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Abstract. Analyzing large-scale imaging studies with thousands of im-
ages is computationally expensive. To assess localized morphological dif-
ferences, deformable image registration is a key tool. However, as regis-
trations are costly to compute, large-scale studies frequently require large
compute clusters. This paper explores a fast predictive approximation to
image registration. In particular, it uses these fast registrations to ap-
proximate a simplified geodesic regression model to capture longitudinal
brain changes. The resulting approach is orders of magnitude faster than
the optimization-based regression approach and hence facilitates large-
scale analysis on a single graphics processing unit. We show results on
2D and 3D brain magnetic resonance images from OASIS and ADNI.

1 Introduction

Imaging studies on brain development, diseases, and aging will continue to dra-
matically increase in size: ADNI [10] and the Rotterdam study [9] contain thou-
sands of subjects and the UK Biobank [1] targets an order of 100,000 images
once completed. Analyzing large-scale studies can quickly become computation-
ally prohibitive; compute clusters are commonly used to parallelize analyses such
as deformable image registrations of 3D brain images. Looking ahead, very large-
scale studies will require larger compute clusters or efficient algorithms to reduce
computational costs. Furthermore, an increasing number of longitudinal studies
require efficient algorithms for the analysis of longitudinal image data.

Geodesic regression (GR) [5,12,14] is an attractive approach to capture trends
in longitudinal imaging data. GR generalizes linear regression to Riemannian
manifolds. Applied to longitudinal image data it compactly expresses spatial
image transformations over time. Unfortunately, GR requires the solution of a
computationally costly optimization problem. Hence, a simplified, approximate,
GR approach (SGR) has been proposed [6] that allows for the computation of
the regression geodesic via pairwise image registrations. But even SGR would
require months of computation time on a single graphics processing unit (GPU)
to process thousands of 3D image registrations for large-scale imaging studies.

However, efficient approaches for deformable image registration have recently
been proposed. In particular, for the large displacement diffeomorphic metric



mapping (LDDMM) model, which is the basis of GR approaches for images, reg-
istrations can be dramatically sped up by either working with finite-dimensional
Lie algebras [18] or by fast predictive image registration (FPIR) [15,16]. FPIR
learns a patch-based deep regression model to predict the initial momentum of
LDDMM, which characterizes the spatial transformation. By replacing numer-
ical optimization of standard LDDMM registration by a single prediction step
followed by optional correction steps [16], FPIR can improve speed by orders of
magnitude. Besides FPIR, other predictive image registration (i.e., optical flow)
approaches exist [2,11,13]. However, FPIR is better suited for brain image reg-
istration than these optical flow approaches for the following reasons: (1) FPIR
predicts the initial momentum of LDDMM and therefore inherits its theoretical
properties. Consequentially, FPIR results in diffeomorphic transformations and
geodesics even though predictions are patch-wise. This can not be guaranteed
by optical flow prediction methods. (2) Patch-wise prediction allows training
of the prediction models based on a very small number of images, utilizing a
large number of patches. (3) By using patches instead of full images, predictions
for large, high-resolution images are possible despite the memory constraints of
current GPUs. (4) None of the existing prediction methods address longitudi-
nal image data. Additionally, as both FPIR and SGR are based on LDDMM,
they naturally integrate and hence result in our proposed fast predictive simple
geodesic regression (FPSGR) approach.

Contributions. (1) Predictive Geodesic Regression: We introduce the first
fast predictive geodesic regression approach for images. (2) Large-scale dataset
capability : Our predictive approach facilitates large-scale image registration /
regression within a day on a single GPU instead of months for optimization-based
methods. (3) Accuracy : We show that FPSGR approximates the optimization-
based simple GR result well. (4) Validation: We showcase the performance of our
FPSGR approach by analyzing > 6, 000 images of the ADNI-1/ADNI-2 datasets.

Organization. Sec. 2 describes FPSGR. Sec. 3 discusses the experimental
setup and the training of the prediction models. Sec. 4 presents experimental
results for 2D and 3D magnetic resonance images (MRI) of the brain. The paper
concludes with a summary and an outlook on future work.

2 Fast Predictive Simple Geodesic Regression (FPSGR)

Our fast predictive simple geodesic regression involves two main components:
(1) the fast predictive image registration (FPIR) approach and (2) integration
of FPIR into the simple geodesic regression (SGR) formulation. Both FPIR and
SGR are based on the shooting formulation of LDDMM [14]. Fig. 1 illustrates
our overall approach. The individual components are described in the following.

LDDMM. Shooting-based LDDMM and geodesic regression minimize
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Fig. 1: Principle of Fast Predictive Simple Geodesic Regression (FPSGR). In the
Encoder-Decoder network, the inputs are patches from source images and target images
at the same position; the outputs are the predicted initial momenta of the correspond-
ing patches. In simple geodesic regression, all the pairwise initial momenta are averaged
according to Eq. 2 to produce the initial momentum of the regression geodesic.

where I0 is the initial image (known for image-to-image registration and to
be determined for geodesic regression), m0 is the initial momentum, K is a
smoothing operator that connects velocity v and momentum m as v = Km
and m = Lv with K = L−1, σ > 0 is a weight, Y i is the measured image at
time ti (there will only be one such image for image-to-image registration at
t = 1), and d2(I1, I2) denotes the image similarity measure between I1 and I2
(for example L2 or geodesic distance); ad∗ is the dual of the negative Jacobi-
Lie bracket of vector fields: advw = −[v, w] = Dvw −Dwv and D denotes the
Jacobian. The deformation of the source image I0 ◦ Φ−1 can be computed by
solving Φ−1t +DΦ−1v = 0, Φ−10 = id, where id denotes the identity map.

FPIR. Fast predictive image registration [15,16] aims at predicting the initial
momentum, m0, between a source and a target image patch-by-patch. Specifi-
cally, we use a deep encoder-decoder network to predict the patch-wise momen-
tum. As shown in Fig. 1, in 3D the inputs are two layers of 15× 15× 15 image
patches (15 × 15 in 2D), where the two layers are from the source and target
images respectively. Two patches are taken at the same position by two parallel
encoders, which learn features independently. The output is the predicted initial
momentum in the x, y and z directions (obtained by numerical optimization for
the training samples). The network can be divided into Encoder and Decoder.
An encoder consists of 2 blocks of 3 3 × 3 × 3 convolutional layers with PReLU
activations, followed by another 2 × 2 × 2 convolution+PReLU with a stride
of two, serving as ”pooling” operation. The number of features in the first con-
volutional layer is 64 and increases to 128 in the second. In the Decoder, three
parallel decoders share the same input generated from the encoder. Each decoder
is the inverse of the encoder except for using 3D transposed convolution layers
with a stride of two to perform ”unpooling”, and no non-linearity layer at the
end. To speed up computations, we use patch pruning (i.e., patches outside the
brain are not predicted as the momentum is zero there) and a large pixel stride
(e.g. 14 for 15×15×15 patches) for the sliding window of the predicted patches.



Fig. 2: Prediction + correction network architecture. (1) Predict initial momentum
mp and corresponding backward deformation, Φ. (2) Predict correction of initial mo-
mentum, mc, based on the difference between moving image and warped-back target
image. The final momentum is m = mp +mc. The correction network is trained with
the moving images and warped-back target images of the training dataset as inputs.

Correction Network. We also use an additional correction step to improve
prediction accuracy, by training a correction network as described in [16]. Fig. 2
illustrates this approach graphically. The correction network has the same struc-
ture as the prediction network. Only the inputs and outputs change.

SGR. Determining the initial image, I0, and the initial momentum, m0, of
Eq. 1 is computationally costly. In simple geodesic regression, the initial image
is fixed to the first image of a subject’s longitudinal image set. Furthermore,
the similarity measure d(·, ·) is chosen as the geodesic distance between images
and approximated so that the geodesic regression problem can by computed by
computing pair-wise image registrations with respect to the first image. The
approximated optimal m0 of energy functional (1) for a fixed I0 is then

m0 ≈
∑

(ti − t0)2mYi
0∑

(ti − t0)2
=

∑
(ti − t0)mYi

0∑
(ti − t0)2

(2)

where mYi
0 is obtained by registering I0 to Y i in unit time followed by a rescaling

of the momentum to account for the original time duration: mYi
0 = 1

ti−t0m
Yi
0 . In

our FPSGR approach we compute the momenta mYi
0 via FPIR.

3 Experimental Setup and Training of Prediction Models

We perform experiments on 2D axial MRI brain slices from the OASIS dataset
and on 3D images from the ADNI dataset. 2D: We verify our hypothesis that
training FPIR on longitudinal data for longitudinal registrations is preferred over
training using cross-sectional data; and that training FPIR on cross-sectional
data for cross-sectional registrations is preferred over training using longitudinal
data. Comparisons are with respect to registration results obtained by numerical
optimization. 3D: As the ADNI dataset is longitudinal and based on our findings
for the 2D data, we train our models with longitudinal registrations only.

Training and Testing of the Prediction Models. We use a set of 150
patients’ MRIs of the OASIS dataset for training the 2D model and testing the
performance of FPIR. The resampled 2D images of size 128× 128 are extracted



2D Longitudinal Test Case Deformation Error [pixel]
Data Percentile 0.3% 5% 25% 50% 75% 95% 99.7%

Longitudinal Training 0.0027 0.0112 0.0267 0.0425 0.0630 0.1222 0.2221
Cross-sectional Training 0.0050 0.0201 0.0475 0.0744 0.1093 0.1862 0.2253

2D Cross-sectional Test Case Deformation Error [pixel]
Data Percentile 0.3% 5% 25% 50% 75% 95% 99.7%

Longitudinal Training 0.0256 0.1068 0.2669 0.4552 0.7433 1.4966 1.9007
Cross-sectional Training 0.0120 0.0508 0.1248 0.2047 0.3196 0.5781 0.6973

Table 1: Deformation error of longitudinal and cross-sectional models tested on longi-
tudinal and cross-sectional data. 2-norm deformation errors in pixels w.r.t. the ground
truth deformation obtained by numerical optimization for LDDMM.

from the same axial slice of the 3D OASIS images after affine registration. The
ADNI data consists of 6471 3D MR brain images of size 220× 220× 220 (3479
ADNI-1, 833 subjects; 2992 ADNI-2, 823 subjects). We use all of the ADNI
data. 2D: We used the first 100 patients for training and the last 50 for testing.
For longitudinal training, we registered the first and the second time-point of
a patient. For cross-sectional training, we registered a patient’s first time point
to another patient’s second time point. To test longitudinal and cross-sectional
registrations, we perform the same type of registrations on the 50 test sets. We
compare the deformation error against the LDDMM solution obtained by nu-
merical optimization. Tab. 1 shows the results which confirm our hypothesis that
training the prediction model with longitudinal registration cases is preferred for
longitudinal registration over training with cross-sectional data. The deformation
error is very small for longitudinal training / testing and the predictive method
has comparable performance to costly optimization-based LDDMM. These re-
sults indicate that it is beneficial to train a prediction model with deformations
it is expected to encounter, i.e., relatively small deformations for longitudinal
registrations and larger deformations for cross-sectional registration. Hence, for
the ADNI data, we train the 3D models using longitudinal registrations only.
3D: We randomly picked 1/6 patients from each diagnostic category to form a
group of 139 patients for training in ADNI-1 and 150 in ADNI-2. The images
of the first time-point were registered to all the later time-points within each
patient. Matching the distribution of diagnostic categories, we then randomly
picked a subset of 165 of these registrations as the training set in ADNI-1 and 140
in ADNI-2. We trained 4 prediction models and their corresponding correction
models totaling 8 prediction models, i.e. ADNI-1 Pred-1, ADNI-1 Pred+Corr-1,
ADNI-1 Pred-2, ADNI-1 Pred+Corr-2 and analogously for ADNI-2. The training
sets within ADNI-1/2 respectively were not overlapping, allowing us to compute
predictions (not using the training data) for the complete ADNI-1/2 datasets.

Parameter selection. We use the regularization kernelK = L−1 = (−a∇2−
b∇(∇·) + c)−2 with [a, b, c] set to [0.05, 0.05, 0.005] for 2D and [1, 0, 0.1] for 3D
images; σ is 0.1 for 2D and 3D. We use Adam to optimize the network with 10
epochs and learning rates of 0.0005 and 0.0001 in 2D and 3D respectively.

Efficiency. Once trained, the prediction models allow fast computations
of registrations. We use a TITAN X(Pascal) GPU and PyTorch. In 2D, FPIR
took 4 seconds on average to predict 50 pairs of 128 × 128 MRIs (for the
4 longitudinal/cross-sectional experiments), while a GPU implementation of
optimization-based LDDMM took 150 minutes. For the 3D ADNI-1 data (220×



220× 220 MRIs), FPSGR took about one day to predict 2646 pairwise registra-
tions (25s/prediction) and to compute the regression result. Optimization-based
LDDMM would require ≈ 40 days of runtime. Runtime for FPIR on ADNI-2 is
identical to ADNI-1 as the images have the same dimension.

4 Discussion of experimental Results for 3D ADNI data

Fig. 3: Average Jacobian determi-
nant over time and diagnostic cate-
gory for one of the ADNI-1 groups.

We studied 10 experimental groups: all sub-
jects from ADNI-1 using traditional LDDMM,
two groups of ADNI-1 with different train-
ing data using FPSGR without correction
network, and two groups of ADNI-1 using
FPSGR with correction network. An analo-
gous set of groups was studied for ADNI-2. We
calculated the Jacobian determinant (JD) for
every computed deformation. The JDs were
then warped to a common coordinate system
for the entire ADNI data set using existing
deformations from [4,3]. Each such spatially
normalized JD was then averaged within a re-
gion of interest (ROI). Specifically, we quan-
tify atrophy as (1 − 1

|ω|
∫
ω
|Dφ(x)|dx) × 100,

where | · | is the determinant, and ω is an area
in the temporal lobes which was determined
in prior studies [4,3] to be significantly associ-
ated with accelerated atrophy in Alzheimer’s

disease (AD). The resulting scalar value is an estimate of the relative volume
change experienced by that region between the baseline and followup image ac-
quisitions. Hence, its sign is positive when the region has lost volume over time
and is negative if the region has gained volume over time. See Fig. 3.

ADNI-1 Slope Intercept

Normal

LDDMM-1 [0.65, 0.73, 0.81] [-0.23, -0.07, 0.09]
Pred-1 [0.39, 0.45, 0.52] [-0.20, -0.08, 0.05]

Pred+Corr-1 [0.64, 0.71, 0.77] [-0.14, -0.01, 0.13]
LDDMM-2 [0.63, 0.72, 0.81] [-0.21, -0.03, 0.15]

Pred-2 [0.49, 0.56, 0.63] [-0.17, -0.03, 0.11]
Pred+Corr-2 [0.56, 0.64, 0.71] [-0.14, 0.00, 0.14]

MCI

LDDMM-1 [1.55, 1.68, 1.82] [-0.28, -0.04, 0.19]
Pred-1 [1.03, 1.13, 1.23] [-0.24, -0.07, 0.10]

Pred+Corr-1 [1.39, 1.50, 1.61] [-0.14, 0.05, 0.25]
LDDMM-2 [1.41, 1.54, 1.66] [-0.25, -0.03, 0.18]

Pred-2 [1.15, 1.25, 1.36] [-0.20, -0.02, 0.16]
Pred+Corr-2 [1.22, 1.33, 1.43] [-0.16, 0.02, 0.20]

AD

LDDMM-1 [2.07, 2.42, 2.77] [-0.28, 0.14, 0.57]
Pred-1 [1.31, 1.57, 1.84] [-0.22, 0.11, 0.43]

Pred+Corr-1 [1.83, 2.13, 2.42] [-0.14, 0.22, 0.58]
LDDMM-2 [2.03, 2.39, 2.75] [-0.29, 0.14, 0.57]

Pred-2 [1.66, 1.94, 2.23] [-0.21, 0.13, 0.47]
Pred+Corr-2 [1.75, 2.03, 2.32] [-0.18, 0.16, 0.51]

Table 2: Slope and intercept values for
simple linear regression of volume change
over time [Lower end of 95% C.I., point
estimate, Higher end of 95% C.I.]

We limited our experiments to
the applications in [8,7], wherein non-
linear registration/regression is used
to quantify atrophy within regions
known to be associated to varying de-
grees with AD (2), Mild Cognitive Im-
pairment (MCI) (1) (including Late
Mild Cognitive Impairment), and nor-
mal aging (0) in an elderly population.

Moreover, we are interested in the
following two critical validations: (1)
Are atrophy measurements derived
from FPSGR biased to over- or un-
derestimate change? (2) Are those at-

rophy measurements consistent with those derived from deformations given by
the optimization procedure (LDDMM) which produced the training data set? If



Fig. 4: FPSGR-derived correlations with clinical variables.

experiments show (1) and (2) resolve favorably, then the substantially improved
computational efficiency of FPSGR may justify its use for some applications.

Bias. Estimates of atrophy are susceptible to bias [17]. We follow [8] by fit-
ting a straight line (linear regression) through all such atrophy measurements
over time in each diagnostic category. The intercept term is an estimate of the
atrophy one would measure when registering two scans acquired on the same
day; hence it should be near zero and its 95% confidence interval should contain
zero. Tab. 2 shows the slopes, intercepts, and 95% confidence intervals for all five
groups of ADNI-1. Results (not shown) are similar for ADNI-2. All of them have
intercepts that are near zero relative to the range of changes observed and all
prediction intercept confidence intervals contain zero. Further, all slopes are pos-
itive indicating average volume loss over time, consistent with expectations for
an aging and neuro-degenerative population. The slopes capture increasing atro-
phy with disease severity. We conclude that neither LDDMM optimization nor
FPSGR produced deformations with significant bias to over- or underestimate
volume change. Note that our LDDMM optimization results and the prediction
results show the same trends, and are directly comparable as the results are
based on the same test images (same for atrophy measurement).

Atrophy. Atrophy estimates have also been shown to correlate with clinical
variables. In accordance with validation (2) from above, we computed the correla-
tion between our atrophy estimates and diagnosis, and also between our atrophy
estimates and mini-mental state exam (MMSE) scores (Fig. 4). The magnitudes
of correlations we observed for all eight prediction models (four with and four
without correction networks) were in the range of -0.4 ∼ -0.8 for MMSE and 0.2
∼ 0.6 for diagnosis. Previous studies have reported correlation between atrophy
estimates and clinical variables as high as -0.7 for MMSE and 0.5 for diagnosis for
100 subjects [4,3]. All prediction results are comparable with baseline LDDMM
results. The correction network generally improves prediction performance.

Jacobian. The average JD images qualitatively agree with prior results [8,7]:
severity of volume change increases with severity of diagnosis and time. Change
is most substantial in the temporal lobes near the hippocampus (see Fig. 3).

5 Conclusion and Future Work

We proposed a fast approach for geodesic regression (FPSGR) to study longitu-
dinal image data. FPSGR is orders of magnitude faster than existing approaches
and facilitates the analysis of large-scale imaging studies. Experiments on the



ADNI-1/2 datasets demonstrate that FPSGR captures expected atrophy trends,
exhibits negligible bias and shows high correlations with clinical variables.
Support. This work was supported by NSF grants EECS-1148870/1711776.
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