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Abstract: This study develops an automated method capable of
detecting notches in isotropic plates. Laser ultrasonic techniques
are used to generate and detect Lamb waves in perfect and notched
plates. These signals are first transformed into the time-frequency
domain using a short time Fourier transform (STFT) and subsequently
into the group velocity-frequency domain. Finally, the notch is located
with an autocorrelation in the group velocity-frequency domain. A
verification of the proposed methodology shows excellent agreement
with the actual location of the notch.
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1. Introduction

This research develops an automated methodology using time-frequency representa-
tions (TFRs) to locate notches in plates. This technique is based on the feasibility of
calculating a group velocity-frequency representation from a TFR, as well as the invari-
ance of the group velocity-frequency spectrum with respect to propagation distance.

Previous researchers have used Lamb waves for material characterization (see
Chimenti1 for details), but a Lamb wave’s multi-mode and dispersive nature makes
interpretation of time-domain signals difficult. In contrast, TFRs operate on time-
domain signals, are capable of resolving a plate’s individual modes, and naturally lead
to the group velocity-frequency representation. TFRs are well-known in the signal pro-
cessing community (see Cohen2 for a review of TFRs). Previous research has shown
that TFRs based on the short time Fourier transform (STFT) – spectrogram, reassigned
spectrogram3 – and the (pseudo) Wigner-Ville distribution4 are particularly well suited
for representing Lamb waves. These particular TFRs are effective in this application
because of their constant time-frequency resolution over all times and frequencies.3

Lemistre et al.5 and Wilcox et al.6 used the TFRs of Lamb waves for damage detection
in composite plates.

The current study considers broadband, laser-generated, and detected Lamb
waves in both perfect and notched plates. The notch is located by isolating the contri-
butions of the signal reflected from this discontinuity by performing an autocorrelation
of a series of group velocity spectra, each calculated with different, assumed propaga-
tion distances. Finally, note that the high-fidelity, broad-bandwidth, and noncontact
nature of laser ultrasonics are critical elements for the success of this research.
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Fig. 1: Geometry of the notched plate with source and receiver locations (dimensions in mm).

2. Time-frequency representation

The experimental procedure makes resonance-free measurements of Lamb waves over
a wide frequency range (200 kHz to 10 MHz). Broadband Lamb waves are gener-
ated with a Nd:YAG laser source (see Scruby and Drain7 for details on laser ultrason-
ics). Laser detection of these waves is accomplished with a heterodyne interferometric
receiver8 that uses the Doppler shift to measure out-of-plane surface velocity (parti-
cle velocity) at a point on the plate’s surface. Figure 1 shows the 0.94 mm thick 3003
aluminum plate (203 mm in length and 153 mm in width) used in this study, plus
the relative locations of the laser source and receiver. One plate does not contain a
notch (perfect plate specimen) whereas the second plate contains a notch in the mid-
dle of the plate (at 101.5 mm) with a notch depth of 0.235 mm and a notch width of
1 mm (notched plate specimen). The notch-receiver and the source-receiver (d0) dis-
tances are 20 and 46 mm, respectively, for all results presented. Figure 2 (left) shows a
time-domain signal measured in the notched plate specimen. The Nd:YAG laser fires
at t = 0 and generates a Lamb wave at the source location. Note that all signals are
discretized with a sampling frequency of 100 MHz, low-pass filtered at 10 MHz, and
represent an average of twenty Nd:YAG shots to increase the signal-to-noise ratio.

This time-domain signal is transformed into the time-frequency domain us-
ing the STFT, essentially chopping the signal into a series of small overlapping pieces.
Each of these pieces is windowed and then individually Fourier transformed. The en-
ergy density spectrum of a STFT is called a spectrogram.2 Figure 2 (right) shows the
contour plot of the square root of the spectrogram of the time-domain signal (the left
of Fig. 2), using a 384-point long Hanning window. The TFR of Fig. 2 (right) is rather
complicated, containing both incident and reflected (from the notch and edges) con-
tributions. Figure 2 contains an excellent representation of the incident Lamb modes
(see [3] for details), but it is difficult to quantitatively identify the individual reflected
contributions. One possible technique to identify the reflected modes in Fig. 2 would
be to visually compare Fig. 2 with its perfect, infinite plate counterpart. Unfortunately,
the Lamb wave’s multiple modes plus the finite time-frequency bands present in Fig. 2
(these finite bands are present because of the Heisenberg uncertainty principle3) make
it difficult to develop a quantitative, visual comparison. As an alternative to a visual
approach, consider a more objective methodology that uses an autocorrelation in the
group velocity-frequency domain.

3. Group velocity-frequency representation and correlation

The TFR in Fig. 2 can be transformed into the group velocity-frequency domain using
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Fig. 2: Time- and time-frequency-domain signal measured in the notched plate.

the relationship cgr = d=t, where cgr is the group velocity, d is the propagation dis-
tance, and t is the propagation time (for each frequency). However, this transforma-
tion is complicated by any reflected contributions contained in a signal — the modes
reflected from a notch or an edge will have different propagation distances, d, than the
incident’s source-receiver distance, d0 in Fig. 1. Fortunately, the incident and reflected
contributions all propagate within the same plate, so they should have the same group
velocity-frequency spectrum — except for any mode conversion (portions of certain
modes might appear or disappear from incidence to reflection). This feature plus the
group velocity-frequency representation’s invariance to propagation distance are ex-
ploited to calculate the unknown notch-receiver distance.

First, determine the group velocity-frequency representation for the incident
modes by calculating cgr with the known source-receiver distance; Fig. 3 shows the
group velocity of the incident modes obtained by transforming Fig. 2 with d = d0. The
theoretical values of the Rayleigh-Lamb spectrum of the corresponding infinite, per-
fect plate are included in Fig. 3 as solid lines for visualization purposes only. There is
excellent agreement between the incident modes (above 1800 m/s) and the theoretical
dispersion curves, whereas there are modes with group velocities below 1600 m/s that
do not correspond to any of the theoretical modes. These group velocities are spurious
artifacts of the reflected modes, since the group velocity-frequency spectrum of Fig. 3
is only valid for the incident modes. The incident modes have a propagation distance
equal to the source-receiver distance (d0), although the reflected modes have traveled
different (unknown) propagation distances. Finally, note that there are no group ve-
locities below cgr = 750 m/s because time is finite in the time domain signal.

The contributions of reflected modes are isolated by calculating a new group
velocity-frequency representation of the same time-domain signal, but with a new prop-
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Fig. 3: Group velocity-frequency representation of the notched plate calculated with d as the source-receiver
distance, d0 (exact for incident modes).

agation distance equal to d = d0+2�d, where�d will be used to represent the unknown
receiver-notch distance. For illustrative purposes, Fig. 4 uses the exact propagation dis-
tance from the source to the receiver plus twice the distance from the receiver to the
notch (d = d0+2�d = 46+2�20 = 86mm) to transform Fig. 2. As is the case for Fig. 3,
the solid lines in Fig. 4 are the theoretical spectrum of the corresponding infinite, per-
fect plate. The modes reflected from the notch (the exact propagation distance d used
to calculate Fig. 4) should overlay the solid lines, and a portion of a reflected mode is
barely visible around 3000 m/s. Note that the additional modes above 3000 m/s are
the spurious artifacts of the incident modes, whereas the modes around 2400 m/s are
artifacts of the signal reflected from the closest edge. Figure 4 demonstrates that it is
extremely difficult to visually identify the reflected modes without the aid of the the-
oretical spectrum (the calculation of this spectrum is not trivial for more complicated
specimen geometries or materials) plus a priori knowledge of the notch’s location.

An objective, alternative approach (that does not rely on a theoretical spec-
trum) is to systematically vary the value of �d (and the associated propagation dis-
tance d = d0 + 2�d) and calculate a new group velocity spectrum for each propaga-
tion distance. Next, autocorrelate each new group velocity-frequency spectrum with
the group velocity-frequency spectrum of the same time-domain signal, but calculated
with a propagation distance of d0. Obviously, this autocorrelation reaches its maximum
for a spectrum calculated with �d = 0 (the correlation of two identical signals), but re-
flections will introduce local maxima in the correlation curve at certain �d’s. These
local maxima occur when the reflected modes exactly coincide with any of the corre-
sponding incident modes (in the group velocity-frequency spectrum) and are a mea-
sure of the receiver-reflector distance. Note that this exact coincidence occurs when the
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Fig. 4: Group velocity-frequency representation for the notched plate obtained with d as the source-receiver
plus twice receiver-notch distance (exact for modes reflected from the notch).

modes reflected from the notch overlay the theoretical spectrum in Fig. 4 at �d equal
to the exact receiver-notch distance.

Figure 5 shows the correlation of the spectra of the perfect plate (green curve)
for 301 values of �d, varying from 0 to 60 mm with a increment step of 0.2 mm. Each
of these spectra (calculated with a propagation distance d = d0 + 2�d) is correlated
with the spectrum of the same perfect plate calculated with a propagation distance of
d = d0. This procedure is repeated for the notched plate specimen (correlated with the
notched plate with d = d0) and shown in Fig. 5 as the red curve. The correlation of the
notched plate shows a local maximum at �d = 20 mm that is not present in the perfect
plate correlation, whereas both correlation curves show local maxima at �d = 35 and
55 mm. The first maximum corresponds to the notch (in the notched plate), whereas
the other two maxima correspond to the two closest edges (the edge for the 55 mm
peak is in the width of the plate and is not shown in Fig. 1). For a further enhancement
of any features that are present in the notched plate, but not in the perfect plate, the
notched plate correlation curve is divided by the perfect plate correlation curve. The
result, shown as the blue curve in Fig. 5, has a single dominant peak at �d = 20 mm.
This peak corresponds to the exact receiver-notch distance, shown in Fig. 1. Note that
the accuracy of this “measurement” is �1% for the discretization (sampling distance
�d) of 0.2 mm and all of the correlations are performed through a group velocity band
of 1800–3500 m/s.

4. Conclusion

This note clearly demonstrates the effectiveness of using an autocorrelation of group
velocity-frequency representations to develop an automated methodology to locate
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Fig. 5: Correlation curves for the perfect plate, notched plate, and a division of both curves.

notches with Lamb waves. This procedure exploits the invariance of the group velocity-
frequency spectrum with respect to propagation distance to quantitatively isolate the
modes reflected from a notch. The proposed procedure overcomes difficulties associ-
ated with the multi-mode and dispersive nature of Lamb waves, enabling the accu-
rate calculation of propagation distances of reflected modes. Note that this research is
restricted to one-dimensional localization of notches in isotropic plates, but it can be
extended to more realistic defects (such as cracks), two-dimensional wave propagation
in plates, or composite plates.
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