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Abstract

This paper addresses large-displacement-diffeomorphic
mapping registration from an optimal control perspective.
This viewpoint leads to two complementary formulations.
One approach requires the explicit computation of coordi-
nate maps, whereas the other is formulated strictly in the
image domain (thus making it also applicable to manifolds
which require multiple coordinate charts). We discuss their
intrinsic relation as well as the advantages and disadvan-
tages of the two approaches. Further, we propose a novel
formulation for unbiased image registration, which natu-
rally extends to the case of time-series of images. We dis-
cuss numerical implementation details and carefully evalu-
ate the properties of the alternative algorithms.

1. Introduction
Determining point-correspondences between image-

pairs based on image information alone is a fundamen-
tal problem and of critical importance in image analysis.
Image-pairs are assumed to have similarities in structure
as well as appearance, where the similarity can for exam-
ple be the result of looking at temporal phenomena (e.g., at
two image frames of a movie) or of investigating relations
between two distinct images known a-priori to share large-
scale structural similarities (e.g., comparing the brains of
two subjects). The problem is usually termed image match-
ing or optical flow in computer vision and image registra-
tion in medical imaging1.

In this work, we propose nonlinear registration
schemes within the large-displacement-diffeomorphic map-
ping (LDDM) setting, derived from optimal control princi-
ples. This allows us to obtain an intrinsic (not relying on
extrinsic coordinates) registration formulation and to show
the connection to previously proposed approaches, against
which we carefully compare different numerical implemen-
tations. The viewpoint also leads to a novel way to make

1We use image registration as our terminology of choice in this paper.

the estimation problem symmetric and is applicable to man-
ifolds which require multiple coordinate charts.

Registration is based on simultaneously achieving sim-
ilarity between corresponding image points and imposing
spatial regularity on the correspondences. Similarities can
be measured by image-intensity differences, mutual infor-
mation, or cross correlation, to name but a few possibil-
ities. Regularity is achieved by restricting the allowable
space of deformations, e.g., by imposing parametric mod-
els of image transformation, such as rigid, similarity, or
affine transformations, or by non-parametric modeling of
image deformation requiring spatially smooth deformation
fields. The non-parametric approach is the most flexible,
but poses the biggest challenges with respect to the estima-
tion of point correspondences. The estimation problem is
infinite-dimensional in the continuum and becomes high-
dimensional by discretization.

A multitude of regularization approaches has been pro-
posed for non-parametric registration [22, 33, 13]. The two
main classes are (i) regularizers operating on the displace-
ment fields (elastic registration) and (ii) regularizers oper-
ating on a velocity field (fluid registration). The estimation
problems associated with these two classes are

u = argmin
u

∫
Ψu

s [u] +
1
σ2

Ψd[u, I0, I1] dΩ, and

v = argmin
v

∫∫
Ψv

s [v] dΩ dt+
1
σ2

∫
Ψd[u, I0, I1] dΩ,

where u denotes the displacement field (Φ(x) = x+ u(x)),
I0 and I1 are the images to be registered, v is the time-
dependent velocity field (∂tΦ(x, t) = v(x, t)), Ω is the spa-
tial domain, Ψu

s and Ψv
s are the regularization measures, and

Ψd is the data attachment term. Choosing

Ψu
s [u] =

d∑
i=1

‖∇ui‖2 and Ψd[u] = (It +DIu)2 (1)

yields Horn and Schunck (HS) optical flow [14], which
uses a linearized model for the image match (ψd[u], DI =
(∇I)T ) and the Dirichlet energy for the regularization of



displacements. HS optical flow is one of the simplest
elastic registration methods. Since its inception, a vari-
ety of improvements have been proposed for optical flow
approaches, ranging from nonlinear data attachment terms
to piecewise smooth regularization. See [3, 7] and refer-
ences therein. Medical image registration frequently re-
quires bijective maps between images. This may be accom-
plished explicitly by penalizing folds and singularities dur-
ing the estimation of the deformation field [12] or implic-
itly by imposing sufficient regularity on estimated velocity
fields [8, 20, 9, 29, 28]. Miller et al. [20, 21] have shown
that fluid registration of the form

E(v) =
∫ 1

0

‖v‖2
V dt+

1
σ2

‖I0 ◦ Φ1,0 − I1‖2
L2
, (2)

yields diffeomorphic (smooth and invertible) maps Φ1,0 for
suitable norms ‖ · ‖V of the velocity field v, while allowing
for large displacements (by penalizing v instead of u). Here,
Φ1,0 is the velocity-induced image map from t = 0 to t = 1.

Estimation problem 2 hinges on the estimation of Φ0,1,
which is determined by v. In Sec. 2, we give an optimal
control interpretation of the estimation problem 2 indepen-
dent of Φ0,1 and derive its associated optimality conditions.
Sec. 3 discusses solution approaches to the optimization
problem. Equivalence to the solution method by Beg et
al. [4] is established in Sec. 4. Sec. 5 proposes a new ap-
proach to render problem 2 symmetric with respect to the
registered images. Sec. 6 discusses numerical approaches
to solve the image-based optimization problem. Results are
given in Sec. 7, including a careful evaluation of the prop-
erties of the alternative implementations. Sec. 8 concludes
the paper. Mathematical details are given in the Appendix.

2. Optimal Control Approach
The optimization problem 2 depends on the velocity field

v as well as the velocity-dependent map Φ0,1. This formula-
tion leads directly (upon explicitly deriving the variation of
E(v) with respect to v) to the the map-based optimization
approach proposed by Beg et al. [4].

This section shows how we can derive an equivalent re-
sult directly in the image domain, without explicitly utiliz-
ing the map Φ0,1 using an optimal control approach. An ad-
vection equation and a scalar conservation law will be the
main parts of the optimality conditions obtained. A global
coordinate map Φ is no longer used, which is a cornerstone
for adaptations to manifolds which cannot be covered by a
single coordinate chart (such as the sphere). This is for ex-
ample of particular importance for the analysis of cortical
function and structure, where surfaces of spherical topolgy
need to be registered. While landmark-based methods ex-
ist to compute large-displacement diffeomorphic maps on
spherical surfaces, they do not readily extend to more gen-
eral manifolds or require multiple coordinate charts [11, 2];

and a large-displacement diffeomorphic registration scheme
working directly on images has not been investigated so
far [31].

Instead of minimizing Eq. 2, we look at image registra-
tion from a dynamical systems point of view and solve it as
a constrained minimization problem. The system dynamics
is the constraint imposed, the velocity field v is regarded as
a control input to the dynamical system. The optimization
problem is to find the optimal control v subject to the system
dynamics with state I (I(0) = I0), such that image I(1)
approximates I1. See [19] for background on the optimal
control of systems governed by partial differential equations
and the rich literature on data assimilation (as used for ex-
ample in weather forecasting) for details [23, 10]. The en-
ergy to be minimized is then

E(v) =
∫ 1

0

‖v‖2
V dt+

1
σ2

‖I(1) − I1‖2
L2
, (3)

s.t. It + (DI)v = 0, I(0) = I0, (4)

which is an advection equation for I , governed by the ve-
locity field v. Source image, I0, and target image, I1, are
given, the velocity field v(x, t) is sought. Here

‖f‖2
L2

= 〈f, f〉; 〈f, g〉 :=
∫
f∗g dΩ,

‖f‖2
V = 〈f, f〉V ; 〈f, g〉V := 〈Lf, Lg〉 = 〈L†Lf, g〉,

where Ω is the spatial solution domain, L is a differential
operator (e.g., L = −α∇2 + γ) and L† denotes its ad-
joint. Choosing an appropriate differential operator L en-
sures a diffeomorphic transformation [9]. Minimizing en-
ergy 3 subject to constraint 4 is equivalent to minimizing

E(v, I, λ, γ) =
∫ 1

0

‖v‖2
V + 〈λ, It + (DI)v〉 dt

+ 〈γ, I(0) − I0〉 +
1
σ2

‖I(1) − I1‖2
L2

(5)

with respect to v(x, t), I(x, t), and the two Lagrangian mul-
tipliers λ(x, t), γ(x) [27]. For a candidate minimizer of the
unconstrained energy, its variations with respect to v, λ, I ,
and γ need to vanish, which yields the optimality conditions
(see Appendix A for a derivation)

It + (DI)v = 0, (6)
−λt − div(λv) = 0, (7)

2L†Lv + (DI)Tλ = 0, (8)
I(0) = I0, (9)

λ(1) =
2
σ2

(I1 − I(1)). (10)

The Lagrangian multiplier γ disappears due to the fixed ini-
tial condition for I . Eq. 6 is the prescribed state equation



(the system dynamics), Eq. 7 is the adjoint or co-state equa-
tion, Eq. 8 is the compatibility condition, and Eqs. 9 and 10
are the initial condition for the image and the final condition
for the adjoint variable λ respectively. The final condition
λ(1) for the adjoint variable measures the error between the
given image I1 and image I0 in the warped coordinate sys-
tem of time t = 1. The adjoint equation 7 is a scalar conser-
vation law, i.e., it flows the image error of Eq. 10 backward
in time while conserving the overall error measure. Since

δE(v; dv) =
∫ 1

0

〈2L†Lv + (DI)Tλ, dv〉 dt,

the compatibility condition 8 equals the gradient of the en-
ergy with respect to the velocity in the L2 norm

∇L2
v E(v) = 2L†Lv + (DI)Tλ.

As in the map-based solution approach by Beg et al. [4], or
for the evolution of Sobolev active contours [26], improve-
ments in convergence by gradient descent in Sobolev space
may be obtained for adjoint solution methods [25]. The gra-
dient with respect to the norm V induced by L is

∇V
v E(v) = 2v + (L†L)−1((DI)Tλ). (11)

The overall algorithm proceeds by: (i) flowing image I0
forward in time, (ii) computing the current error at time t =
1, (iii) flowing the error backward in time, subject to the
scalar conservation law for the adjoint variable, and by (iv)
performing a gradient descent step, where the gradient for
any time t ∈ [0, 1] can be computed from the state and the
adjoint variables. See Fig. 1 for the overall algorithm.

Borzi et al. [6] propose a similar approach for optical
flow computations. They use the same system dynamics,
but a fundamentally different regularization of the veloc-
ity field v. Their solution method thus requires the solu-
tion of an elliptic partial differential equation (across space
and time) in addition to the solution of the state and the ad-
joint equations. In contrast, the approach in this paper does
not explicitly regularize over time, which makes it easier
to compute and allows (due to equivalence of the solution
to the solution obtained by the approach of Beg et al. [4],
see Sec. 4) for diffeomorphic deformations if desired. Of
note, the work by Papadakis and Memin [24] uses varia-
tional data assimilation for the tracking of curves and fluid
motions. However, while their approach is based on a weak
constraint formulation (using the control function to allow
for deviations from the nominal dynamics), we enforce the
dynamical model strictly, and control the velocity v.

3. Solutions for the State and its Adjoint
Two equations play a central role in the optimal control

formulation for registration: The advection equation

It +DIv = 0, I(0) = I0 (12)

and the scalar conservation law for the adjoint variable

− λt − div(λv) = 0, λ(1) = λ1. (13)

The former flows image intensities along the velocity field
v, the latter flows the matching error along v, while conserv-
ing its overall mass. Given a current estimate of the velocity
field v, the current estimate for the map Φt,0 is governed by

Φt +DΦv = 0, Φ(0) = id,

an advection equation for Φ. The solution to Eq. 12 is then

I(t) = I0 ◦ Φ(t).

Computing the inverse map Φ−1 = Φt,1 as

−Φ−1
t −DΦ−1v = 0, Φ−1(1) = id

we have for any infinitesimal volume element dV

|DΦ−1(t)|dV (t) = dV (1).

Regarding λ as a mass density, conservation of mass implies

λ(1) ◦ Φ−1(t)dV (1) = λ(t)dV (t)

which is

λ(1) ◦ Φ−1(t)dV (1) = λ(t)
1

|DΦ−1(t)|
dV (1),

and allows expressing λ(t) with respect to λ(1) as

λ(t) = |DΦ−1(t)|λ(1) ◦ Φ−1(t). (14)

Sec. 4 shows how these relations connect the image-based
approach of Sec. 2 to the map-based approach by Beg et
al. [4]. Sec. 6 discusses the numerical ramifications of
choosing between the formally equivalent image-based and
map-based approaches. Of note, the same equivalence rela-
tion can be applied to the approach by Borzi et al. [6].

4. Relation to Previous Approach
The map-based solutions of the advection equation and

the scalar conservation law given in Sec. 3 allow for the
design of a hybrid solution approach. Here, the forward and
the inverse maps are solved for numerically. Once obtained,
they provide an analytic solution to the state variable I and
its adjoint λ, which allows for the computation of the energy
gradient with respect to the time-dependent velocity field v:

∇V
v E(v) = 2v + (L†L)−1(DI(t))Tλ(t) (15)

= 2v +
2
σ2

(L†L)−1(|DΦ−1(t)| (16)

×(DI(t))T (I1 ◦ Φ−1(t) − I(t))

= 2v +
2
σ2

(L†L)−1(|DΦ−1(t)| (17)

×(D(I0 ◦ Φ(t)))T (I1 ◦ Φ−1(t) − I(t)),



Algorithm 1: Image-based Image-to-image registration
Data: I0, I1, σ, L
Result: v
Initialization: v = 0, λ = 0 ;
repeat

Flow image forward: It + (DI)v = 0, I(0) = I0;
Flow adjoint backward: −λt − div(λv) = 0, λ(1) = 2

σ2 (I1 − I(1));
Update velocity fields: v(t)τ = −

(
2v(t) + (L†L)−1(DI(t))Tλ(t)

)
;

until convergence ;

Figure 1. Image-based image-to-image registration and advection results (right). Right: Translat-
ing a checkerboard square diagonally using different numerical methods. The 1st order accurate
method blurs the image extensively. Methods with higher order numerical accuracy produce
much crisper images. WENO5 additionally suppresses undesirable oscillations.

Algorithm 2: Map-based Image-to-image registration
Data: I0, I1, σ, L
Result: v
Initialization: v = 0, λ = 0 ;
repeat

Flow map forward: Φt + (DΦ)v = 0, Φ(0) = id;
While computing and storing images: I(t) = I0 ◦ Φ(t);
Compute final condition: λ(1) = 2

σ2 (I1 − I(1));
Flow inverse map backward: −Φ−1

t − (DΦ−1)v = 0, Φ−1(1) = id;
While computing and storing the adjoints: λ(t) = |DΦ−1(t)|λ1 ◦ Φ−1(t);
Update velocity fields: v(t)τ = −

(
2v(t) + (L†L)−1(DI(t))Tλ(t)

)
;

until convergence ;

Figure 2. Map-based image-to-image registration.

Source.

1st order.

Error comp.

WENO5.

aWENO5.

where Eq. 15 is the original gradient as obtained from the
image-based optimal control derivation, Eq. 16 is the gra-
dient as obtained by Beg et al. [4] directly from the map-
based energy of Eq. 2, and Eq. 17 is the fully map-based
formulation used for the map-based implementation. This
establishes the formal equivalence between the image-based
and the map-based approaches. Of note, the image-based
scheme neither requires the explicit computation of the for-
ward and the backward maps Φ and Φ−1 nor image inter-
polation based on these coordinate transforms. While re-
moving the explicit dependence on a map Φ leads to a more
compact formulation, accurate solutions require care with
respect to the numerical method used. See Sec. 6 for de-
tails. The overall algorithm is given in Fig. 2.

5. Unbiased Formulation
Image registration approaches are frequently not sym-

metric with respect to the images to be registered. Thus,
given two images A and B, registering A to B is not as-
sured to give the inverse result to registering B to A. To re-
move this registration bias, optimization problems need to
be symmetric. One solution is to simply replace the regis-
tration energy by a sum of the original energy and its com-

plement. In the context of large displacement diffeomor-
phic flows, approaches have been proposed by Avants [1],
Younes [32] and Beg [5]. The image mismatch can be com-
puted at the midpoint in time [5, 32, 1]

‖I0 ◦ Φ 1
2 ,0 − I1 ◦ Φ 1

2 ,1‖2
L2
,

which amounts to the estimation of two separate flow fields.
Alternatively, reweighting the image difference [32]

∫
|DΦ−1

1,0|(I0 ◦ Φ1,0 − I1)2 dx

or defining a matching cost over time [5]

∫ 1

0

‖I0 ◦ Φt,0 − I1 ◦ Φt,1‖2
L2
dt (18)

symmetrizes the registration problem and thus makes it un-
biased. Only the consistent integral cost of Eq. 18 readily
extends to the case of time-series (where no natural mid-
point exists). However, the consistent integral cost leads to



a gradient of the form [5]

∇V
v E = 2v +

2
σ2

(L†L)((I1 ◦ Φt,1 − I0 ◦ Φt,0)

× [D(I0 ◦ Φt,0)T

∫ 1

t

|DΦt,u| du

+D(I1 ◦ Φt,1)T

∫ t

0

|DΦt,u| du])

which is costly to compute due to the time integrals. In
our approach, we directly symmetrize the data attachment
term, but combine this with an estimation of the optimal
matching template. While the original formulation was an
optimal control problem with free final state subject to a fi-
nal state penalty, the symmetrized version has a free initial
as well as a free final state subject to initial and final state
penalties. The approach has the following properties: (i)
it directly generalizes to time-series of images, (ii) the es-
timation is performed in one continuous interval, and (iii)
the formulation extends to data defined on a manifold that
cannot be covered with one coordinate chart. The optimal
control problem is then to minimize

E(v) =
∫ 1

0

‖v‖2
V dt+

1
σ2

‖I(0)−I0‖2
L2

+
1
σ2

‖I(1)−I1‖2
L2
,

subject to
It +DIv = 0, I(0) = IT ,

with an unknown (free) initial state I(0) = IT . Due to the
formal equivalence of the image-based and the map-based
approaches this is identical to minimizing2

E(v, IT ) =
∫ 1

0

‖v‖2
V dt+

1
σ2

‖IT−I0‖2
L2

+
1
σ2

‖IT ◦Φ1,0−I1‖2
L2
.

The variation with respect to IT is

δE(IT ; dIT ) =
2
σ2

〈IT −I0+|DΦ−1|(IT −I1◦Φ−1), dIT 〉

which yields

IT =
I0 + |DΦ−1(0)|I1 ◦ Φ−1(0)

1 + |DΦ−1(0)|
. (19)

The update equation constitutes a weighted average be-
tween the initial image I0 and the warped image I1. The
weighting assures that differences are measured in their re-
spective coordinate systems (for t = 0 and t = 1). The
overall estimation scheme alternates between registration
(using IT as the initial condition for the state equation) as
before and an update of the template image IT according to

2The same result can be obtained by strictly working in the image do-
main. However, the derivation is more complicated, due to the interdepen-
dency of image perturbations at different time points.

Eq. 19. To make the update independent of the map Φ−1,
we can make use of relation 14, to get

|DΦ−1(t)| = q(t), − qt − div(qv) = 0, q(1) = 1, (20)
−Jt −DJv = 0, J(1) = I1.

The updated template image is then

IT =
I0 + q(0)J(0)

1 + q(0)
,

allowing for an image-based, unbiased registration.

6. Numerical Considerations
The image-based approach is potentially more desirable

for intensity-based image-matching, since (i) it extends to
manifolds without explicit construction of a coordinate sys-
tem, (ii) it may require less computations (subject to the nu-
merics used), and (iii) it can serve as a proof of concept for
image-based algorithms with more complicated dynamics,
where the map-based relations of Sec. 4 no longer hold.

Avoiding the computations of the maps Φ and Φ−1 re-
moves the need for explicit image interpolations. Both the
forward and the inverse map are smooth by construction.
However, the image I and the adjoint λ will generally show
significantly more local variation (creating edge informa-
tion, which is the basis of registration itself). Preserving
this local variation on coarse grids is challenging.

To accurately capture the evolutions of the image and
the adjoint, requires numerical methods which show min-
imal numerical diffusion (and thus minimal image blur-
ring). This can be achieved by nonlinear numerical dis-
cretizations, e.g., using flux limiters [18], essentially non-
oscillatory schemes [16], or schemes aiming at a diffusion
reduction [30, 17], but may not always be necessary as
shown in Sec. 7. Fig. 1 demonstrates the effect of different
numerical schemes implementing the advection equation to
translate a synthetic checkerboard image. A first order up-
winding discretization blurs the image greatly. Higher order
accurate numerical schemes (back and forth error compen-
sation, the 5th order weighted essentially non-oscillatory
(WENO5) scheme and its anti-diffusive (aWENO5) ver-
sion) result in significantly less image blurring. By design,
the WENO schemes suppress image oscillations. The visu-
ally best result is achieved by aWENO5.

Fig. 5 shows computation results for the determinant of
the Jacobian of an exemplary map Φ and the respective ad-
joint versions according to Eq. 20. As is the case for the
advections (Fig. 1) the first order accurate numerical solu-
tion provides qualitatively correct, but blurry results. The
WENO5 result obtained by solving the scalar conservation
law is visually indistinguishable from the direct computa-
tion based on the deformation map.



As a compromise between simplicity, computational
complexity, and accuracy, we use WENO5 for our regis-
tration experiments: the Hamilton Jacobi scheme for the
advection equation [15] and a conservative scheme for the
adjoint equation [16]. Time integration is achieved by 3rd
order total variation diminishing Runge Kutta. To compare,
we also compute the registrations using first order upwind-
ing with Euler forward. We use a first order Roe upwinding
scheme with entropy fix for the adjoint equation [18].

7. Results

Since the image-based and the map-based approaches
are theoretically equivalent (Eqs. 2 and 3), we compare re-
sults by computing the resulting energies after convergence
of the optimization. To fairly compare the approaches, we
assess the quality of the resulting estimated velocity field,
v, by computing the final registered image for each method
by a single WENO5 map pass. We compare image- and
map-based approaches using the first order upwinding Eu-
ler forward and the WENO5 implementations.

We conducted experiments on a set of synthetic datasets
as well as for real brain images. For the synthetic tests, we
created two scenarios: one corresponding to a translating
square (E cases) (see Fig. 3) and one where the source im-
age had two additional small squares that were not present
in the target image and could thus not be matched exactly (I
cases). For each scenario, we created three sub-cases to test
the implementations’ sensitivity to blurred edges and noise.
We ultimately ran six synthetic tests: E1 and I1 had crisp
edges, E2 and I2 were blurred, and E3 and I3 were blurred
and altered with random additive noise.

The synthetic results show that, as expected, both map-
based cases perform slightly better when crisp edges are
present. When blurring and additive noise are induced, the
disparities between the image-based and map-based results
diminish. When considering an impossible registration, the
final energy values are higher. The differences between
these energy values for the four methods, however, stay rel-
atively constant. Fig. 7 shows an overview of the results.

We also tested our implementations on three pairs of cor-
responding brain slices taken from two distinct brain vol-
umes (Fig. 4). For this real data, the displacement fields
are significantly more regular, and as such the disparity be-
tween the results for the different methods diminishes.

To illustrate the unbiased registration approach we cre-
ated a synthetic test image with nonuniform appearance
(Fig. 6). The unbiased registration correctly aligned the im-
age, while estimating a meaningful template image, remi-
niscent of the mean of the source and the target. The tem-
plate image was initialized with the source image. Fig. 6
shows the first and the second template updates. No signif-
icant change is noticeable after the second iteration.

Source. 1st order image. 1st order map.

Target. WENO5 image. WENO5 map.
Figure 3. Synthetic registration results for test case E1 (see Fig. 7).
For large synthetic distortions, the differences between the com-
puted results become more apparent than for the real test images.

R1 R2 R3

Figure 4. Registration results for real test cases R1, R2, and R3
(see Fig. 7). In descending order for each column: source, target,
1st-order image, WENO5 image, 1st-order map, WENO5 map.

8. Conclusion and Future Work

We proposed an optimal control formulation for de-
formable image registration. We showed the formal equiv-



E1: 8.74 E2: 5.30 E3: 5.92 I1: 10.11 I2: 5.68 I3: 6.34 R1: 4.47e-1 R2: 3.91e-1 R3: 4.57e-1
1st Img 1.31e-1 1.64e-1 6.27e-1 1.49 5.65e-1 1.03 3.39e-1 2.73e-1 3.26e-1
5th Img 4.11e-1 3.15e-2 4.89e-1 1.78 4.16e-1 8.84e-1 3.87e-1 2.72e-1 3.25e-1
1st Map 8.36e-2 3.60e-2 4.95e-1 1.46 4.20e-1 8.96e-1 3.39e-1 2.74e-1 3.27e-1
5th Map 3.59e-2 3.05e-2 4.83e-1 1.41 4.15e-1 9.44e-1 3.39e-1 2.73e-1 3.27e-1

Figure 7. Final energy results for synthetic test cases E1, E2, E3, I1, I2, I3 (resolution 50 x 50), and real brain images R1, R2, and R3
(resolution 208 x 175). The E cases can be exactly matched, while the I cases are impossible to match perfectly. Cases E1 and I1 have
crisp edges, E2 and I2 are blurred, and E3 and I3 are blurred and modified with random additive noise. The initial energy for each test case
is given with the label. In the impossible cases, the final energies all increase relative to the exact cases, but the discrepancies between the
map-based and image-based registrations remain similar, showing that the relative error discrepancy gets smaller. The three R cases are
corresponding slices from two different brain volumes and hence cannot be matched perfectly.

Figure 5. Determinant of Jacobian of Φ. Left to right: Warped
grid, Φ, |DΦ| map, |DΦ| 1st-order, and |DΦ| WENO5. WENO5
produces a faithful result by solving a scalar conservation law. The
1st-order approach matches qualitatively, but introduces blurring.

Source. Target.

Template 1st iteration. Template second iteration.

Warped Source. Warped Template.
Figure 6. The unbiased registration approach aligns the images,
while estimating a template image reminiscent of an image-mean.

alence between this approach and the registration method
proposed by Beg et al. [4], We demonstrated the practicality
of purely image-based registrations and conducted a care-
ful analysis of numerical implementations, in comparison
to the standard map-based implementations. In comparison
to the map-based approach, the proposed image-based ap-
proach can be readily extended to manifolds, which so far
had not been explored in the large-displacement diffeomor-
phic image registration framework. We further proposed a

new method for unbiased image registration, which gener-
alizes to image sequences. The work suggests the feasi-
bility of similar image-based optimal control approaches to
dynamical systems of higher order, which we will explore
in future work. Such higher-order dynamical systems are
needed to formulate registration as an initial value problem,
thereby reducing memory requirements.

A. Optimality Conditions
For a minimizer of energy 5, its variations with respect

to v, λ, I , and γ need to vanish. Computing

δE(v, I, λ, γ; dv, dI, dλ, dγ) =
∂

∂ε
E(v + εdv, I + εdI, λ+ εdλ, γ + εdγ)|ε=0,

yields

δE =
∫ 1

0

2〈v, dv〉V + 〈dλ, It + (DI)v〉

+〈λ, dIt+(DdI)v+(DI)dv〉 dt+〈dγ, I(0)−I0〉+〈γ, dI(0)〉

+
2
σ2

〈I(1) − I1, dI(1)〉.

Since ∫ 1

0

〈λ, dIt〉 dt =
∫ 1

0

〈−λt, dI〉 dt+ 〈λ, dI〉|10,

and (by Green’s theorem)

〈λ, (DdI)v〉 = 〈−div(λv), dI〉+
∫

∂Ω

dIλv·dS = 〈−div(λv), dI〉

assuming v vanishes on the domain boundary, we get

δE =
∫ 1

0

〈2L†Lv + (DI)Tλ, dv〉 + 〈It + (DI)v, dλ〉

+ 〈− (λt + div(λv)) , dI〉 dt+ 〈λ, dI〉|10

+
2
σ2

〈I(1)− I1, dI(1)〉+ 〈I(0)− I0, dγ〉+ 〈γ, dI(0)〉.



Collecting terms yields

δE =
∫ 1

0

〈2L†Lv + (DI)Tλ, dv〉 + 〈It + (DI)v, dλ〉

+〈− (λt + div(λv)) , dI〉 dt+〈 2
σ2

(I(1) − I1)+λ(1), dI(1)〉

+ 〈I(0) − I0, dγ〉 + 〈γ − λ(0), dI(0)〉. (21)

Since δE needs to vanish for any dv, dI , dγ, dλ, fulfilling
the boundary conditions (i.e., dI(0) = 0) of the problem,
the necessary optimality conditions follow.
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