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This supplementary material contains technical details on the structure of the Grassmann man-
ifold (Section A), our shooting strategy for Grassmannian geodesic regression (GGR, Section
B), and the continuous piecewise GGR (Section C). The references to sections that appear in the
paper [2] are marked as [Paper, §xxx]. The source code and further updates are also provided
here: https://yi_hong@bitbucket.org/yi_hong/ggr.git.

A. Geodesic Equation / Variational Problem

To obtain the geodesic equation for the Grassmannian manifold G(p, n), we first consider curves
Y(r) ∈ V(p, n) and then refine the characterization of the tangents to tangents on G(p, n). The
energy we want to minimize is

E(Y(r)) =

∫ 1

0

tr Ẏ(r)>Ẏ(r) dr,

s.t. Y(0) = Y0, Y(1) = Y1 and Y>Y = Ip .

(1)

In the paper, we use r0 and r1 as the integration bounds with r0 = 0 and r1 = 1. From [1], we
know that for Y being a representer for an element Y of G(p, n), tangent vectors take the form

∆ = Y⊥B = (In −YY>)C, (2)

where C ∈ Rn×p arbitrary. After dropping the argument r and the arguments of the energy in (1)
for readability, the minimization problem becomes minimizing

E =

∫ 1

0

tr C>(In −YY>)(In −YY>)C dr =

∫ 1

0

tr C>(In −YY>)C dr (3)
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such that Ẏ = (In −YY>)C, and Y(0) = Y0, Y(1) = Y1, and Y>Y = Ip. Since we know that
by enforcing the evolution equation for Y, Y>Y = Ip will be fulfilled if it is fulfilled initially, it is
sufficient to enforce Y(0)>Y(0) = Ip, instead of enforcing it at every time point. To see this, note
that

d

dr
(Y>Y) = Ẏ>Y + Y>Ẏ = C>(I−YY>)Y + Y>(In −YY>)C = 0, (4)

i.e., Y>Y is constant under the evolution equation for Y. Adding the constraints through La-
grangian multipliers, our objective is to find the critical points of the saddle point problem

E(C,Y, λ) =

∫ 1

0

tr C>(In −YY>)C + tr λ>(Ẏ − (In −YY>)C) dr +

tr λ>c (Y(0)>Y(0)− Ip) .

(5)

The variation is

δE =

∫ 1

0

tr (δC>(In −YY>)C + C>(In −YY>)δC + C>(−δYY> −YδY>)C) +

tr (δλ>(Ẏ − (In −YY>)C)) + tr (λ>(δẎ + δYY>C + YδY>C− (In −YY>)δC)) dr +

tr δλ>c (Y(0)>Y(0)− Ip) + tr λ>c (δY(0)>Y(0) + Y(0)>δY(0)) .

(6)

Collecting terms1 yields

δE =

∫ 1

0

tr (2C>(In −YY>)− λ>(In −YY>))δC + tr δλ>(Ẏ − (In −YY>)C) +

tr (−2Y>CC> − λ̇> + Y>Cλ> + Y>λC>)δY dr +

tr [λ>δY]10 + tr δλ>c (Y(0)>Y(0)− Ip) + tr (λ>c + λc)Y(0)>δY(0) .

(7)

Hence, we obtain the following optimality conditions

(2C> − λ>)(In −YY>) = 0, (8)

Ẏ − (In −YY>)C = 0, (9)

−λ̇> − 2Y>CC> + Y>Cλ> + Y>λC> = 0, (10)

subject to the boundary conditions Y(0) = Y0, Y(1) = Y1. Note: To obtain the geodesic
equation, it is not necessary to obtain an expression for the dynamics of λ and Y. Instead, we can
simply multiply the evolution equation for Y, i.e., (9) from the left with Y>2. This yields

Y>Ẏ −Y>(In −YY>)C = Y>Ẏ = 0, (11)

which upon differentiation becomes

Y>Ÿ + Ẏ>Ẏ = 0 . (12)

This expression is different from the one given in [1]:

Ÿ + YẎ>Ẏ = 0 . (13)

1Useful relations are: integration by parts and tr A = tr A>, tr AB = tr BA, tr ABC = tr CAB = tr BCA.
2This would not even have required setting up the variational problem in the first place.
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However, substituting (13) into (12) yields

Y>(−YẎ>Ẏ) + Ẏ>Ẏ = 0 . (14)

Hence, these equations are equivalent. Note also that by using the evolution equation (9) for Y,
and the relation between C and λ, given in (8), we obtain upon left multiplication of the evolution
equation (10) for λ with (In −YY>)

(In −YY>)(−λ̇+
1

2
λλ>Y) = 0 . (15)

This determines the evolution of λ up to a projection onto the orthogonal complement of Y. For
a free initial condition Y(0), we obtain the additional optimality condition

− λ(0) + Y(0)(λc + λ>c ) = 0 . (16)

By multiplying, from the left, with Y(0)> we obtain

λc + λ>c = Y(0)>λ(0) . (17)

Backsubstitution (to eliminate λc) then yields the condition

− (In −Y(0)Y(0)>)λ(0) = 0 . (18)

Hence, the gradient of E with respect to this initial condition Y(0) is given by

∇Y(0)E =∇Y(0)d
2(Y(0),Y1)

=− (In −Y(0)Y(0)>)λ(0)

(8)
= − (In −Y(0)Y(0)>)2C

(9)
= − 2Ẏ(0)

(19)

which can be regarded as the gradient of the squared geodesic distance with respect to its current
initial condition.

B. Derivation of Geodesic Shooting

In this section, we derive the shooting solution to the energy minimization problem [Paper, §3.1].
The shooting based energy for the geodesic determined by two representers, Y0 and Y1, is

E(Y(r0), Ẏ(r0)) = α tr Ẏ(r0)>Ẏ(r0) +
1

σ2
d2(Y(r1),Y1) (20)

subject to the constraints

Y(r0)>Y(r0) = Ip, (21)

Y(r0)>Ẏ(r0) = 0, (22)

Ÿ(r) + Y(r)[Ẏ(r)>Ẏ(r)] = 0 . (23)
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with balancing constants α ≥ 0, σ > 0. Note: As for a geodesic path the velocity has to be
constant, we have replaced the integral, cf. (1), in the first term of (20) by its initial condition. To
simplify computations, we replace the second order geodesic constraint by a system of first order.
Specifically, introducing the auxiliary variables

X1(r) = Y(r) and X2(r) = Ẏ(r) (24)

allows to write the shooting energy of (20) as

E(X1(r0),X2(r0)) = α tr X2(r0)>X2(r0) +
1

σ2
d2(X1(r1),Y1) (25)

such that

Ẋ1(r) = X2(r), (26)

Ẋ2(r) = −X1(r)[X2(r)>X2(r)], (27)

X1(r0)>X1(r0) = Ip, (28)

X1(r0)>X2(r0) = 0 . (29)

Now, adding the constraints (26) – (29) through Lagrangian multipliers, we obtain the saddle-point
problem associated with (20) as

E(X1(r0),X2(r0)) = α tr X2(r0)>X2(r0) +
1

σ2
d2(X1(r1),Y1) +∫ r1

r0

tr λ1(r)>(Ẋ1(r)−X2(r)) dr +

∫ r1

r0

tr λ2(r)>(Ẋ2(r) + X1(r)(X2(r)>X2(r))) dr +

tr λ>3 X1(r0)>X2(r0) + tr λ>4 (X1(r0)>X1(r0)− Ip) .

(30)

Note: The Lagrangian multipliers λ1(r) and λ2(r) are dependent on the measurement variable r,
whereas λ3 and λ4 are constants. Computing the associated variation yields

δE(X1(r0),X2(r0)) = α tr 2X2(r0)>δX2(r0) +
1

σ2
∇X1(r1)(d

2(X1(r1),Y1))>δX1(r1) +∫ r1

r0

tr λ1(r)>( ˙δX1(r)− δX2(r)) + tr δλ1(r)>(Ẋ1(r)−X2(r)) dr +∫ r1

r0

tr λ2(r)>( ˙δX2(r) + δX1(r)(X2(r)>X2(r)) + X1(r)(δX2(r)>X2(r) + X2(r)>δX2(r))) +

tr δλ2(r)>(Ẋ2(r) + X1(r)(X2(r)>X2(r))) dr +

tr λ>3 (δX1(r0)>X2(r0) + X1(r0)>δX2(r0)) + tr δλ>3 (X1(r0)>X2(r0)) +

tr λ>4 (δX1(r0)>X1(r0) + X1(r0)>δX1(r0)) + tr δλ>4 (X1(r0)>X1(r0)− Ip) .

(31)
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After collecting terms and integration by parts, we obtain

δE(X1(r0),X2(r0)) = tr (−λ1(r0)> + λ3X2(r0)> + λ4X1(r0)> + λ>4 X1(r0)>)δX1(r0)+

tr (
1

σ2
∇X1(r1)(d

2(X1(r1),Y1))> + λ1(r1)>)δX1(r1)+

tr (2αX2(r0)> − λ2(r0)> + λ>3 X1(r0)>)δX2(r0) + tr λ2(r1)>δX2(r1)+∫ r1

r0

tr (−λ̇1(r)> + X2(r)>X2(r)λ2(r)>)δX1(r) dr +

∫ r1

r0

tr δλ1(r)>(Ẋ1(r)−X2(r)) dr+∫ r1

r0

tr (−λ1(r)> − λ̇2(r)> + X1(r)>λ2(r)X2(r)> + λ2(r)>X1(r)X2(r)>)δX2(r) dr+∫ r1

r0

tr δλ2(r)>(Ẋ2(r) + X1(r)(X2(r)>X2(r)) dr+

tr δλ>3 (X1(r0)>X2(r0)) + tr δλ>4 (X1(r0)>X1(r0)− Ip) .

(32)

Hence, the following optimality conditions result:{
Ẋ1(r) = X2(r),

Ẋ2(r) = −X1(r)(X2(r)>X2(r)),
(33){

λ̇1(r) = λ2(r)X2(r)>X2(r),

λ̇2(r) = −λ1(r) + X2(r)[λ2(r)>X1(r) + X1(r)>λ2(r)],
(34)

with boundary conditions and constraints

X1(r0) = Y(r0) (35)

X2(r0) = Ẏ(r0) (36)

λ1(r1) = − 1

σ2
∇X1(r1)d

2(X1(r1),Y1) (37)

λ2(r1) = 0, (38)

X1(r0)>X2(r0) = 0, (39)

X1(r0)>X1(r0) = Ip . (40)

To compute the geodesic from a starting point Y(r0), we want to determine Ẏ(r0) instead of
imposing it, hence X2(r0) is free which yields the condition from (32)

2αX2(r0)− λ2(r0) + X1(r0)λ3 = 0. (41)

Multiplying this equation from the left by X1(r0)> yields

λ3 = X1(r0)>λ2(r0) . (42)

and condition (41) becomes

2αX2(r0)− (In −X1(r0)X1(r0)>)λ2(r0) = 0 . (43)
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As this cannot be solved in closed form, we use an adjoint optimization problem and simply interpret
(43) as the gradient with respect to the sought–for initial condition X2(r0) = Ẏ(r0)

∇X2(r0)E = 2αX2(r0)− (In −X1(r0)X1(r0)>)λ2(r0) . (44)

In anticipation of the full regression formulation we also need the gradient with respect to X1(r0).
If X1(r0) is free we obtain the additional optimality condition from (32)

− λ1(r0) + X2(r0)λ>3 + X1(r0)(λ4 + λ>4 ) = 0 . (45)

Multiplying this equation from the left by X1(r0)> yields

λ4 + λ>4 = X1(r0)>λ1(r0) . (46)

Backsubstitution of (46) into (45) and using (42) for λ3 then yields

− (In −X1(r0)X1(r0)>)λ1(r0) + X2(r0)λ2(r0)>X1(r0) = 0 (47)

and consequently

∇X1(r0)E = −(In −X1(r0)X1(r0)>)λ1(r0) + X2(r0)λ2(r0)>X1(r0) . (48)

The derivation of geodesic shooting for multiple points is similar to the above procedures for
two points, except for the data matching term, i.e., the second term in (20), which then includes
distance terms for multiple measurements. This extension will not change the optimality conditions
for initial conditions (X1(r) and X2(r)) and the Lagrangian multipliers (λ1(r) and λ2(r)), which are
dependent on the variable r. But it will bring jumps to λ1(r) at the location of each measurement,
ri, which is similar to its boundary condition (37).

By shooting the optimality conditions (33) for the initial conditions forward, and the optimality
conditions (34) for Lagrangian multipliers backward, as well as updating the initial conditions with
gradients ((48) and (44)), we can solve the minimization problem for multiple points as shown in
[Paper, Algorithm 1].

C. Continuous Piecewise GGR

Using the adjoint method, it is easy to extend the Grassmannian geodesic regression (GGR) to a
continuous piecewise version. In the following derivation, we mainly discuss the extension to two
segments with the optimized location of the breakpoint; this is straightforward to be generalized to
multiple segments, shown in Algorithms 1 and 2.

C.1. Optimal solution for fixed breakpoints

Given a set of data points on the Grassmannian, represented by Yi, and the breakpoints of the
segments, we aim to find a continuous piecewise geodesic to fit these data measurements. To
simplify the problem, we take two segments, e.g., [0, t−] and [t+, 1], with t as the breakpoint. So
the energy to be minimized is

E(X1(0),X2(0),X3(t+)) = α trX2(0)>X2(0) + α trX3(t+)>X3(t+) +
1

σ2

N−1∑
i=0

d2(X1(ri),Yi), (49)
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such that
Ẋ1 = X2, Ẋ2 = −X1X

>
2 X2, X1(0)>X1(0) = I, X1(0)>X2(0) = 0, [0, t−]

Ẋ1 = X3, Ẋ3 = −X1X
>
3 X3, X1(t+)>X3(t+) = 0, [t+, 1]

X1(t−) = X1(t+) .

(50)

Here, (X1(0),X2(0)) is the initial point and the initial velocity for the first segment, and
(X1(t+),X3(t+)) is the initial point and velocity for the second segment. By using the Lagrangian
multipliers from λ1 to λ8, we can add all the eight constraints in (50) into the energy function for
minimization. This yields

E = α trX2(0)>X2(0) + α trX3(t+)>X3(t+) +
1

σ2

N−1∑
i=0

d2(X1(ri),Yi)

+

∫ t−

0

tr λ>1 (Ẋ1 −X2)dr +

∫ t−

0

tr λ>2 (Ẋ2 + X1X
>
2 X2)dr +

∫ 1

t+

tr λ>3 (Ẋ1 −X3)dr

+

∫ 1

t+

tr λ>4 (Ẋ3 + X1X
>
3 X3)dr + tr λ>5 (X1(0)>X1(0)− I)

+ tr λ>6 X1(0)>X2(0) + tr λ>7 X1(t+)>X3(t+) + tr λ>8 (X1(t−)−X1(t+)) .

(51)

To obtain the optimality conditions for the optimization problem, we compute its variation,
which results in

δE = α tr 2X2(0)>δX2(0) + α tr 2X3(t+)>δX3(t+) +
1

σ2

N−1∑
i=0

∇X1(ri)d
2(X1(ri),Yi)

>δX1(ri)

+

∫ t−

0

tr(Ẋ1 −X2)>δλ1dr + tr λ1(t−)>δX1(t−)− tr λ1(0)>δX1(0)−
∫ t−

0

tr λ̇>1 δX1dr

−
∫ t−

0

tr λ>1 δX2dr +

∫ t−

0

tr(Ẋ2 + X1X
>
2 X2)>δλ2dr + tr λ2(t−)>δX2(t−)− tr λ2(0)>δX2(0)

−
∫ t−

0

tr λ̇>2 δX2dr +

∫ t−

0

trX>2 X2λ
>
2 δX1dr +

∫ t−

0

tr(X>1 λ2 + λ>2 X1)X>2 δX2dr

+

∫ 1

t+

tr(Ẋ1 −X3)T δλ3dr + tr λ3(1)>δX1(1)− tr λ3(t+)>δX1(t+)−
∫ 1

t+

tr λ̇>3 δX1dr

−
∫ 1

t+

tr λ>3 δX3dr +

∫ 1

t+

tr(Ẋ3 + X1X
>
3 X3)>δλ4dr + tr λ4(1)>δX3(1)− tr λ4(t+)>δX3(t+)

−
∫ 1

t+

tr λ̇>4 δX3dr +

∫ 1

t+

trX>3 X3λ
>
4 δX1dr +

∫ 1

t+

tr(X>1 λ4 + λ>4 X1)X>3 δX3dr

+ tr(X1(0)>X1(0)− I)>δλ5 + tr(λ5 + λ>5 )X1(0)>δX1(0)

+ tr(X1(0)>X2(0))>δλ6 + tr λ6X2(0)>δX1(0) + tr λ>6 X1(0)>δX2(0)+

+ tr(X1(t+)>X3(t+))>δλ7 + tr λ7X3(t+)>δX1(t+) + tr λ>7 X1(t+)>δX3(t+)

+ tr(X1(t−)−X1(t+))>δλ8 + tr λ>8 δX1(t−)− tr λ>8 δX1(t+) .

(52)
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By collecting terms we can simplify the variation as follows:

δE =

∫ t−

0

tr(Ẋ1 −X2)>δλ1dr +

∫ t−

0

tr(Ẋ2 + X1X
>
2 X2)>δλ2dr

+

∫ t−

0

tr(−λ̇>1 + X>2 X2λ
>
2 )δX1dr +

∫ t−

0

tr(−λ̇>2 − λ>1 + (X>1 λ2 + λ>2 X1)X>2 )δX2dr

+

∫ 1

t+

tr(Ẋ1 −X3)>δλ3dr +

∫ 1

t+

tr(Ẋ3 + X1X
>
3 X3)>δλ4dr

+

∫ 1

t+

tr(−λ̇3
>

+ X>3 X3λ
>
4 )δX1dr +

∫ 1

t+

tr(−λ̇>4 − λ>3 + (X>1 λ4 + λ>4 X1)X>3 )δX3dr

+
1

σ2

N−1∑
i=0

∇X1(ri)d
2(X1(ri),Yi)

>δX1(ri) + tr(−λ1(0)> + (λ5 + λ>5 )X1(0)> + λ6X2(0)>)δX1(0)

+ tr(2αX2(0)> − λ>2 (0) + λ>6 X1(0)>)δX2(0) + tr(−λ3(t+)> + λ7X3(t+)> − λ>8 )δX1(t+)

+ tr(2αX3(t+)> − λ4(t+)> + λ>7 X1(t+)>)δX3(t+) + tr(λ1(t−)> + λ>8 )δX1(t−)

+ tr λ2(t−)>δX2(t−) + tr λ3(1)>δX1(1) + tr λ4(1)>δX3(1) + tr(X1(0)>X1(0)− I)>δλ5

+ tr(X1(0)>X2(0))>δλ6 + tr(X1(t+)>X3(t+))>δλ7 + tr(X1(t−)−X1(t+))>δλ8.

(53)

Because the variations should vanish, we can get the forward system

{
Ẋ1 = X2, Ẋ2 = −X1X

>
2 X2, [0, t−]

Ẋ1 = X3, Ẋ3 = −X1X
>
3 X3, [t+, 1]

(54)

with boundary conditions{
X1(0) = Y(0), X2(0) = Ẏ(0),

X1(t+) = X1(t−), X3(t+) = Ẏ(t+) .
(55)

As we can see, for each segment, the state equations stay the same. The main difference lies in the
values of the initial conditions, that is, the point, X1, remains continuous at the breakpoint in the
forward integration, but the velocity, denoted by X2 and X3, will change according to the value
at the breakpoint. Y(0), Ẏ(0), and Ẏ(t+) are unknown, and they will be updated using their
corresponding gradients, which will be discussed later.

From (53), we can also obtain equations for the backward system{
λ̇1 = λ2X

>
2 X2, λ̇2 = −λ1 + X2(λ>2 X1 + X>1 λ2), [0, t−]

λ̇3 = λ4X
>
3 X3, λ̇4 = −λ3 + X3(λ>4 X1 + X>1 λ4), [t+, 1]

(56)

with boundary conditions {
λ1(t−) = −λ8, λ2(t−) = 0,

λ3(1) = 0, λ4(1) = 0.
(57)
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Here, λ1 and λ3 are equivalent since they are the adjoint variables for the point X1 at different
segments. Similarly, λ2 and λ4 are the adjoint variables for the velocities, X2 and X3, at two
segments. So the adjoint equations for each segment are also the same, but the boundary conditions
are different at the breakpoint.

Since, X1(0) is the initial point at time 0, and it should be free, we set

− λ1(0) + X1(0)(λ5 + λ>5 ) + X2(0)λ>6 = 0. (58)

Through left multiplication by X1(0)>, we can obtain

λ5 + λ>5 = X1(0)>λ1(0). (59)

Similarly, X2(0) is the initial velocity at time 0 and should be free, we set

2αX2(0)− λ2(0) + X1(0)λ6 = 0. (60)

Left multiplication by X1(0)> gives

λ6 = X1(0)>λ2(0). (61)

By substituting the values of λ5 and/or λ6 into the left side of (58) and (60), we can obtain the
gradients for X1(0) and X2(0) as

∇X1(0)E = −(I−X1(0)X1(0)>)λ1(0) + X2(0)λ2(0)>X1(0), (62)

∇X2(0)E = 2αX2(0)− (I−X1(0)X1(0)>)λ2(0). (63)

Besides, X3(t+) is the initial velocity at the breakpoint, and it also should be free. To obtain
its gradient, we set

2αX3(t+)− λ4(t+) + X1(t+)λ7 = 0. (64)

Left multiplication by X1(t+)> results in

λ7 = X1(t+)>λ4(t+). (65)

So by substituting the value of λ7 into the left side of (64), we can obtain the gradient for
X3(t+):

∇X3(t+)E = 2αX3(t+)− (I−X1(t+)X1(t+)>)λ4(t+). (66)

The gradients, ∇X2(0)E and ∇X3(t+)E, share the same formulation because X2(0) and X3(t+)
are the initial velocity of each segment, λ2(0) and λ4(t+) are the corresponding adjoint variables,
and X1(0) and X1(t+) are the initial point of each segment. That is, we can use one formulation
to compute the gradient of the initial velocity for all segments.

There is still one thing left, computing the value of λ8. Because X1(t+) is the initial point at
the breakpoint, but it has to be the same with the ending point of the previous piece, this means it
should not be free, and no gradient needs to be computed. But we can use it to compute the value
of λ8 that is required for computing the boundary condition for λ1:

− λ3(t+) + X3(t+)λ>7 − λ8 = 0 (67)
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Data: {(ri,Yi)}N−1i=0 , α, σ2, and breakpoints {tj}Kj=1

Result: Y(r0), Ẏ(r0), and {Ẏ(tj)}Kj=1

Set initial Y(r0), Ẏ(r0), and {Ẏ(tj)}Kj=1.

Set t0 = r0. // the minimal value of {ri}N−1i=0

Set tK+1 = rN−1. // the maximal value of {ri}N−1i=0

while not converged do
for j := 0 to K do

Solve

{
Ẋ1 = X2, X1(tj) = Y(tj),

Ẋ2 = −X1(X>2 X2), X2(tj) = Ẏ(tj)
forward for r ∈ [tj , tj+1].

end
λ8 = 0.
for j := K to 0 do

Solve

{
λ̇1 = λ2X

>
2 X2, λ1(tj+1+) = −λ8,

λ̇2 = −λ1 + X2(λ>2 X1 + X>1 λ2), λ2(tj+1) = 0
backward for r ∈ [tj , tj+1]

with jump conditions

λ1(ri−) = λ1(ri+)− 1

σ2
∇X1(ri)d

2(X1(ri),Yi), tj ≤ ri ≤ tj+1

and ∇X1(ri)d
2(X1(ri),Yi) is computed as in Section A. For multiple measurements at

a given ri, the jump conditions for each measurement are added up.
Compute boundary condition for λ1 at the breakpoint tj :

λ8 = −λ1(tj+) + X2(tj)λ2(tj)
>X1(tj).

Compute gradient with respect to the initial velocity at the breakpoint tj (or at the
point r0 when j = 0):

∇Ẏ(tj)
E = 2αX2(tj)− (In −X1(tj)X1(tj)

>)λ2(tj).

end
Compute gradient with respect to the initial point:

∇Y(r0)E = −(In −X1(r0)X1(r0)>)λ1(r0−) + X2(r0)λ2(r0)>X1(r0).

Use a line search with these gradients to update Y(r0), Ẏ(r0), and {Ẏ(tj)}Kj=1, as
described in [Paper, Algorithm 2].

end
Algorithm 1: Continuous Piecewise Regression on the Grassmannian

By substituting (65) into (67), we can compute the λ8 as

λ8 = −λ3(t+) + X3(t+)λ4(t+)>X1(t+) (68)

The last term 1
σ2

∑N−1
i=0 ∇X1(ri)d

2(X1(ri),Yi)
>δX1(ri) will be used to derive the jump condi-
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tions shown in Algorithm 1.
Compared to the standard geodesic regression, the continuous piecewise regression shares the

same forward and backward systems. The only difference is that in the piecewise regression, its
boundary conditions for both forward and backward systems change at the breakpoints. Specifically,
there are two modifications in the continuous piecewise regression:

1) In the forward system, the initial point at the breakpoint remains unchanged, the same with
the ending point of the previous segment, but the initial velocity at the breakpoint needs to be
updated based on the corresponding gradient, i.e., the gradient with respect to X3(t+).

2) In the backward system, the boundary condition for the Lagrangian multiplier of the initial
velocity remains 0 at the breakpoint as before, but the boundary condition for the Lagrangian
multiplier of the initial point is no longer 0, but will be set to −λ8, which is computed using (68).

Since for each segment all the equations remain the same compared to the standard geodesic
regression with only slight changes at the boundary conditions, it is straightforward to extend the
two segments to multiple segments, as shown in Algorithm 1.

C.2. Optimal breakpoints for two segments

In Section C.1, the continuous piecewise regression is performed with an assumption that the
breakpoint is known. In this section, our goal is to optimize the location of the breakpoint for the
continuous piecewise GGR. To address this problem, we rewrite the cost function (see (51)) using
the lim operator, which yields

E = α trX2(0)>X2(0) + α lim
t→t+

trX3(t)>X3(t) +
1

σ2

N−1∑
i=0

d2(X1(ri),Yi)

+ lim
t→t−

∫ t

0

tr λ>1 (Ẋ1 −X2)dr + lim
t→t−

∫ t

0

tr λ>2 (Ẋ2 + X1X
>
2 X2)dr + lim

t→t+

∫ 1

t

tr λ>3 (Ẋ1 −X3)dr

+ lim
t→t+

∫ 1

t

tr λ>4 (Ẋ3 + X1X
>
3 X3)dr + tr λ>5 (X1(0)>X1(0)− I) + tr λ>6 X1(0)>X2(0)

+ lim
t→t+

tr λ>7 X1(t)>X3(t) + tr λ>8 ( lim
t→t−

X1(t)− lim
t→t+

X1(t))

(69)

To find the optimal position for the breakpoint, we first compute the gradient for updating. By
taking the derivative of the energy with respect to t, and based on the fact that tr and lim are
linear operators, we can obtain the gradient with respect to t as

11



dE

dt
= 0 + α tr lim

t→t+

dX3(t)>X3(t)

dt
+ 0 + lim

t→t−
tr λ>1 (Ẋ1 −X2) + lim

t→t−
tr λ>2 (Ẋ2 + X1X

>
2 X2)

− lim
t→t+

tr λ>3 (Ẋ1 −X3)− lim
t→t+

tr λ>4 (Ẋ3 + X1X
>
3 X3) + 0 + 0

+ tr lim
t→t+

dλ>7 X1(t)>X3(t)

dt
+ tr λ>8 lim

t→t−

dX1(t)

dt
− tr λ>8 lim

t→t+

dX1(t)

dt

(50)
= α tr lim

t→t+

dX3(t)>X3(t)

dt
+ tr lim

t→t+

dλ>7 X1(t)>X3(t)

dt

+ tr λ>8 lim
t→t−

dX1(t)

dt
− tr λ>8 lim

t→t+

dX1(t)

dt

= α tr lim
t→t+

(Ẋ3(t)>X3(t) + X3(t)>Ẋ3(t)) + tr lim
t→t+

(λ>7 Ẋ1(t)>X3(t) + λ>7 X1(t)>Ẋ3(t))

+ tr λ>8 Ẋ1(t−)− tr λ>8 Ẋ1(t+)

(50)
= −α trX3(t+)>X3(t+)(X1(t+)>X3(t+))− α tr(X3(t+)>X1(t+))X3(t+)>X3(t+)

+ tr λ>7 (I−X1(t+)>X1(t+))X3(t+)>X3(t+) + tr λ>8 X2(t−)− tr λ>8 X3(t+)

(50)
= tr λ>8 (X2(t−)−X3(t+)). (70)

This indicates that the breakpoint of two segments is optimized based on the jumps of the initial
velocity at the breakpoint, which could be extended to multiple segments. In Algorithm 2, we use
an iterative optimization strategy to find the optimal locations for multiple breakpoints.

Data: {(ri,Yi)}N−1i=0 , α, σ2, and K (the number of breakpoints)

Result: Y(r0), Ẏ(r0), {tj ,Y(tj)
K
j=1}

Set initial {tj}Kj=1, evenly distributed within (r0, rN−1).

Set initial Y(r0), Ẏ(r0), and {Ẏ(tj)}Kj=1.

while not converged do

Update Y(r0), Ẏ(r0), and {Ẏ(tj)}Kj=1 using Algorithm 1, and save the values of λ8(tj),

X2(tj−), and X2(tj+) at each breakpoint {tj}Kj=1.

for j := 1 to K do
Compute gradient with respect to t at the breakpoint tj

dE

dt

∣∣∣∣
t=tj

= tr λ8(tj)
>(X2(tj−)−X2(tj+)).

end

Use a line search with the gradients to update {tj}Kj=1.

end
Algorithm 2: Continuous Piecewise GGR with Optimal Breakpoints
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