 103

Registration
SSD

MD 0.760 0.124
0.0004

ST 0.801 0.139

MI
MD 0.754 0.127

0.0005
ST 0.795 0.140

5 Conclusion

In this paper, we proposed a robust multimodal dictionary learning method
based on a probabilistic formulation. We directly model corresponding and non-
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corresponding multimodal training patches. Our method is based on a variant
of the EM algorithm which classifies the non-corresponding image patches and
updates the multimodal dictionary iteratively. We validated our method using
synthetic and real data. Our algorithm demonstrated its robustness to noise
(non-corresponding image patches). We also applied our method to multimodal
registration showing an improvement in alignment accuracy compared with the
traditional dictionary learning method. The proposed method is expected to be
of general use for multimodal dictionary learning. While our method is based on
a Gaussian noise model, it can easily be adapted to other noise model such as
Poisson noise. Future work will address multimodal dictionary learning in the
context of deformable image registration.
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