
Temporally-Dependent Image Similarity
Measure for Longitudinal Analysis

Istvan Csapo1, Brad Davis2, Yundi Shi1, Mar Sanchez3, Martin Styner1, and
Marc Niethammer1

1 University of North Carolina at Chapel Hill, NC
2 Kitware, Inc., Carrboro, NC

3 Emory University, Atlanta, GA
icsapo@cs.unc.edu

Abstract. Current longitudinal image registration methods rely on the
assumption that image appearance between time-points remains con-
stant or changes uniformly within intensity classes. This assumption,
however, is not valid for magnetic resonance imaging of brain develop-
ment. Registration methods developed to align images with non-uniform
appearance change either (i) locally minimize some global similarity mea-
sure, or (ii) iteratively estimate an intensity transformation that makes
the images similar. However, these methods treat the individual images
as independent static samples and are inadequate for the strong non-
uniform appearance changes seen in neurodevelopmental data. Here, we
propose a model-based similarity measure intended for aligning longitu-
dinal images that locally estimates a temporal model of intensity change.
Unlike previous approaches, the model-based formulation is able to cap-
ture complex appearance changes between time-points and we demon-
strate that it is critical when using a deformable transformation model.

1 Introduction
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Fig. 1. MR images of the developing mon-
key brain (2 weeks through 18 months). Un-
myelinated white matter in the early stages
of development appears darker than the
myelinated white matter in later stages.

The analysis of longitudinal images is
important in the study of neurode-
velopment and its disorders. If global
measures are insufficient for analysis,
change can be localized by establish-
ing image correspondence via regis-
tration. The aim of the registration
method is then to find a reasonable
geometric transformation between the
images according to some similarity
measure and a model of spatial trans-
formation. Although longitudinal reg-
istration has received some attention in recent years, most of the effort has
been focused on the spatial extent of change (various formulations of large-
deformation-diffeomorphic-mapping (LDDMM) registration [2,6]) while relying
on conservative assumptions about the temporal changes in image appearance.
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Commonly used global similarity measures (sum of squared differences (SSD),
normalized cross correlation (NCC), mutual information (MI) [10]), for instance,
expect a one-to-one relationship between the spatially corresponding intensities
(or intensity ranges in the case of mutual information due to histogram binning)
of the different time-points. This is not a valid assumption for certain registra-
tion problems. In longitudinal magnetic resonance (MR) imaging studies of brain
development, for example, the biological process of myelination causes a substan-
tial shift in the MR appearance of white matter tissue that is both spatially and
temporally non-uniform [1,8] (Fig. 1 shows MR images of the developing brain).
As a result, deformable registration methods that use global similarity measures
often fail to recover the correct alignment in this setting since inconsistencies
in appearance can be resolved by introducing erroneous local deformations that
are not supported by the underlying structural information [5].

The various approaches that have been proposed for aligning images with
non-uniform appearance change (often for less severe intensity variation aris-
ing from magnetic field inhomogeneities) either (i) locally minimize some global
similarity measure in overlapping subregions that are small enough to have near
constant intensities within tissue types [9,5], or (ii) jointly with registration, esti-
mate an intensity transformation that makes the images similar [3,7]. While local
methods are appropriate for aligning images with spatially smooth and slowly
varying intensity changes within tissue classes, the trade off between registra-
tion accuracy and subregion size means that they are inadequate for the strong
intensity gradients seen in myelinating white matter tissue. Intensity transform
methods either have similar spatial limitations due to the slowly varying ba-
sis functions used to approximate the intensity transform [3], or discard spatial
information and therefore cannot capture complex intensity transformations [7].

Here, we formulate a model-based similarity measure (mSM) that estimates
local appearance change over time. Once the temporal model is estimated, exist-
ing deformable registration methods can also be used with the model to recover
the correct alignment by changing the appearance of one image to match the
other. After formulating our method in the following section, we first demon-
strate in Sect. 3 that MI and our approach both perform well with an affine
transformation model in the presence of non-uniform appearance change, but
then show that using the model-based approach is critical for deformable regis-
tration. This method can either (i) estimate the temporal intensity change model
without any prior, or (ii) use a known model for the initial alignment.

2 Modeling Appearance Change

We introduce a spatio-temporal model of appearance change into a general regis-
tration framework via a model-based similarity measure. To motivate the model-
based similarity measure consider the standard sum of squared differences (SSD)
similarity term. If a transformation model is involved the SSD can be written as

SSD(I0, I1) =

∫
Ω

(I0(x) ◦ Φ(x)− I1(x))2 dx, (1)
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where Φ(x) is the transformation that maps the coordinate system of image
I0 to that of image I1. If we consider the SSD measure a simple model-based
registration method, where the image model is simply the given image I = I0,
then SSD aims to minimize the squared residuals to this model subject to the
sought for transformation. We will therefore consider SSD a special case of a
sum of squared residual (SSR) model. With a time-dependent image model and
a generalization to multiple images, we can write the corresponding SSR as

SSR({Ii}) =

n−1∑
i=0

∫
Ω

(Ii(x, ti) ◦ Φi(x)− Î(x, ti))
2 dx,

where Ii(·, ti) denotes the measured image at time-point ti and Î(·, ti) the model
(estimate) at the same time-point. Note that for two time-points and Î = I1
the model simplifies to the standard SSD. For simplicity, consider a quadratic
(in-time) appearance model

Î(x, t) = α(x)t2 + β(x)t+ γ(x), (2)

where α, β, and γ are spatially varying model coefficients.

2.1 Transformation Model

Assume that we aim to estimate the affine transform of the form Ax+ b for each
image back to the coordinate system of the model Î and denote the set of these
transformations as {Ai, bi}. Then the registration model becomes

SSR({Ii}, {Ai, bi}, α, β, γ) =

n−1∑
i=0

∫
Ω

(Ii(Aix+ bi, ti)− Î(x, ti))
2 dx, (3)

resulting in the point-wise linear system

n−1∑
i=0

t4i t3i t2it3i t
2
i ti

t2i ti 1

α(x)
β(x)
γ(x)

 =

n−1∑
i=0

Ii(Aix+ bi, ti)

t2iti
1

 ,

which amounts to a local fitting of the quadratic model (2) given the current
estimate of the affine transformation parameters. Any other model could be
substituted here. Note that the image-comparison terms in (3) are strictly with
respect to the model (2) which is estimated jointly. Estimation of the model and
the affine parameters can then be accomplished by alternating model fitting and
transformation parameter estimation steps. In the extreme case one (i) estimates
the affine transforms given the current model then (ii) re-estimates the model and
then repeats these two steps to convergence. Note also that there is a rotational
ambiguity, so one of the coordinate systems should be fixed, e.g., A0 = x, b0 = 0.

Here, to introduce the decoupled registration and model estimation steps, we
started with an affine transformation model. However, the same principle can
be applied to more flexible registration methods, such as the deformable elastic
registration used for the experiments in Sect. 3.



2.2 Spatial Regularization

Instead of estimating the appearance model parameters independently for each
voxel, we can get a more robust estimate by estimating the parameters over
subregions of the image, where the subregions are defined on a template (atlas)
image. This, however, still leaves the problem of choosing the image subregions.
If tissue segmentation is available, one reasonable choice would be to estimate
the parameters for each tissue class. Using this approach, for each assumed to
be uniform template region Rl the parameter fitting equations for the quadratic
case become

|Rl|
n−1∑
i=0

t4i t3i t2it3i t
2
i ti

t2i ti 1

αlβl
γl

 =

n−1∑
i=0

∫
Rl

Ii(Aix+ bi, ti) dx

t2iti
1

 ,

everything else stays the same. Here, |Rl| denotes the cardinality of the set Rl
and αl, βl, and γl denote the model parameters valid (constant) on Rl. This
approach, however, assumes that the intensity change within a tissue class is
spatially uniform.

2.3 Model Parameter Estimation
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Fig. 2. Subregion based model estima-
tion. Each subregion Rl (red) is defined
on the available white matter segmenta-
tion (usually at the last-time point). The
subregions are perpendicular to the PA
direction. The model parameters for Rl

are estimated from a neighborhood Nl of
width w (yellow).

For the current implementation of the
method spatial regularization of the
model parameters was achieved by a
subregion based approach shown in
Fig. 2. Since the intensity change in the
white matter occurs dominantly in the
posterior-anterior (PA) direction (see
Fig. 3) we chose subregions, Rl, that
span across the white matter perpendic-
ular to the posterior-anterior direction.
So far, this is the same as the subre-
gion method described above. However,
instead of estimating the model parame-
ters from Rl only, we use a neighborhood
Nl of width w centered on Rl and use ro-
bust statistics to estimate the model pa-
rameters for Rl. The neighborhoods for
adjacent Rl are overlapping and therefore encourage spatial regularization in the
posterior-anterior direction.

Estimation of the model and affine parameters can be accomplished by al-
ternating the model fitting and transformation parameter estimation steps. In
the extreme case we can first estimate the transformation given the model as a
separate registration step and then re-estimate the model and repeat these two
steps until convergence. In fact, taking this idea even further, one can change the



appearance of the estimated image according to the model and use any registra-
tion method to estimate the transformation parameters. Here, we use the latter
approach which allows the testing of existing registration algorithms with mSM.
The algorithm for iterative registration and estimation is is set up as follows:

0) Initialize model (Î) parameters to α = α0, β = β0, γ = γ0.
1) Affinely pre-register images {Ii} to Î.
2) Estimate the appearance of Î at times {ti}, giving {Î(ti)}.
3) Estimate displacement fields {ui} by registering images {Ii} to {Î(ti)}.
4) Estimate model parameters α, β, γ from the registered images {Ii ◦ ui}
5) Repeat from step 2 until convergence.

Convergence was achieved when the change in the registration energy function
between iterations was below tolerance (typically less than 5 iterations).

3 Experimental Results

The similarity measures were tested by registering pairs of 2D synthetic images
with a known ground truth transformation between them. The registration ac-
curacy was determined by computing the distance between the ground truth and
the recovered transformation. The root mean squared (RMS) error of the voxel-
wise distance within the mask of the target image then yielded the registration
error. All experiments are in 2D, but the method generalizes to 3D.

3.1 White Matter Intensity Distributions from Real Data

P

A

10

12

14

16

18

20

P A

2wk
3mo

6mo

12mo

gray matter

in
te
n
si
ty

PA-axis

Fig. 3. Spatio-temporal distribution of white matter in-
tensities in 9 monkeys. A single slice from each time-
point is shown in order in the left column (2 week at the
bottom), and the white matter segmentation (red) at 12
months is shown in the middle. Plotted, for each time-
point, the mean (line) ± 1 standard deviation (shaded
region) of the spatial distribution of the white matter in-
tensities averaged over the whole brain of each monkey
in the PA direction. The images were affinely registered
and their gray matter intensity distributions matched.

An important part of
the registration experi-
ments is testing the sim-
ilarity measures on real-
istic appearance change
while knowing the ground
truth deformations. To
this end, we calculated
the spatial and tempo-
ral intensity changes from
the MR images of 9 rhe-
sus monkeys during the
first 12 months of life.
The white matter inten-
sity trajectories acquired
from the real monkey
data were then used to
generate the simulated
brain images for Experiment 2 (Sect. 3.3).



The spatial white matter distributions were calculated for each time-point
(2 week, 3, 6, 12 month) of the 9 monkeys. The early time-points have low
gray-white matter contrast, therefore the white matter segmentation of the 12
month image was transferred to the earlier time-points (this is often the case
for longitudinal studies where good tissue segmentation might only be available
at the latest time-point). Due to the few images available at this stage of the
study, we averaged the white matter intensity change of the whole brain in a
single dimension along the posterior-anterior direction (most of the intensity
change is along this direction [4]). Figure 3 shows the mean and variation of the
white matter intensity profiles from all four time-points. Myelination starts in
the posterior and central regions of the white matter and continues towards the
periphery and, dominantly, towards the anterior and posterior regions. These
findings agree with existing studies on myelination [4]. Of note is the strong
white matter intensity gradient in the early time-points due to the varying onset
and speed of the myelination process.

3.2 Experiment 1:
Synthetic Data

target I0(1) I0(n)

I1 In error

Φi ◦ Φ̂−1
i

Φ1 Φn

Φ̂−1
i

1

2
3

4

1

0

Fig. 4. Experimental setup: 1) Increasing white
matter intensity gradient is added to the target, I0.
2) Adding known random deformations yields the
source images, 3) which are registered back to the
target. 4) Registration error is calculated from the
known (Φi) and recovered (Φ̂−1

i ) transformations.

In this experiment, we created
sets of 64 × 64 2D synthetic
images. Each set consisted
of 11 time-points (Ii, i =
0, . . . , 10). I0 was designated
as the target image and all
subsequent time-points as the
source images. The gray mat-
ter intensities of all 11 images
were fixed (Igmi = 80). For the
source images, I1, . . . , I10, we
introduced two types of white
matter appearance change:

i) Uniform white matter appearance change over time, starting as dark (un-
myelinated) white matter (Iwm

1 = 20) and gradually brightening (myeli-
nated) white matter (Iwm

10 = 180) resulting in contrast inversion between
gray and white matter. The target white matter intensity was set to 100.

ii) White matter intensity gradient along the posterior-anterior direction with
increasing gradient magnitude over time. The target image had uniform
white matter (Iwm

0 = 50). For the source images the intensity gradient
magnitude increased from 1 to 7 intensity units per pixel (giving Iwm

1 =
{50, . . . , 70} up to Iwm

10 = {50, . . . , 200}). These gradients are of similar
magnitude as observed in the real monkey data.

We tested the similarity measures for two types of transformation models: affine;
and deformable with elastic regularization. Figure 4 shows the experimental
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setup with deformable transformation model (for the affine registration exper-
iments Φi was an affine transform; for the deformable registration experiment
Φi was a spline deformation with 20 control points). The aim of the experiment
was to recover the ground truth inverse deformation, Φ−1

i , by registering the

10 source images to I0 (giving Φ̂−1
i ) with each of the four similarity measures

(SSD, NCC, MI, mSM). We repeated each experiment 100 times for each trans-
formation model with different random deformations giving a total of 16000
registrations (2 white matter change × 2 transformation model × 10 source im-
age × 4 measure × 100 experiment). Significance was calculated with Welch’s
t-test (assuming normal distributions, but unequal variances) at a significance
level of p < 0.01.

Note that the synthetic images have longitudinal intensity changes over time,
but the random spatial deformations do not have a temporal model. This is in-
tended to be a challenging scenario for the parameter estimation, as true longitu-
dinal data is much less spatially variable, and avoid bias towards any particular
longitudinal growth model. Next, we describe the results of the experiments for
each transformation model.

Affine transformation model. Affine registration is often appropriate for im-
ages from the same adult subject. In our case, it is only a preprocessing step to
roughly align the images before a more flexible, deformable registration. Never-
theless, the initial alignment can greatly affect the initial model estimation and
the subsequent deformable solution. Therefore we first investigate the sensitiv-
ity of affine registration to white matter appearance changes separately from
deformable registration.

Figure 5 shows the results for registering I1 through I10 to the target image
I0 from multiple sets (n = 100, giving 1000 pair-wise registrations for each sim-
ilarity measure) of longitudinal images with both uniform and gradient spatial
white matter intensity profiles. A registration error of less than 1 voxel can be
considered good alignment.

With uniform white matter, all four measures performed well when the con-
trast of the source image was close to the contrast of the target image (near
0 white matter intensity difference in the first plot of the median root means
squared registration error). The results for the gradient white matter profiles
show that the performance of both SSD and NCC declined as the gradient mag-
nitude increased, while MI and mSM aligned the images well even with the
strongest gradient. Overall, mSM significantly outperformed SSD and NCC but
not MI, however, for individual time-points mSM did significantly better for
3, . . . , 10.

The experiments suggest that affine registration can be reliably achieved by
MI or mSM, but for simplicity MI should be used if affine alignment is the only
objective.
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SSD 1.36 ± 2.87 0.17 5.79
NCC 0.51 ± 0.60 0.27 1.52

MI 0.09 ± 0.05 0.08 0.13
mSM 0.08 ± 0.36 0.06 0.10
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Fig. 5. Results for Experiment 1 with affine transformation, uniform and gradient white
matter intensity change. For uniform white matter, the line plot shows the median RMS
error vs. the white matter intensity difference between the source and the target images
(Iwm

i − Iwm
0 ) for each time-point (0 means the images have the same contrast). For the

gradient white matter, the x-axis of the line plot is the magnitude of the gradient.
The boxplots and the tables summarize the aggregate results over all time-points (the
box is the 25th and 75th percentile, the red line is the medium, the whiskers are 1.5 ×
interquartile range, and the red marks are outliers). The small boxplots show results
for each time-point (S, N, M, and m are SSD, NCC, MI, and mSM respectively). For
each boxplot, the x-label is highlighted in red if mSM performed significantly better
than that particular measure. The row of images shows the target and source images
for a single trial. Note that all box plots and the bottom line plot have log y scales.

Deformable registration. Similarly to the affine experiment, Fig. 6 shows the
error plots for deformable registrations in the presence of white matter intensity
change. For uniform white matter, SSD again produced small registration errors
when the contrast difference was small, but fared worse than MI and mSM in the
presence of large intensity differences between the target and the source images.
mSM performed slightly better than MI for all time-points.

The setup with deformable registration and white matter gradient resembles
the real problem closely and therefore is the most relevant. Here, SSD and NCC
introduced considerable registration errors with increasing gradient magnitude.
The registration error of MI remained under 2 voxels (mean = 1.62±0.45), while
mSM led to significantly less error (mean = 1.25± 0.35) for all time-points.
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Fig. 6. Experiment 1 results with deformable transformation. The graphs are set up
similarly as in Fig. 5 except all plots have linear y scales. The last setup with deformable
transformation model and gradient white matter intensity is the most challenging and
relevant to the real world problem.

3.3 Experiment 2: Simulated Brain Data

SSD NCC MI mSM
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3
Mean ± std Median 90th pct

SSD 1.08 ± 0.30 1.04 1.47
NCC 0.98 ± 0.25 0.94 1.31

MI 1.04 ± 0.30 0.99 1.43
mSM 0.67 ± 0.23 0.63 0.98

Table 2.

Fig. 7. Experiment 2 results. mSM lead to significantly
better alignments than the global measures.

The next set of experiments
used simulated brain im-
ages with white matter in-
tensity distributions based
on the monkey data. Four
time-points I0, . . . , I3 were
generated corresponding to
the four time-points of the
monkey data. At each time-
point, the spatial white
matter intensity distribution of the simulated image was obtained by a random
perturbation of the mean monkey white matter distribution for that particular
time-point (see Fig. 3). The local magnitude of the perturbation was propor-
tional to the local variation of monkey white matter data, therefore the generated
curves had similar variation to the real data. The first time-point was designated
as the target image. The other three time-points were deformed by a random
deformation. The source images generated this way, similarly to Experiment 1,



were then registered to I0 with the four similarity measures. The experiment
was repeated 200 times, each time with different random white matter intensity
profiles and different random deformations. The boxplot and Tab. 2 in Fig. 7
show the aggregate results for all the time-points. mSM performed significantly
better than SSD, NCC, and MI.

4 Conclusions

We presented a temporally-dependent model-based similarity measure and com-
pared it to three of commonly used measures. mSM performed significantly bet-
ter in the majority of experiments than the other measures, especially in the
presence of considerable intensity gradients. These experiments provide strong
evidence for the usefulness of a model based approach. Considerable improve-
ment might be achieved by better model selection, spatial regularization of the
model parameters, and improved model of intensity variation (instead of the
quadratic model). These improvements and validation on real 3D data will be
part of future work.
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