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ABSTRACT
Segmentation involves separating distinct regions in an im-
age. In this note, we present a novel variational approach
to perform this task. We propose an energy functional
that naturally combines two segmentation techniques usu-
ally applied separately: intensity thresholding and geomet-
ric active contours. Although our method can deal with
more complex image statistics, intensity averages are used
to separate regions, in this present work. The proposed ap-
proach affords interesting properties that can lead to sensi-
ble segmentation results.
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1 Introduction

Segmentation involves separating an image into distinct re-
gions, a ubiquitous task in computer vision applications.
Active contours and image threshholding are among the
most important techniques for performing this task.

In the geometric active contour (GAC) framework,
a closed curve is represented implicitly as the zero level-
set of a higher dimensional function, usually a signed dis-
tance function [1]. The curve is evolved to minimize a
well-chosen energy functional, typically via gradient de-
scent (see e.g., [1, 2, 3]). The implicit representation al-
lows the curve to naturally undergo topological changes,
such as splitting and merging. Different models have
been proposed to perform segmentation with GACs: Some
frameworks use local image features such as edges [4, 5],
whereas other methods use regional image information
such a intensity statistics, color or texture [6, 7, 8, 9]. Re-
gion based approaches usually offer a higher level of ro-
bustness to noise than techniques based on local informa-
tion. Many of the region-based models have been inspired
by the region competition technique proposed in [10]. The
book [11] is a nice general reference on the various varia-
tional segmentation methods. In region-based frameworks,
the intensity statistics of the image are estimated from the
segmenting curve using parametric [7, 6] or non-parametric
[8] methods. Although nonparametric approaches allow to
deal with a wide class of images, parametric methods usu-
ally result in simple and efficient segmentation algorithms.

In this note, we propose a novel region-based seg-

mentation technique with GACs. Although the proposed
method is general enough to deal with diverse image statis-
tics, we use intensity means only to separate regions, in
this work. Hence, our approach is close to the paramet-
ric techniques proposed in [7, 6]. However, the way im-
age statistics are used in our framework is different and
the resulting flow exhibits distinctive properties. We de-
fine a smooth energy functional that allows to employ the
result of thresholding the image in order to evolve the con-
tour. Prior reference to this work was made in [12], where
the variation of the thresholded image was discarded. We
consider the full variation of the proposed energy here and
study the resulting flow thoroughly.

The literature about image thresholding is large, and
a complete survey is beyond the scope of this paper. The
book [13] offers a nice introduction to classical threshold-
ing techniques. Even if a simple thresholding technique
is used in this work, the power of the method emanates
from the combination with GACs that can naturally split or
merge as well as focus on a localized portion of the image.

In what follows, we first present our method and re-
sulting flow. Then, we report experiments that highlight the
specificity and power of the technique.

2 Proposed approach: GAC and Threshold-
ing

We consider the problem of segmenting an image I : Ω 7→
Z , with Ω ⊂ R2 and Z the space of possible intensity val-
ues (grey-scale). Let x ∈ Ω specify the coordinates of the
pixels in the image I . Following [7, 6], we assume that
I is composed of two (unknown) homogeneous regions,
referred to as “Object” and “Background”, that have dis-
tinct pixel intensity averages µO and µB (also unknown).
The goal of segmentation is to capture these two regions.
To do so, we evolve a closed curve C, represented as the
zero level-set of a signed distance function φ : Ω 7→ R,
such that φ > 0 inside C and φ < 0 outside C. Our goal
is to evolve the contour C, or equivalently φ, so that its
interior matches the Object, and its exterior matches the
Background: the curve C would then match the boundary
separating Object and Background.

Let us denote the Heaviside step function by H :
R 7→ {0, 1}. A smooth version of H , denoted Hε : R 7→



[0, 1], can be computed for a chosen parameter ε, as

Hε(χ) =





= 1 If χ > ε ;
= 0 If χ < −ε ;
= 1

2{1 + χ
ε + 1

π sin
(

πχ
ε

)} otherwise
(1)

The derivative of Hε will be denoted by δε (δε(χ) = 0 if
|χ| > ε; and δε(χ) = 1

2ε{1 + cos
(

πχ
ε

)} otherwise). In this
note, a regionR ⊂ Ω is characterized by a smooth labeling
function RR : Ω 7→ [0, 1] such as RR(x) ≥ 1

2 if x ∈
R & RR(x) < 1

2 if x ∈ Ω\R. Thus, the segmentation
defined by the interior of C is characterized by the labeling
function Hε1Φ. 1

The intensity averages of the pixels located inside
and outside the curve C, denoted by µin and µout re-
spectively, can be computed at each iteration of the evo-
lution as µin(φ) =

∫
Ω I(x)Hφ(x) dx

Ain
and µout(φ) =∫

Ω I(x)(1−Hφ(x)) dx

Aout
, where Ain(φ) =

∫
Ω

Hφ(x)dx and
Aout(φ) =

∫
Ω

(
1−Hφ(x)

)
dx denote the areas inside and

outside the curve, respectively. Provided a meaningful ini-
tialization of the curve, these statistics bear valuable in-
formation about the statistics of the Object and the Back-
ground. Intuitively, the intensity averages µin and µout are
the best estimates of the unknown intensity averages µO

and µB, respectively. We propose to use µin and µout to
threshold the image. Let us denote the corresponding label-
ing function by G : Ω 7→ [0, 1]. The function G is defined
so that pixels x that are more likely to belong to the Ob-
ject are attributed a value G(x) ≥ 1

2 , whereas pixels more
likely to belong to the Background are attributed a value
G(x) < 1

2 . By defining the threshold τ(φ) = µin+µout
2 , a

possible candidate for G, for a chosen smoothness param-
eter ε2, is thus2 :

G(φ, x) =

{
Hε2

(
I(x)− τ(φ)

)
If µin ≥ µout ;

Hε2

(
τ(φ)− I(x)

)
If µin < µout

(2)

The functional G, which depends on φ, is computed at each
step of the contour evolution.

To perform segmentation, we propose to minimize

Eimage(φ, I) = ‖Hφ−G(φ)‖2

=
∫

Ω

{Hφ(x)−G(φ, x)}2dx
(3)

This energy is the L2 distance between the (current) seg-
mentation Hφ obtained from the curve C and the (implied)
segmentation G obtained from thresholding I . Minimizing
this energy makes sense for the purpose of segmentation
since it is minimum, i.e. Eimage = 0, if and only if the
curve splits I into two regions which pixel intensities are

1For a chosen (small) ε1. In the remainder, we will often omit ε1 in
the expressions of Hε1φ, and δε1φ, and denote Hφ and δφ to simplify
notation.

2In the limit case when ε2 → 0, G is the result of hard thresholding
the image I , using the threshold τ .

either above or strictly below τ∞ = µO+µB
2 , respectively.

The minimization is performed by evolving C according to
the flow:

dφ

dt
= −∇φEimage (4)

The gradient ∇φEimage can be computed using cal-
culus of variations (both Hφ and G depend on φ):

∇φEimage = 2× δφ× (
Hφ−G

)
+ 2β ×∇φτ, (5)

where the expressions of β ∈ R and ∇φτ : Ω 7→ R are

β = sµin−µout

∫

Ω

δε2

(
I(x)− τ

)
[Hφ(x)−G(x)]dx

∇φτ = δφ× 1
2
(µout − I

Aout
+

I − µin

Ain

) (6)

In equation (6), sµin−µout = 1, if µin ≥ µout; and
sµin−µout = −1, if µin < µout. The gradient ∇φEimage

is the sum of two terms. In the gradient descent process of
equation (4), the first term, namely 2 × δφ × (

Hφ − G
)
,

points towards G. This term is comparable to the term
(I − µout)2 − (I − µin)2 in the gradient obtained by the
authors in [7]. Image pixels (in the vicinity of C) which in-
tensities are closer to µin are included in C, whereas pixels
closer to µout are excluded. An important difference is that
the speed is dependent on the intensities values in the flow
described in [7]. The second term in ∇φEimage, namely
2β × δφ×∇φτ , considers the variation of the mean inten-
sities µin and µout, when the curve C evolves. Such a term
is not present nor possible in the flow presented in [7]. De-
pending on the sign of β, this term points in the direction of
the fastest increase or decrease of the threshold τ , resulting
in changing G. The coefficient β is essentially a counting
function focusing on the “ambiguous pixels”, i.e. pixels
which intensities are close to the threshold τ (C.f. the term
δ(I − τ) in the expression of β) and for which classifica-
tion is the most uncertain. The sign and magnitude of β
are conditioned upon the number of ambiguous pixels that
belong to one of the segmentation terms (Hφ or G) but not
the other. The systematic treatment of ambiguous pixels
afforded by this second term is an important feature of this
work, and will be further examined in the experimental part
below.

3 Experimental Results

We now present experimental results, using the heuristic
ε2 = 5× ε1 for greyscale images I : Ω 7→ {0..255}.

In Figure 1, a synthetic image is segmented to illus-
trate the particular behavior of our flow. The image is com-
posed of 4 phases: light grey and white (“question mark”),
dark grey and back. Figure 1(a), (b), (c), (d), present the
evolution of the segmenting curve (top row) and the corre-
sponding thresholded image G (bottom row), when min-
imizing Eimage. Figure 1(f)-top presents the results ob-
tained when C is evolved using the gradient in [7], with no



(a) (b) (c) (d) (e) (f)

Figure 1. Toy Example. (a), (b), (c), (d): 4 successive evolution steps minimizing Eimage; Top: Image+Curve (black or white); Bottom:
Corresponding thresholded Image G. (e)-Top: Evolution of β; (e)-Bottom: Evolution of Eimage. (f)-Top: White curve, final result with [7];
(f)-Bottom: Black curve, final result with [6].

curvature term3 (see e.g., [3]). Figure 1(f)-bottom presents
the results obtained when C is evolved using the gradient
in [6]. Three different results are obtained using the 3 dif-
ferent techniques: The region inside the curve is “darker”
when [7] is used, “lighter” when [6] is used, and a “middle
ground” is reached with our technique. When only the first
term of ∇Eimage is used, a similar result as [7] is obtained
(Figure 1(f)-top), this highlights the influence of the sec-
ond term of our gradient that we proceed to explain: From
the initialization on, we have µin > µout, besides there are
overall more ambiguous pixels (light grey) in G than in-
side C. The sign of β is thus negative, as can be checked
from the plot of β in Figure 1(e). Following Equation (4),
the curve evolves in the direction of ∇φτ , thus increasing
the threshold τ . This results notably in eliminating darker
image pixels from the segmentation G and from inside the
curve. Hence, the second term of∇Eimage appears to make
meaningful decisions of the type: if more ambiguous pix-
els are inside C (resp. outside) then take more ambiguous
pixels inside C (resp. outside).

Figure 2 presents segmentation results on two syn-
thetic images. In Figure 2(a), (b), (c) an image com-
posed of the word “YELLOW” in dark letters on a linearly
shadowed (lighter) background is segmented. Figure 2(b)
presents the segmentation result obtained using our tech-
nique. Figure 2(c) presents the segmentation result ob-
tained using [7], with no curvature term. Our approach re-
moves pixels from the background and ends up segmenting
the word “YELLOW”; a similar result is obtained with the
flow of [6]. In Figure 2(d) and (e), we show that objects
with smooth contours, which are difficult to segment using
edge-based approaches (e.g. [4, 5]), can be segmented with
our technique. This type of objects can also be segmented
by the method proposed by [7]. However, the contour col-
lapses to a point if the flow in [6] is used.

Figure 3 presents segmentation results of a real image

3To compare the way image statistics are used across methods.

representing two people in winter (Swedish Couple). In
Figure 3(c), the flow proposed in [7] was used: The final
contour encompasses noisy pixels of the background and
lighter shadows. In Figure 3(d), the flow proposed in [6]
was used: The final contour encompasses the darkest pixels
in the image only. In Figure 3(b), Eimage was minimized
and a “middle ground” is reached, nicely segmenting the
two persons.

In Figure 4, MRI-images of the brain are segmented.
The corpus callosum (center) is difficult to segment since
boundaries are poorly defined, a typical issue in medical
images. In Figure 4(c), the method proposed in [7] was
used. Despite a large value of the curvature term (max-
imum possible to allow the initial contour to merge), the
curve leaks in the upper part of the brain due to poor con-
trast with other neighboring structures. In Figure 4(b), our
method was used with no curvature term. An acceptable
segmentation of the corpus callosum, capturing finer de-
tails of the structure is obtained.

In Figure 5, an MRI-image of the heart is segmented.
An acceptable segmentation of the left ventricle is obtained
with our method (First row, right in the Figure). A com-
parable segmentation of this image was obtained in [14],
where global constraints were imposed on the flow pre-
sented in [6]. The Second row of Figure 5, presents the
results obtained using the methods proposed in [7] and [6]
for comparison. Again, a “middle ground” between [7] and
[6] is reached with our method.

4 Conclusions and Future Research

In this work, we presented a variational approach com-
bining two segmentation techniques: active contours and
(smooth) thresholding. In the proposed framework, image
statistics (intensity averages) are exploited by defining an
energy functional that compares the segmentation obtained
from the evolving curve with the segmentation obtained



(a) (b) (c) (d) (e)

Figure 2. Synthetic images: Word with linear background & Object with smooth boundary. (a): Initialization; (b): Segmentation result with
the proposed method or [6]; (c): Typical result with [7]-no curvature. (d): Initialization; (e): Result using the proposed method.

(a) (b) (c) (d)

Figure 3. Segmentation of a real image (Swedish couple). (a): Initialization; (b) Segmentation result with the proposed method; (c) Typical
result with [7]; (d) Typical result with [6]. No regularizing term used. The proposed method achieves a “middle ground” between [7] and [6].

Figure 4. Segmentation results the corpus callosum for two MRI images of the brain. Left: Initialization, Middle: Segmentation result with
the proposed method - no curvature; Right: Typical result with [7] - even using a large curvature term.



(a) (b) (c) (d)

Figure 5. Segmentations of an MRI image of the heart (Left ventricle). (a): Image and initial contour; (b): Segmentation result,
using the proposed framework. (c): Segmentation result with [7] (d): Segmentation result with [6]

from thresholding the image. The resulting flow affords
some useful properties allowing the segmenting curve to
reach local energy minima that coincide with meaningful
segmentations. In our future work, we plan to expand the
proposed approach to deal with more complex distributions
of pixel intensities.

References

[1] J. A. Sethian, Level Set Methods and Fast Marching
Methods, 1999.

[2] N Paragios, Y. Chen, and O Faugeras, Handbook of
Mathematical Models in Computer Vision, Springer,
2005.

[3] S. Osher and R. Fedkiw, Level Set Methods and Dy-
namic Implicit Surfaces, Springer Verlag, 2003.

[4] V.Caselles, R. Kimmel, and G. Sapiro, “Geodesic ac-
tive contours,” in IJCV, 1997, vol. 22, pp. 61–79.

[5] S. Kichenassamy, S. Kumar, P. Olver, A. Tannen-
baum, and A. Yezzi, “Conformal curvature flow:
From phase transitions to active vision,” in Archives
for Rational Mechanics and Analysis, 1996, vol. 134,
pp. 275–301.

[6] A. Yezzi, A. Tsai, and A. Willsky, “A statistical ap-
proach to snakes for bimodal and trimodal imagery,”
in Proc. ICCV, 1999, vol. 2, pp. 898–903.

[7] T. Chan and L. Vese, “Active contours without edges,”
IEEE Trans. on Image Processing, vol. 10, no. 2, pp.
266–277, 2001.

[8] J. Kim, J. Fisher, A. Yezzi, M. Cetin, and A. Willsky,
“Nonparametric methods for image segmentation us-
ing information theory and curve evolution,” in Proc.
ICIP, 2002, vol. 3, pp. 797–800.

[9] M. Rousson and R. Deriche, “A variational frame-
work for active and adaptative segmentation of vector
valued images,” in Proc. of the Workshop on Motion
and Video Computing, 2002, p. 56.

[10] Song Chun Zhu and Alan L. Yuille, “Region
competition: Unifying snakes, region growing, and
Bayes/MDL for multiband image segmentation,”
1996, vol. 18, pp. 884–900.

[11] J-M Morel and S. Solimini, Variational Methods for
Image Segmentation, Birkhauser, 1994.

[12] S. Dambreville, Y. Rathi, and A. Tannenbaum.,
“Shape-based approach to robust image segmentation
using kernel pca,” in In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2006, pp. 977–
984.

[13] Rafael C. Gonzalez and Richard E. Woods, Digital
Image Processing, Addison-Wesley Longman., 2001.

[14] A. Yezzi, A. Tsai, and A. Willsky, “Medical im-
age segmentation via coupled curve evolution equa-
tions with global constraints,” in Proc. Workshop on
Mathematical Methods in Biomedical Image Analy-
sis, 2000, pp. 12–19.


