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Abstract

Segmentation involves separating distinct regions in an image. In this
note, we present a novel variational approach to perform this task within
the level-sets framework. We propose an energy functional that naturally
combines two segmentation techniques usually applied separately: intensity
thresholding and geometric active contours. Although our method can deal
with more complex statistics, we assume that the pixel intensities of the re-
gions have Gaussian distributions, in this work. The proposed approach af-
fords interesting properties that can lead to sensible segmentation results.

1 Introduction
Segmentation involves separating an image into distinct regions, a ubiquitous task in com-
puter vision applications. Active contours and image thresholding are among the most
important techniques for performing this task.

Geometric active contour (GAC) can easily be combined with level-set methods in
which a closed curve is represented implicitly as the zero level-set of a higher dimensional
function (usually a signed distance function [11]). The curve is evolved to minimize a
well-chosen energy functional, typically via gradient descent (see e.g., [11, 7, 6]). The
implicit representation allows the curve to naturally undergo topological changes, such
as splitting and merging. Different models have been proposed to perform segmentation
with GACs: Some frameworks use local image features such as edges [12, 3], whereas
other methods use regional image information such a intensity statistics, color or texture
[13, 1, 4, 10]. Region based approaches usually offer a higher level of robustness to
noise than techniques based on local information. Many of the region-based models have
been inspired by the region competition technique proposed in [15]. The book [5] is
a nice general reference on the various variational segmentation methods. In region-
based frameworks, the intensity statistics of the image are estimated from the segmenting
curve using parametric [1, 13, 10] or non-parametric [4] methods. While nonparametric
approaches allow to deal with a wide class of images, parametric methods usually result
in simple, robust and efficient segmentation algorithms.

In this note, we propose a novel region-based segmentation technique with GACs.
Although the proposed method is general enough to deal with diverse image statistics,
we only use intensity average and variance to separate regions, in this work. Hence, our



approach is close to the parametric technique proposed in [10]. However, the way image
statistics are used in our framework is different and the resulting flow exhibits distinctive
properties. We define a smooth energy functional that allows to employ the result of
thresholding the image in order to evolve the contour.

The literature about image thresholding is large, and a complete survey is beyond the
scope of this paper. The book [2] offers a nice introduction to classical techniques about
this approach. Even if a simple thresholding method is used in this work, the power of
the method emanates from the combination with GACs that can naturally split or merge
as well as focus on a localized portion of the image.

In what follows, we first present our method and resulting flow. Then, we report
experiments, which elucidate some key aspects of this method.

2 Proposed approach: GAC and Thresholding
We consider the problem of segmenting an image I : Ω 7→ Z , with Ω ⊂ R2 and Z the
space of possible intensity values (grey-scale). Let x ∈ Ω specify the coordinates of the
pixels in the image I. Following [10], we assume that I is composed of two (unknown)
homogeneous regions, referred to as “Object” and “Background”, that have Gaussian
distributions. We further assume that these regions have distinct variances1. The goal
of segmentation is to capture these two regions. To do so, we evolve a closed curve C,
represented as the zero level-set of a signed distance function φ : Ω 7→R, such that φ > 0
inside C and φ < 0 outside C. Our goal is to evolve the contour C, or equivalently φ , so
that its interior matches the Object, and its exterior matches the Background: the curve C
would then match the boundary separating Object and Background.

Let us denote by H : R 7→ {0,1} the Heaviside step function. A smooth version of H,
denoted Hε : R 7→ [0,1], can be computed as follows for a chosen parameter ε:

Hε(χ) =





= 1 if χ > ε ;
= 0 if χ <−ε ;
= 1

2{1+ χ
ε + 1

π sin
(πχ

ε
)} otherwise.

(1)

The derivative of Hε will be denoted by δε (δε(χ) = 0 if |χ | > ε; and δε(χ) = 1
2ε {1 +

cos
(πχ

ε
)} otherwise). In this note, a region R ⊂Ω is characterized by a smooth labeling

function RR : Ω 7→ [0,1] such as RR(x)≥ 1
2 if x ∈R and RR(x) < 1

2 if x ∈Ω\R. Thus,
the segmentation defined by the interior of the contour C is characterized by the labeling
function Hε1φ . 2

The intensity averages of the pixels located inside and outside the curve C, denoted
by µin and µout respectively, can be computed at each iteration of the evolution as

µin =
∫

Ω I(x)Hφ(x) dx
Ain

and µout =
∫

Ω I(x)(1−Hφ(x)) dx
Aout

, (2)

where Ain =
∫

Ω Hφ(x)dx and Aout =
∫

Ω
(
1−Hφ(x)

)
dx denote the areas inside and

outside the curve, respectively. Similarly the variances inside (σ2
in) and outside (σ 2

out) the

1This is generally always the case in practice for a wide range of real-world images.
2For a chosen (small) ε1. In the remainder, we will often omit ε1 in the expressions of Hε1 φ , and δε1 φ , and

denote Hφ and δφ to simplify notation.



Figure 1: Probability density functions. Thick line: Pin(I); Thin line: Pout(I). It is straight-
forward to see that Pin(I) > Pout(I) for I1 ≤ I ≤ I2, when σin < σout and for I ≥ I1 and
I ≤ I2, when σin > σout.

curve are computed as

σ2
in =

∫ (
I(x)−µin

)2Hφ(x) dx
Ain

and σ2
out =

∫ (
I(x)−µout

)2(1−Hφ(x)
)

dx
Aout

. (3)

Provided a meaningful initialization of the curve, these statistics bear valuable informa-
tion about the statistics of the Object and the Background. Intuitively, the intensity aver-
ages µin and µout are the best available estimates of the unknown intensity averages µO
and µB, respectively. Similarly σin and σout are the best estimates of σO and σB, avail-
able at the current step of the contour evolution. We propose to use these two statistical
moments to threshold the image, assuming the Gaussian distribution of pixels. From
Figure 1, the (conditional) densities Pin and Pout, of the pixels belonging inside and out-
side the contour, respectively, are equal for two intensity values I1 and I2. Following the
assumption σin 6= σout, these values can be computed as

I1 =
σ2

out.µin−σ2
in.µout−σoutσin.α

σ2
out−σ2

in
and I2 =

σ2
out.µin−σ2

in.µout +σoutσin.α
σ2

out−σ2
in

, with

α =
√

(µin−µout)2 +2(σ2
in−σ 2

out)log(
σin

σout
).

(4)

To perform the thresholding operation, we define the labeling function G : Ω 7→ [0,1]
so that pixels x that are more likely to belong to the Object, i.e., Pin

(
I(x)

) ≥ Pout
(
I(x)

)
,

are assigned a value G(x) ≥ 1
2 , whereas pixels more likely to belong to the Background,

i.e., Pin
(
I(x)

)
< Pout

(
I(x)

)
, are assigned a value G(x) < 1

2 . Based on Figure 1, a natural
candidate for the function G is

if σin < σout, G(x) =

{
≥ 1

2 if I2 ≥ I(x)≥ I1 ;
< 1

2 else .

if σin > σout, G(x) =

{
≥ 1

2 if I(x)≥ I1 or I(x) < I2 ;
< 1

2 else .

Using the smooth version of the Heaviside function described above (for a chosen smooth-



ness parameter ε2), the function G can be chosen to be3

G(x) =

{
Hε2

(
I(x)− I1

)−Hε2

(
I(x)− I2

)
if σin < σout ;

1+Hε2

(
I(x)− I1

)−Hε2

(
I(x)− I2

)
if σin > σout

(5)

To perform the segmentation, we propose to minimize

Eimage(φ , I) = ‖Hφ −G‖2 =
∫

Ω
{Hφ(x)−G(x)}2dx. (6)

This energy is the L2 distance between the (current) segmentation Hφ obtained from the
curve C and the (implied) segmentation G obtained from thresholding the image I. The
minimization is performed by evolving C according to the flow:

dφ
dt

=−∇φ Eimage +λ .δφ .div
(

∇φ
|∇φ |

)
(7)

where the second term in the right-hand side is a regularizing term penalizing high cur-
vatures (the parameter λ ∈ R+ is chosen subjectively). The gradient ∇φ Eimage can be
computed using calculus of variations (both Hφ and G depend on φ ):

∇φ Eimage = 2δφ
(
Hφ −G

)
+2

(
β1.∇φ I1−β2.∇φ I2

)
(8)

where the expressions of β1 ∈ R and β2 ∈ R are

β1 =
∫

Ω
δε2

(
I(x)−I1

)
[Hφ(x)−G(x)]dx & β2 =

∫

Ω
δε2

(
I(x)−I2

)
[Hφ(x)−G(x)]dx. (9)

The expressions of ∇φ I1 and ∇φ I2 are detailed in the Appendix. The gradient ∇φ Eimage
is the sum of two terms. The first term, namely 2δφ

(
Hφ −G

)
, simply points towards

G: Image pixels (in the vicinity of C), which are more likely to belong to the Object
are included in C, whereas pixels more likely to belong to the Background are excluded.
Hence, this term influences the contour based only on statistical considerations. As will
be highlighted in the experimental part, this first term drives the contour in a similar fash-
ion as the gradient proposed in [10], which also stems from statistical considerations of
the intensity distributions only. The second term, namely 2

(
β1.∇φ I1−β2.∇φ I2

)
, involves

the gradients of the thresholds I1 and I2 with respect to φ (which in turn involve ∇φ µin,
∇φ µout, ∇φ σin and ∇φ σout; see Appendix). Such a term is not present in the flows pre-
sented in [1, 10]. Depending on the sign of β1 (respectively, β2), this second term points
in the direction of the fastest increase or decrease of the threshold I1 (respectively, I2),
resulting in changing G to decrease Eimage. The coefficients β1 and β2 are essentially
counting functions focusing on the “ambiguous pixels”, i.e. pixels which intensities are
close to the thresholds I1 and I2 (C.f. the terms δ (I− I1) and δ (I− I2), in the expressions
of β1 and β2) and for which classification is the most uncertain. The sign and magnitude
of β1 and β2 are conditioned upon the number of ambiguous pixels that belong to one of
the segmentations (Hφ or G) but not the other. To better understand the influence of this
second term, we propose to consider the following example:

3In the limit case, when ε2 → 0, G is the result of hard thresholding the image I using the band(s) defined
by I1 and I2.



Figure 2: Synthetic Example, two regions of same mean intensity and different variances.
Left: Initialization ; Right: Final segmentation.

Let us assume that ambiguous pixels with values close to I1 are in majority outside the
contour. The coefficient β1 is thus negative. In the gradient descent process of Equa-
tion (7), the curve evolves in the direction of ∇φ I1, which increases I1. This results in
excluding ambiguous pixels from the segmentation G leading to a better match with the
segmentation defined by the curve.
Hence, the second term of ∇φ Eimage appears to make meaningful decisions of the type:
if more ambiguous pixels are inside C (resp. outside) then take more ambiguous pixels
inside G (resp. outside). This systematic treatment of the thresholds I1 and I2 afforded
by the second term of ∇φ Eimage is an important feature of this work, and will be further
examined in the experimental part below.

3 Experimental Results
We now present experimental results, typically using the heuristic ε2 = 3× ε1 for gray-
scale images I : Ω 7→ {0..255}. The parameter λ was chosen subjectively in [0,2].

In Figure 2, a synthetic image composed of two regions that have the same average
intensities and different variances is successfully segmented with our method.

In Figure 3, two textured natural images are segmented. The segmentation of the
leopard obtained with our method is convincing compared to the segmentation obtained
in [4], where the mutual information between general distributions of pixel intensities
was minimized. The zebra is also successfully segmented even though only the average
and variance of pixel intensities are used (This image was segmented before using more
involved image information, such as texture [8] or general pixel distribution [4, 9]).

Segmenting medical images is usually a challenging task, since structures of interest
are often poorly contrasted with respect to other neighboring structures. The proposed
method was found to perform in a satisfactory manner on such images. In what fol-
lows, we report three experiments and contrast our results with results obtained using the
method proposed in [10] that uses the same image information (intensity averages and
variances). In Figure 4, the hand of a patient with a Kaposi Sarcoma (KS) is segmented.
The contour is initialized in the vicinity of the KS, and an acceptable segmentation of the
pathology is obtained with our method (i.e., using the full expression of ∇Eimage as in
Equation (8)). Using the flow proposed in [10], for the same initialization, the contour
ends up capturing the whole visible part of the hand. A similar result was obtained using
the first term in ∇Eimage only. In Figures 5 and 6, MRI images of the heart are segmented.



Figure 3: Segmentation results of two natural images. Left: Initialization, Right: Seg-
mentation result with the proposed method.

Convincing segmentations of the left ventricle are obtained with our method (The results
obtained were identical for a wide range of shapes of the initial contour). A comparable
segmentation of the image in Figure 5 was obtained in [14], where global constraints were
imposed on the flow presented in [13]. Using the method proposed in [10] or the first term
of ∇Eimage only, the ventricle is not properly segmented. In Figure 7, a transverse MRI-
image of the brain is presented. The caudate nuclei are notoriously difficult to segment
due to their poor contrast with neighboring structures. An acceptable segmentation of the
left and right caudate is obtained with our method. Using the method proposed in [10] or
the first term of ∇Eimage only, the whole white and grey matter of the brain is segmented,
even though the contour was initialized in the vicinity of the caudate nuclei.

Hence, in view of the experiments performed, our method appears to lead to mean-
ingful segmentations notably in the case of medical images. When only the first term of
∇Eimage is used, similar results as [10] were obtained. This highlights the influence of the
second term in ∇Eimage. This term evolves the contour in ways that modify G to match
Hφ as fast as possible (by changing the statistics inside and outside the curve). This can
be further noticed from observing the final thresholded images in Figures 4 and 5, whether
the second term of ∇Eimage is used or not. Thus, the second term in ∇Eimage has the advan-
tageous effect of better exploiting some of the information built in the initial contour (e.g.,
placement, shape or size) and allows for the segmentation of objects/structures that are
in its vicinity. Furthermore, these experiments suggest that using statistical information
alone may not be enough to lead to meaningful segmentation results.



(a) (b) (c)

Figure 4: Segmentation of the hand of a patient with a Kaposi Sarcoma. Top Row: (a)-
Initialization; (b)-Final segmentation with the proposed method; (c)-Final segmentation
with the method proposed in [10] or with the first term of ∇Eimage only. Bottom Row:
Corresponding thresholded images.

(a) (b) (c)

Figure 5: Segmentation of an MRI image of the heart. Top Row: (a)-Initialization; (b)-
Final segmentation with the proposed method; (c)-Final segmentation with the method
proposed in [10] or with the first term of ∇Eimage only. Bottom Row: Corresponding
thresholded images.



(a) (b) (c)

Figure 6: Other segmentation of an MRI image of the heart. (a)-Initialization; (b)-Final
segmentation with the proposed method; (c)-Final segmentation with the method pro-
posed in [10] or with the first term of ∇Eimage only.

Figure 7: Segmentation of the caudate nuclei. Top Left: MRI image of the brain. Top
Right: Contour initialization. Bottom Left: Final segmentation with the proposed method.
Bottom Right: Final segmentation with the method proposed in [10] or with the first term
of ∇Eimage only.



4 Conclusions and Future Research
In this work, we presented a variational approach combining two segmentation tech-
niques: active contours and thresholding. In the proposed framework, image statistics
(intensity averages and variances) are exploited in a novel manner by defining an energy
functional that compares the segmentation obtained from the evolving curve with the seg-
mentation obtained from thresholding the image. Our region-based approach was shown
to lead to convincing results on nontrivial real-world examples that were successfully
segmented before, but using much more involved segmentation schemes. The proposed
method also led to improved results for a variety of medical images in comparison with a
previously proposed variational approach that uses the same statistical information. The
flow resulting from our energy functional seems to afford some useful properties allowing
the segmenting curve to reach local energy minima that coincide with meaningful seg-
mentations. In our future work, we plan to expand the proposed approach to incorporate
various image information such as intensity histograms or texture. The use and influence
of different metrics to define our energy is also the interest of our future research.
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5 Appendix: Further details on the proposed flow
We now detail the expressions of ∇φ I1 and ∇φ I2, which appear in Equation (8). These
expressions involve ∇φ µin, ∇φ µout, ∇φ σin and ∇φ σout, which are given by

∇φ µin = δφ
(

I−µin

Ain

)
, ∇φ µout = δφ

(
µout− I

Aout

)

∇φ σin = δφ
(

(I−µin)2−σ2
in

2σin.Ain

)
and ∇φ σout = δφ

(
σ2

out− (I−µout)2

2σout.Aout

)
.

(10)

From Equation (4) and using classical rules of calculus, one gets

∇φ I1 = min
1 .∇φ µin +mout

1 .∇φ µout + sin
1 .∇φ σin + sout

1 .∇φ σout.

∇φ I2 = min
2 .∇φ µin +mout

2 .∇φ µout + sin
2 .∇φ σin + sout

2 .∇φ σout.
(11)

where the parameters min
1 , mout

1 , sin
1 and sout

1 are

min
1 =

1
σ2

out−σ2
in

(
σ2

out−σinσout
(µin−µout

α
))

mout
1 =

1
σ2

out−σ2
in

(
σinσout

(µin−µout

α
)−σ2

in

)

sin
1 =

1
σ2

out−σ2
in

{
2σinσout

(
σoutµin−σoutµout−σin.α

σ2
out−σ 2

in

)
−

(
σout.α +

2σ 2
inσout

α
log

( σin

σout

)
+σout

σ2
in−σ2

out

α

)}

sout
1 =

1
σ2

out−σ2
in

{
2σinσout

(
σinµout−σinµin +σout.α

σ2
out−σ2

in

)
−

(
σin.α− 2σinσ2

out

α
log

( σin

σout

)−σin
σ2

in−σ2
out

α

)}

The expressions for the parameters min
2 , mout

2 , sin
2 and sout

2 are identical to the expressions
of min

1 , mout
1 , sin

1 and sout
1 , replacing α by −α .


