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Abstract. Existing atlas-building methods for diffusion-tensor images
are not designed for longitudinal data. This paper proposes a novel lon-
gitudinal atlas-building framework explicitly accounting for temporal de-
pendencies of longitudinal MRI data. Subject-specific growth modeling,
cross-sectional atlas-building and growth modeling in atlas space are
combined with statistical longitudinal modeling, resulting in a longitudi-
nal diffusion tensor atlas. The method captures changes in morphology,
while modeling temporal changes and allowing to account for covari-
ates. The component algorithms are based on large-displacement metric
mapping formulations. To effectively account for measurements sparse
in time, a continuous-discrete growth model is proposed. The method is
applied to a longitudinal dataset of diffusion-tensor magnetic resonance
brain images of developing macaque monkeys with time-points at ages 2
weeks, 3 months, and 6 months.

1 Introduction

The study of time-dependent image data is of fundamental importance in med-
ical image analysis. The ability to observe change over time in a population of
subjects can yield insight into the function and development of biological sys-
tems. Longitudinal studies that aim to observe such changes acquire images from
each subject in a population at multiple points in time, thus capturing subject-
specific development trajectories. Only few time-points are typically available.

Magnetic resonance imaging (MRI) has revolutionized neuroscience. Struc-
tural MR imaging is in routine clinical use and special MR scanning sequences
to for example probe water diffusion or blood oxygenation levels have become
indispensable tools for neuroscience. Atlas-based methods are used extensively
for the analysis of MR data, in particular, to provide a common coordinate frame
for the analysis of subject populations. But even though the importance of age-
specific atlases has been established [19], longitudinal information has only been
used to a limited extent in atlas-building. This is undesirable since longitudinal
atlases promise a better characterization of neurodevelopment which is not fully
understood. For example, while there are neuroanatomical descriptions of early
brain maturation in the monkey [14], information on the normal postnatal mat-
uration of the monkey brain especially during the peripubertal phase remains
limited. To characterize brain development, a longitudinal brain atlas would be



highly useful. Combined with statistical information, a normative atlas could
also be used to characterize deviations from the norm for pathologies.

The goal of this paper is to propose a novel longitudinal atlas-building frame-
work explicitly accounting for temporal dependencies of longitudinal MRI data.
In particular, a continuous-discrete (continuous time dynamics and discrete time
measurement) formulation is proposed to address the sparse measurements in
time. The new method is applied to construct a longitudinal diffusion-tensor
(DT) atlas from DT datasets for seven macaque monkeys ranging from two
weeks in age to six months, each with three measured time-points. Since the
method is general, it could conceivably be used on similar data, for example for
data from the NIH MRI study of normal brain development [7].

Sec. 2 discusses the works of Davis et al. [5] and Durrleman et al. [6] and how
they relate to the proposed method. Sec. 3 details the setup and procedure for
the longitudinal atlas construction algorithm. Results are presented in Sec. 4.
The paper concludes with an outlook on future work.

2 Background

There are few approaches for atlas-building which can be used for longitudinal
data. Existing approaches are: (1) atlas-building by registration of cross-sectional
atlases, (2) atlas-building by concatenation of 3D atlases followed by 4D regis-
tration [16], (3) atlas-building by regression [5], and (4) atlas-building by joint
alignment of image time-series [6]. Only the recent work by Durrleman et al. [6]
utilizes subject-specific longitudinal information. Other existing atlas-building
schemes typically treat measurements as independent and perform a variant of
cross-sectional atlas-building. The method proposed in this paper uses longitu-
dinal information and is most closely related to [5,6].

Davis et al. [5] use a weighting kernel over time to compute an average
image at a given atlas time-point as the point in space that minimizes the time-
weighted squared distance to all measured images. The method allows for images
measured at arbitrary points in time. While it can be applied to longitudinal
data, subject-specific temporal relationships are disregarded; all measurements
are treated independently. See Fig. 2 (a) for an illustration of the method.

Durrleman et al. [6] formulate longitudinal atlas-building as a single opti-
mization problem incorporating subject-specific growth models matched to an
estimated longitudinal atlas; potential time-shifts are also accounted for. To
measure compliance of an individual’s growth curve with respect to a current
atlas-estimate, the growth trajectory is brought into atlas-space by applying an
identical (estimated) diffeomorphic map for all its time-points. The registration
method is based on currents and the method is applied to surfaces in two- and
three spatial dimensions. Fig. 2 (b) illustrates the overall process.

This paper discusses a conceptually simple approach to build longitudinal
atlases using diffusion tensor images. In contrast to previous work, the proposed
method: (1) uses a four-step atlas-building strategy, which combines individ-
ual growth modeling with cross-sectional atlas-building at time-point-adjusted
image volumes and growth-modeling in atlas-space, (2) performs longitudinal



atlas-building for diffusion tensor images, and (3) is combined with a statistical
modeling step working directly with diffusion tensors, which can take full ad-
vantage of the longitudinal data and in particular allows for the computation
of estimation statistics (such as covariances over the population), can account
for covariates, and facilitates hypothesis testing (though the latter point is not
explored in this paper).

Since the study of neurodevelopment is the primary driving biological prob-
lem for the development of the proposed approach, focusing initially on diffusion
tensor atlases is beneficial with fiber structure already discernible at a very early
stage of neurodevelopment. This greatly simplifies the registration of image time-
series in comparison to structural images, which experience contrast inversion –
see Fig. 1 for an illustration.

Fig. 1. T1 (left column), FA (mid-
dle left column), color by orientation
(middle right column) axial slices and
3D tractography results (right) for a
2 week (top row), 3 months (middle
row) and 12 months old (bottom row)
macaque. Contrast inversion greatly
changes the appearance of the struc-
tural MR images throughout develop-
ment. However, diffusion information
is more stable across time simplifying
registration of image time-series.

3 Methodology

As shown in Fig. 2, the proposed longitudinal atlas-building method makes use of
continuous-discrete growth modeling (Sec. 3.1), time-adjusted cross-sectional at-
las building (Sec. 3.2), and statistical longitudinal modeling (Sec. 3.3), resulting
in a tensor-valued longitudinal atlas. Preprocessing consists of affine alignment
of all images based on histogram quantile normalized fractional anisotropy (FA)
images, to the histogram of the oldest image in the population. Normalization
is useful to compensate for the changes of FA range during brain development
(since diffusion anisotropy in the brain increases with age [12]). Note that while
full tensor-based registration methods [2,15,18] could be used for all the registra-
tion steps, the registrations are performed with a rotationally invariant measure
(FA) for simplicity. The pre-processed FA image set is denoted as {I(i,t)}. Fig. 3
illustrates the overall pipeline described in detail in the following sections.

3.1 Single Subject Growth Modeling

The goal of individual growth modeling for subject s with corresponding image
set {I(s,t)} is to recover the geometric change occurring between each measured



(a) Davis et al. [5] (b) Durrleman et al. [6] (c) proposed method

Fig. 2. Atlas construction methods: (a) Each atlas time-point is computed as
an average of all images in the population weighted by a kernel on temporal
distance. (b) The atlas is computed such that it is the best alignment of a set
of image time-series (growth models). Differences are measured in atlas space,
where all time-series time-points are transformed by the same diffeomorphism
from subject to atlas space. Temporal alignments are also considered. (c) The
proposed method builds cross-sectional atlases based on time-adjusted measure-
ment images (as obtained from subject-specific growth models). This establishes
spatial correspondences between all subjects and all subject time-points. Statis-
tical longitudinal modeling based on these correspondences is used to estimate
the average diffusion tensors over space and time.
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Fig. 3. Longitudinal atlas construction: The pipeline consists of four steps: Im-
age preprocessing, individual subject growth modeling (Sec. 3.1), cross-sectional
atlas construction (Sec. 3.2), and statistical longitudinal modeling (Sec. 3.3).

time-point. Since large deformations are possible throughout brain development,
a form of fluid registration is sensible. Here, a variant of large displacement
diffeomorphic metric mapping (LDDMM) [4,11] adapted to time-series is used
following [13]. Measurements are assumed sparse in time, while subject growth
is assumed to be time-continuous. The minimizer of

E(v, I
(s,t0)

) =
∫ tT
t0
‖v‖2V dt+ 1

σ2

∑T
i=0 ‖Is(ti)− I(s,ti)‖2L2

, (1)

s.t. ∂Is

∂t +∇Is · v = 0, Is(t0) = I
(s,t0)

, (2)



where Is(t) is the continuous image estimate for subject s at time t, v is a time-

dependent velocity field, and I
(s,t0)

denotes a template image will result (given
an appropriately chosen norm ‖ · ‖V ) in a piecewise-diffeomorphic interpolation
path approximating the images {I(s,ti)} at their respective measurement times.
Here, t0 denotes the youngest measured time-point for subject s and tT the
oldest and σ is a constant trading off accuracy in image matching (small σ) and
smoothness in the deformation field (large σ). This is a dynamically constrained
energy minimization problem. (Such a model without template estimation has
been used in [6,9]).The optimality conditions are

Ist +∇Is · v = 0, Is(t0) = I
(s,t0)

, I
(s,t0)

=

∑T
i=0 |DΦst0,ti |I

(s,ti) ◦ Φst0,ti∑T
i=0 |DΦst0,ti |

, (3)

for the interpolated images. Here, for each measured image I(s,i) and a given
time t̂, Φs

t̂,ti
is the diffeomorphism that maps from the coordinate frame at time

t̂ to the coordinate frame at time ti. It is the solution to the transport equation

∂Φs

∂t
+D(Φs)v = 0, Φs(ti) = id (4)

on the interval from ti to t̂, where D is the Jacobian and id denotes the identity
map. For the adjoint variable λ (the Lagrangian multiplier used to enforce the
transport equation of Eq. 2 as a dynamic equality constraint)

−λst − div(λsv) = 0,

{
λs(tT (−)) = 2

σ2 (I(s,tT ) − Is(tT ))

λs(ti(−)) = λs(ti(+)) + 2
σ2 (I(s,ti) − Is(ti)),

needs to hold piecewise ( (−) and (+) denote the left- and the right-sided values
at a given time-point). The state I, the adjoint λ, and the velocity field v, further
need to fulfill the optimality condition

∇Ev = 2L†Lv +∇Isλs = 0,

which can be used to compute the energy gradient with respect to v1.

Given a {v, I(s,t0)}, the time-dependent velocity field v can be used to com-
pute an image at any time-point between t0 and tT either by directly solving
the transport equation 2 or by applying the diffeomorphic map Φs

t̂,ti
(see [13]

for details on the numerical solution method). For the optimal {v, I(s,t0)}∗ the
maps (velocity fields v receptively) can be used to geometrically align all images
of the time-series. Note that this formulation allows joint estimation of the ve-

locity field and a template image I
(s,t0)

. This is a useful feature, in particular, if
image measurements are staggered in time, since the template estimation avoids
fixing an explicit time origin for the growth model (as typically done). For the

experimental data in this paper I
(s,t0)

:= I(s,t0), since all image time-series are
measured at the same time-points (2 weeks, 3 months, and 6 months).

1 v and T are also subject-dependent. This dependency is suppressed for notational
clarity.



3.2 Cross-Sectional Atlas Construction

To account for possible appearance changes in the atlas-building for a chosen
time-point t, images are interpolated using a voxel-wise average Is(t̂) using the
maps obtained in the growth modeling step such that

Îs(t̂) =

∑T
i=0 wi(I

(s,ti) ◦ Φs
t̂,ti

)∑T
i=0 wi

. (5)

Here, wi are interpolation weights. For the experiments in this paper linear inter-
polation is used to provide a simple baseline algorithm, but more sophisticated
interpolation methods are conceivable. For example, a time-series adaptation of
metamorphosis [17] could be used to simultaneously determine the maps as well
as a change in image appearance.

Given the appearance-adjusted images {Îs(t)} for all subjects, for a time-
point t, the cross-sectional atlas is computed as the Fréchet mean of {Îs(t)} [8],
minimizing the sum of squared differences to all images:

Ĩ(t) = argmin
IT

n∑
i=1

d(Îi(t), IT )2, where (6)

d(Îi(t), IT )2 = min
Φ̂

(i,t)
1,0

∫ 1

0

‖vi‖2V dt+
1

σ2
‖Îi(t) ◦ Φ̂(i,t)

1,0 − IT ‖2L2
. (7)

Here, n is the total number of subjects and Φ̂
(i,t)
1,0 is the coordinate map from

subject i to the atlas space for the given atlas time-point at t. This paper uses
a full space-time discretization instead of the standard greedy implementation.

After all cross-sectional atlas time-points Ĩ(t) have been computed, the
growth modeling technique of Sec. 3.1 is used to recover the inter-atlas growth
trajectory. This step results in a complete set of spatial correspondences between
all subjects and all time-points.

3.3 Statistical Longitudinal Modeling

Φi
t̂,t

t̂t

Φ̂
(i,t̂)
1,0

atlas

subject i

subject j

Fig. 4. Transformation from
subject space time-point t to at-
las at time t̂.

Statistical longitudinal models are computed
for each growth trajectory using the spatial
correspondences of Sec. 3.2. Given a chosen
reference time-point t̂ all original DTI images
are aligned with respect to the atlas space
Ĩ(t̂). The diffeomorphism from any given mea-
sured image I(i,t) to the reference atlas image
Ĩ(t̂) are computed by composing the intra-
subject map Φi

t̂,t
that transforms I(i,t) to time-

point t̂ (blue in Fig. 4), with the inter-subject

map Φ̂
(i,t̂)
1,0 that transforms Ii(t̂) to the atlas

space (red in Fig. 4)

ΦA(t̂),(i,t) = Φ̂
(i,t̂)
1,0 ◦ Φit̂,t. (8)



The tensors {I(i,t)} are reoriented according to their respective space trans-
formations following [1]. After spatial normalization, a generalized estimat-
ing equation (GEE) is used to explicitly model the longitudinal growth of
DTI, while controlling for other covariates of interest, such as gender, de-
noted by xij = (xij1, · · · , xijq)T for the i-th subject at the j-th time-point
for i = 1, · · · , n and j = 1, · · · ,mi. The diffusion tensors Di,j at each voxel are
log-transformed [3], denoted by log(Di,j) and a moment model is assumed for
log(Di,j), which is given as follows:

E(log(Di,j)) = µij = xij1β1 + · · ·+ xijqβq for j = 1, · · · ,mi, (9)

where βk are the unknown 6 × 1 vectors. Compared with the standard general
linear models, model (9) based on the conditional mean and covariance of εi
avoids assuming the distributional assumption of imaging measures. It is desir-
able for the analysis of log-transformed diffusion tensors, because the distribution
of log(Di,j) may deviate significantly from a multivariate Gaussian distribution.

Because neuroimaging measures (log(Di,1), · · · , log(Di,mi))
T from the same

subject are often positive correlated, it is assumed that Cov(Yi) can be decom-

posed as A
1/2
i (ξ)Ri(α)A

1/2
i (ξ), where Ai is a diagonal matrix of the variances

of log(Di,j), in which ξ is a common parameter vector. In addition, the working
correlation matrix Ri(α) represents the correlation among the mi repeated mea-
surements over time, where α is a vector of parameters. Commonly used working
correlation structures include independence structure, exchangeable structure,
autoregressive structure, and other structures. Then, by following Liang and
Zeger [10], a GEE for β and other parameters in ξ and α is constructed and the
unknown parameters are estimated iteratively.

In real applications, it is common to test linear hypotheses of β in order to
answer various scientific questions involving a comparison of diffusion tensors
across two (or more) diagnostic groups or the changes of diffusion tensors across
time. These questions can be formulated as testing linear hypotheses of β as
follows: H0 : Rβ = b0 vs. H1 : Rβ 6= b0, where R is an r × p matrix of full
row rank and b0 is an r × 1 specified vector. The null hypothesis H0 : Rβ = b0

is tested using a score test statistic or a Wald statistic, denoted by Sn. The
statistic Sn is approximately distributed as χ2(r), a chi-square distribution with
r degrees of freedom. To control the family-wise error rate, the maxima of the
score test statistics are considered, defined by Sµ,D = maxd∈DSn(d). To use Sµ,D
as test statistics, a test procedure that is based on the resampling method to
approximate the distribution of Sµ,D is used. This procedure is essentially a wild
bootstrap method for the hypothesis test.

4 Results

The proposed longitudinal atlas building method was applied to scans from an
ongoing study of neurodevelopmental alterations caused by infant maltreatment
in rhesus macaque monkeys. Ten macaques were scanned longitudinally at ages
of two weeks (neonate), three months and six months. Following birth, subjects



were cross-fostered in randomized fashion creating 4 groups allowing for the
measurement of both exposure to physical abuse (by abusive macaque mothers)
as well as genetic predisposition. In addition to the group designations, the
following known covariates were used in the longitudinal atlas modeling: weight
at birth, gender, and postnatal age (in days) at scan.

Scans were acquired at the Yerkes Imaging Center, Emory University, on
a 3T Siemens Trio scanner with 8-channel phase array trans-receiving volume
coil. High-resolution T1-weighted and T2-weighted MRI scans were acquired
first, followed by the DTI scans (voxel size: 1.3x1.3x1.3mm 3 with zero gap,
60 directions, TR/TE=5000/86 ms, 40 slices, FOV: 83 mm, b:0, 1000 s/mm2,
12 averages). The whole scanning procedure took 2-3 hours with 75 minutes
dedicated to the DTI scan for each monkey kept under monitored anesthesia
using isofluorane (1-1.5%) following an initial injection of telazol (4-5 mg/kg).

The longitudinal tensor atlas was computed for seven subjects (3 control
females, 2 abused females, and 2 abused males who already had images acquired
at the three time-points) using the proposed method of Sec. 32. To illustrate the
benefit of computing an average longitudinal atlas over an individual time-series,
Fig. 5 shows the result of single subject growth model (corresponding to the first
pipeline step). The initial affine alignment registers the overall structures well,
removing large-scale size differences due to brain growth, showing that for this
particular subject brain morphology does not change drastically during the first
six months of neurodevelopment. Signal to noise ratio is relatively low for an
individual subject leading to noisy patterns of local expansion and contraction.

Fig. 6 shows the results of the geometric alignment of subjects at different
time-points to a reference atlas as needed for the statistical longitudinal modeling
step. The figure shows six of the initial FA images aligned to the cross-sectional
atlas at the 97 day time-point as well as the computed atlas image. Good align-
ment is achieved. Structures in the difference images mainly represent changes
in FA which could not be compensated through histogram equalization, rather
than large-scale inaccuracies in the image alignment.

Fig. 7 shows the results of the full longitudinal atlas construction after the
final time-series has been computed over the cross sectional atlases. Resulting
atlas images show (as expected) significantly higher signal to noise ratios com-
pared to images from an individual subject. Further, a clearer pattern of local
expansion and contraction emerges, showing for example an expansion in the
area between the internal capsule and the external capsule.

Finally, Fig. 8 shows the diffusion tensor results calculated using statistical
longitudinal modeling correcting for gender, birthweight, and group (control or
abused). The results show a distinct increase in diffusion between two weeks and
six months (brighter colors in the color by orientation images).

2 Note that the this paper aims at showing example results for the proposed method.
To construct an atlas of normal brain development usable for population studies, an
appropriate subject population should be chosen.
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Fig. 5. Growth modeling results. [Top] Central axial slices from the growth
model of a male subject show the progression of growth from 2 weeks (14 days)
through 6 months (180 days). Images are generated using the interpolation pro-
cess described in Section 3.1. [Middle, top] Difference images computed between
each growth image demonstrate the locations of growth between each time-point.
Red indicates raised intensity and blue indicates lowered intensity. [Middle, bot-
tom] The determinant of the Jacobian of the coordinate map illustrates the local
expansion and contraction of the evolving model with respect to t = 14. Since
backward maps (maps from time-point t to t = 14) are used, values over 1
indicate local contraction while values under 1 indicate local expansion. [Bot-
tom] The magnitude of displacement with respect to the initial time-point shows
deformations (in mm) and indicates some asymmetry for this subject.

5 Conclusion and Future Work

This paper presented a novel approach for longitudinal atlas construction using
DT-MRI images. The method was applied to seven subjects from a database of
developing rhesus macaque monkeys, each with measured images at two weeks,
three months, and six months of age. Modeling the growth of each subject in-
dividually before modeling the growth of the entire population, takes advantage
of the longitudinal nature of the data set. Statistical longitudinal modeling was
used to produce the average tensors over the time span of the data, while ac-
counting for associated covariates, such as gender and birthweight.

Future work will use a much larger number of subjects to compute an atlas of
normal brain development for the macaque. Statistical modeling will then also
be used to compute measures of atlas variance (which can be handled by the
framework, but requires more than the currently available seven subjects in the
study) and to perform hypothesis testing for population studies. Longitudinal
monkey atlases will be made available as a resource for primate MRI studies and
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Fig. 6. Subject warping results to demonstrate the alignment of subjects at
different time-points to an atlas at t = 97 as computed by the transforma-
tion composition of Eq. 8. [Top] Central axial slices of six arbitrarily selected
measured subject time-points warped to atlas space show the final alignment
quality (S# indicates subject number). [Top:Right] The central axial slice from
the computed atlas time-point at t = 97. [Bottom] Absolute differences between
the histogram matched FA images warped to atlas space and the computed atlas
show the residual image mismatches.

will be publicly disseminated on NITRC. Further, joint statistical modeling and
atlas-building will be investigated.

The software is available in open-source form hosted on NITRC: Fluid Regis-
tration and Atlas Toolkit (FRAT) (http://www.nitrc.org/projects/frat/)).
The toolkit contains source code for executables and libraries that implement all
component algorithms as well as the full longitudinal atlas construction pipeline.

Acknowledgements This material is based upon work supported by the Na-
tional Science Foundation (NSF) under Grant Nos. (EECS-0925875, BCS-08-
26844) and by the National Institutes of Health (NIH) under Grant Nos. (UL1-
RR025747-01, MH086633, P01CA142538-01, AG033387, P30 HD03110, P50
MH078105-01A2S, and U54 EB005149). Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of NSF or NIH.

References

1. D. Alexander, C. Pierpaoli, P. Basser, and J. Gee. Spatial transformations of dif-
fusion tensor magnetic resonance images. IEEE Transactions on Medical Imaging,
20(11):1131–1139, 2001.

2. D. C. Alexander and J. C. Gee. Elastic matching of diffusion tensor images. Com-
put. Vis. Image Underst., 77(9):233–250, 2000.

3. V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Log-Euclidean metrics for
fast and simple calculus on diffusion tensors. Magnetic Resonance in Medicine,
56(2):411–421, 2006.
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Atlas Estimation for Developmental Delay Detection in Longitudinal Datasets.
Research Report RR-6952, INRIA, 2009.

7. A. C. Evans and the B.D.C. Group. The NIH MRI study of normal brain devel-
opment. NeuroImage, 30:184–202, 2006.

8. S. Joshi, B. Davis, M. Jomier, and G. Gerig. Unbiased diffeomorphic atlas con-
struction for computational anatomy. NeuroImage, 23(Supplement 1):S151 – S160,
2004. Mathematics in Brain Imaging.



t = 14 55.5 97 138.5 180

F
A

C
B

O

Fig. 8. Tensor atlas. Displacement maps were calculated from every measured
input image to the geometric space of time-point 97 and all tensors were realigned
into this space. From these tensors, an average tensor at a series of time points
were calculated using the statistical modeling described in Section 3.3. These
average tensor images were then geometrically aligned to the computed atlas at
the corresponding time-points using the final atlas-space time series. [Top] FA
images (not histogram normalized) computed from the average tensors show the
geometric change as well as the overall anisotropy increases with age. [Bottom]
Color by orientation images over time show an increase in diffusivity (brighter
colors) with age.

9. A. R. Khan and M. F. Beg. Representation of time-varying shapes in the large
deformation diffeomorphic framework. In Proceedings of the International Sympo-
sium on Biomedical Imaging (ISBI), pages 1521–1524, 2008.

10. K. Liang and S. Zeger. Longitudinal data analysis using generalized linear models.
Biometrika, 73(1):13, 1986.

11. M. Miller. Computational anatomy: shape, growth, and atrophy comparison via
diffeomorphisms. Neuroimage, 23:S19–S33, 2004.

12. P. Mukherjee and R. C. McKinstry. Diffusion tensor imaging and tractography of
human brain development. Neuroimaging Clinics of North America, 16(1):19 – 43,
2006. Advanced Pediatric Imaging.

13. M. Niethammer, G. Hart, and C. Zach. An optimal control approach for the
registration of image time series. In Proceedings of the Conference on Decision
and Control, pages 2427–2434, 2009.

14. P. Rakic and P. S. Goldman-Rakic. The development and modifiability of the
cerebral cortex. overview. Neuroscience Research Progress Bulletin, 20(4):433–438,
1982.

15. J. Ruiz-Alzola, C.-F. Westin, S. K. Warfield, C. Alberola, S. E. Maier, and R. Kiki-
nis. Nonrigid registration of 3d tensor medical data. Medical Image Analysis,
6(2):143–161, 2002.

16. D. Shen and C. Davatzikos. Measuring temporal morphological changes robustly in
brain MR images via 4-dimensional template warping. NeuroImage, 21:1508–1517,
2004.
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