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Abstract. Longitudinal imaging studies are frequently used to inves-
tigate temporal changes in brain morphology. Image intensity may also
change over time, for example when studying brain maturation. How-
ever, such intensity changes are not accounted for in image similarity
measures for standard image registration methods. Hence, (i) local sim-
ilarity measures, (ii) methods estimating intensity transformations be-
tween images, and (iii) metamorphosis approaches have been developed
to either achieve robustness with respect to intensity changes or to si-
multaneously capture spatial and intensity changes. For these methods,
longitudinal intensity changes are not explicitly modeled and images are
treated as independent static samples. Here, we propose a model-based
image similarity measure for longitudinal image registration in the pres-
ence of spatially non-uniform intensity change.

1 Introduction
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Fig. 1. Brain slices and magnifications for a
monkey at ages 2 weeks, 3, 6, 12, and 18 months.
White matter appearance changes locally as ax-
ons are myelinated during brain development.

To study changes that occur dur-
ing brain development, neurode-
generation, or disease progres-
sion in general, longitudinal imag-
ing studies are important. Spatial
correspondences almost always
need to be established between
images for longitudinal analysis
through image registration. Most
image registration methods have
been developed to align images
that are similar in appearance or structure. If such similarity is not given (e.g.,
in case of pathologies or for pre- and post-surgery images) cost function masking
is typically used to discard image regions without correspondence from the reg-
istration. Such strict exclusion is not always desirable. When investigating brain



maturation for example (our target application in this paper) valid correspon-
dences for the complete brain are expected to exist. However, brain appearance
changes continuously over time due to biological tissue changes (here, myelina-
tion of white matter [1,12]) and adversely affects image registration results [9].

The effect of appearance change on the result of an image registration de-
pends on the chosen transformation model and the chosen image similarity mea-
sure. Generally, transformation models with few degrees of freedom (such as rigid
or affine transformations) are affected less by local changes in image appearance
than transformation models which can capture localized spatial changes, such
as elastic or fluid models. In particular, we have previously shown that affine
methods perform well even in the presence of strong non-uniform appearance
change, while deformable methods introduce erroneous local deformations in or-
der to resolve inconsistencies in appearance [3]. However, transformation models
which can capture local deformations are desirable for many longitudinal studies
as changes in morphology tends to be spatially non-uniform.

For longitudinal registration, temporal regularization of the transformation
model has been explored recently. This is motivated by the assumption that
unrealistic local changes can be avoided by enforcing temporal smoothness of
a transformation [5,7]. In this paper we instead focus on the complementary
problem of determining an appropriate image similarity measure for longitudinal
registration in the presence of temporal changes in image intensity.

Approaches which address non-uniform intensity changes have mainly ad-
dressed registration for image-pairs so far and either rely on local image uni-
formities [9,13] or try to estimate image appearance changes jointly with an
image transform [8,11,10]. Often (e.g., for bias field compensation in magnetic
resonance imaging), image intensity changes are assumed to be smooth. Our
proposed approach in contrast, estimates local longitudinal models of intensity
change using all available images. Our approach alternates between parameter
estimation for the local models of intensity change and estimation of the spa-
tial transformation. Image similarities are computed relative to the estimated
intensity models, hence accounting for local changes in image intensities.

Section 2 introduces the model-based image similarity measure (mSM). Sec-
tion 3 discusses parameter estimation. Section 4 describes the performed exper-
iments and discusses results. The paper concludes with a summary and outlook
on future work.

2 Model-Based Similarity Measure

Assume we have an image intensity model Î(x, t; p) which for a parameterization,
p, describes the expected intensity values for a given point x at a time t. This
model is defined in a spatially fixed target image. Then, instead of registering
a measured image Ii at ti to a fixed target image IT we can register it to its
corresponding intensity-adjusted image Î(x, ti; p), effectively removing temporal
intensity changes for a good model and a good parameterization, p. Hence,

Sim(Ii ◦ Φi, IT ) is replaced by Sim(Ii ◦ Φi, Î(x, ti; p)),



where Sim(·, ·) is any chosen similarity measure (e.g., sum of squared differences
(SSD), normalized cross correlation, or mutual information), and Φi is the map
from image Ii to the spatially fixed target space. Since our method aims to
create an intensity adjusted model Î that matches the appearance of the source
image, we use SSD in this paper. We call the intensity-adjusted SSD similarity
measure a sum of squared residual (SSR) model, where the residual is defined
as the difference between the predicted and the measured intensity value.

2.1 General Local Intensity Model Estimation for SSD

Since SSR is a local image similarity measure, for a given set of N measurement
images {Ii} at times {ti} we can write the full longitudinal similarity measure
as the sum over the individual SSRs, i.e.,

SSR({Ii}; p) =

N−1∑
i=0

∫
Ω

(Ii ◦ Φi(x)− Î(x, ti; p))
2 dx,

where Ω is the image domain of the fixed image. For given spatial transforms Φi
this is simply a least-squares parameter estimation problem given the measure-
ments {Ii◦Φi(x)} and the predicted model values {Î(x, ti; p)}. We use alternating
optimization with respect to the intensity model parameters, p, and the spatial
transformations Φi to convergence (see Sec. 3).

2.2 Logistic Intensity Model with Elastic Deformation
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Fig. 2. Logistic intensity
model.

SSR can be combined with any model for intensity
change, ranging from a given constant target im-
age (the trivial model), linear models, and splines to
models more closely adapted to the myelination pro-
cess we are interested in capturing during neurode-
velopment. Since the myelination process exhibits a
rapid increase during early brain development fol-
lowed by a gradual leveling off [4], nonlinear appear-
ance models are justified. In this paper we investigate the logistic model

Î(x, t;α(x), β(x), k(x)) =
α(x)

1 + β(x)e−k(x)t
, (1)

which is often used in growth studies [6]. Here, α, β, and k are spatially varying
model parameters with biological meaning, k being the maximum rate of inten-
sity change, α the maximum increase of white matter intensity during myelina-
tion, and β is related to the onset time of myelination (see Fig. 2). Assuming
that both unmyelinated and fully myelinated white matter intensities are spa-
tially uniform we keep α constant as the difference between myelinated (upper
asymptote) and unmyelinated (lower asymptote) white matter intensities. This
is a simplifying, but reasonable assumption since intensity inhomogeneities in
unmyelinated or myelinated white matter are small compared to the white mat-
ter intensity change due to the myelination process itself [1].



3 Parameter Estimation

Once the parameters for the local intensity models are known, SSR can be used
to replace the image similarity measure in any longitudinal registration method.
Here, we use an elastic deformation model (Sec. 3.1) and jointly estimate the
parameters for the intensity model (Sec. 3.2).

3.1 Registration model

The growth process of the brain not only includes appearance change but com-
plex morphological changes as well, hence the need for a deformable transfor-
mation model. To single out plausible deformations, we use (for simplicity) an
elastic regularizer [2] defined on the displacement field u as

S[u] =

∫
Ω

µ

4

d∑
j,k=1

(∂xj
uk + ∂xk

uj)
2︸ ︷︷ ︸

rigidity

+
λ

2
(div u)2︸ ︷︷ ︸

volume change

dx,

where µ (=1) and λ (=0) are the Lamé constants that control elastic behavior,
and the div is the divergence operator defined as ∇ · u, where ∇ is the gradi-
ent operator. Registrations over time then decouple into pairwise registration
between the intensity-adjusted target image and a given source image Ii. This
is sufficient for our test of the longitudinal image similarity measure, but could
easily be combined with a spatio-temporal regularizer which would then directly
couple the transformations between the images of a time-series (instead of only
having an indirect coupling through the model-based similarity measure).

3.2 Model Parameter Estimation

We estimate the intensity model parameters only within the white matter (seg-
mentation was obtained at the last time-point with an atlas-based segmentation
method and propagated to earlier time-points [14]) where image appearance
changes non-uniformly over time; for simplicity, gray matter intensity was as-
sumed to stay constant.

Note that overestimating the white matter results in fitting the model to the
surrounding gray matter voxels. This has negligible effect on the registration,
since the model can capture the constant gray matter intensities. Underestimat-
ing the white matter, on the other hand, can lead to uncorrected intensities near
the white-gray matter boundary and introduce erroneous local deformations.

Instead of estimating the parameters independently for each voxel, spatial
regularization was achieved by estimating the parameters from overlapping local
3× 3× 3 neighborhoods using robust statistics (median of the parameters).



The algorithm is defined as follows

0) Initialize model Î parameters to p = p0.
1) Affinely pre-register images {Ii} to Î.
2) Estimate the appearance of Î at times {ti}, giving {Î(ti)}.
3) Estimate displacement fields {ui} by registering images {Ii} to {Î(ti)}.
4) Estimate model parameters p from the registered images {Ii ◦ ui}.
5) Repeat from step 2 until convergence.

The algorithm terminates once the registration energy decreases by less than
a given tolerance between subsequent iterations. In all our experiments only
few iterations (typically less than 5) were required. A more in-depth numerical
convergence analysis should be part of future work. If desired, a prior model
defined in the target image (a form of intensity model parameter atlas) could
easily be integrated into this framework.

4 Experimental
Results
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Fig. 3. Corresponding target (cyan) and source (red)
landmarks for a single subject.

We compared the model-
based similarity measure
to mutual information
(MI) on sets of longitu-
dinal magnetic resonance
images of 9 monkeys, each with 4 time-points. Each set was affinely pre-registered
and intensity normalized so that the gray matter intensity distributions matched
after normalization (gray matter intensity generally stays constant over time).

We registered 3D images of the three early time-points I2wk, I3mo, I6mo to the
target image I12mo with an elastic registration method. Since the ground truth
deformations were not known, manually selected landmarks (Fig. 3) identified
corresponding regions of the brain at the different time-points (10-20 landmarks
in a single slice for each of the 4 time-points in all 9 subjects; the landmarks
were picked based on geometric considerations). The distance between trans-
formed and target landmarks yielded registration accuracy. Figure 4 shows the
experimental setup.

Note that for the model-based method the target image is not I12mo but
the model Î12mo estimated at time t of the source image. Here, we estimate the
intensity change of I12mo as white matter segmentation is easily obtained given
the good gray matter white matter contrast, but other time-points could be
used.

With MI, the registration method accounts for both the non-uniform white
matter appearance change and the morphological changes due to growth through
large local deformations. This is especially apparent for registrations between
I2wk (and to a lesser extent I3mo) and the target I12mo and suggests large lo-
cal morphological changes contradictory to normal brain development [4]. The
landmark mismatch results (Fig. 5) show that both mutual information and
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Fig. 4. Experimental setup and results for a single subject. To test MI, the source
images (blue; from bottom: I2wk, I3mo, I6mo) are registered to the latest time-point
I12mo (green). The resulting deformation field and the magnitude of the deformations
(in pixels) is shown in the right panel. For mSM, the source images are registered to
the model (red) that estimates the appearance of I12mo at the corresponding time of
each source image (results in middle panel).

the model-based approach perform well in the absence of large intensity non-
uniformity, however, mSM consistently introduces smaller erroneous deforma-
tions than MI.

Table 1 shows the aggregate results of the landmark mismatch calculations
for both methods. The model-based approach can account for appearance change
by adjusting the intensity of the model image (see the estimated model images in
Fig. 4) and therefore is most beneficial when the change in appearance between
the source and target image is large (I2wk, I3mo).

We also compared 1st and 2nd degree polynomial intensity models to the
logistic model and found no significant difference. This is expected with only
4 time-points as even the 1st degree model can reasonably estimate the local
appearance changes. However, we expect the logistic model to outperform the
simpler models in larger studies with more time-points or when the model ap-
pearance needs to be extrapolated (e.g., if new images are acquired later in a
longitudinal study after the previous time-points have been aligned). This will
be investigated as part of future work.
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Fig. 5. Landmark registration error. Each row shows a single subject. The first column
shows the target images and landmarks (cyan). Columns 2-4 are the source images
and landmarks: each source landmark is marked as two circles (red : MI, yellow : mSM)
with size proportional to registration error (smaller circle on top; green: both are equal).
That is, the size of the circles is proportional to registration accuracy (smaller is more
accurate) in that particular location.

5 Conclusions

We proposed a new model-based similarity measure which allows the deformable
registration of longitudinal images with appearance change. This method can
account for the intensity change over time and enables the registration method
to recover the deformation due only to changes in morphology. We compared
the model-based approach to mutual information and demonstrated that it can
achieve higher accuracy than mutual information in cases when there is a large
appearance change between source and target images. We used a logistic model
of intensity change and an elastic deformation model, however, the formulation
is general and can be used with any other appearance or deformation model. In
the future we will investigate the use of prior models to inform the estimation
step in regions with high uncertainty (e.g., due to poor initial alignment), in
addition to the effect of various intensity models on the registration accuracy.



Table 1. Landmark registration error (in voxels) between target I12mo and source im-
ages I2wk, I3mo, I6mo (significance level is α = 0.05; significant results are highlighted).

I2wk I3mo I6mo

mean std 50th 90th mean std 50th 90th mean std 50th 90th

MI 1.76 1.09 1.60 3.22 1.07 0.77 0.84 2.04 0.66 0.46 0.56 1.22
mSM 1.15 0.84 0.93 2.24 0.74 0.57 0.54 1.66 0.61 0.39 0.50 1.18
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