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Abstract

This research develops an algorithm which provides excellent localization of Lamb wave dispersion curves while eliminating spurious

components. This result is achieved by combining a differential reassignment procedure with non-linear anisotropic diffusion. This study

examines the reassignment and diffusion components individually, before developing a combined algorithm. This combined algorithm is

then applied to experimentally measured Lamb waves to develop an image of the dispersion curves of a plate with excellent clarity and

definition. These dispersion curves are then used to increase the accuracy of a previously developed procedure to locate a notch.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Defects in plate-like structures can be located and

characterized using the dispersion curves of guided Lamb

waves. Previous research by Hurlebaus et al. [1] and Benz

et al. [2] has shown that a combination of laser ultrasonics

with a time-frequency representation (TFR) can locate a

notch in a plate. Notch detection in these procedures relies

on the TFR’s ability to resolve the individual Lamb modes

of the plate, and to localize the energy of the experimentally

generated dispersion curves. The specific TFR used in these

studies is the reassigned spectrogram [3]; this ‘convention-

al’ reassignment method [4] localizes the energy of a

spectrogram by direct computation of reassignment coordi-

nates (the corresponding centers of gravity).

Chassande-Mottin et al. [5] present an alternative

formulation of this reassignment method, called ‘differen-

tial’ reassignment. Here, the reassignment coordinates are
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not computed directly, but are inferred through a vector field

v, i.e. ‘time-frequency particles’ travel along the trajectories

prescribed by v which can be interpreted as a velocity field

for the particles. While conventional and differential

reassignment procedures are complementary descriptions,

the differential reassignment algorithm combines easily

with powerful partial differential equation (PDE) based

image processing algorithms. Of particular interest in this

paper is non-linear anisotropic diffusion that may be

designed to smooth along edges (or ridges), but not across

them, thus encouraging intra-region smoothing, while

inhibiting inter-region smoothing. Weickert [6] provides a

survey of anisotropic diffusion algorithms, and note that this

paper uses the Perona-Malik filter [7].

The objective of this research is to enhance previous

approaches [3] that characterized experimentally measured

Lamb wave signals with a TFR (the reassigned spectro-

gram). Specifically, the current study combines a ‘modified’

differential reassignment procedure with non-linear aniso-

tropic diffusion to develop an algorithm that provides

excellent localization of Lamb wave dispersion curves,

while eliminating spurious components.

This paper first considers differential reassignment and

anisotropic diffusion individually. The modified differential

reassignment technique developed in this research
NDT&E International 39 (2006) 96–105
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reparameterizes (in time) the particle trajectories given by

differential reassignment [5] to attenuate the reassignment

flow along ridges. Note that while a conventionally

reassigned spectrogram is computed with a combination

of short-time Fourier transforms of suitable windows, the

proposed modified differential reassignment method works

only in the time-frequency domain (regarded as a two-

dimensional image). While working only in the time-

frequency domain may at first seem limiting, in reality, it

allows for the incorporation of image processing tech-

niques—the desired dispersion curves can now be viewed

(and visually improved) in the time-frequency domain. The

modified differential reassignment procedure is combined

with anisotropic diffusion for smoothing and noise

suppression. This combined algorithm is then applied to

experimentally measured Lamb waves to develop an image

of the dispersion curves of a plate with excellent clarity and

definition. These dispersion curves are then applied to a

previously developed procedure [2] to locate a notch with

increased accuracy.
2. Algorithm development
2.1. Conventional and differential reassignment

The Fourier transform of a transient (time-domain) signal

cannot satisfactorily describe non-stationary time signals

(i.e. signals with time-varying frequency content). To

remedy this deficiency, a large number of TFRs have been

developed that are capable of analyzing non-stationary

signals; spectrograms (and many other TFRs) are subsumed

in the general framework of Cohen’s class [8]. The short-

time Fourier transform (STFT), is based on the Fourier

transform and is defined as

Fðt;uÞ Z
1

2p

ðN
KN

eKiutsðtÞhðtKtÞdt; (1)

where h(t) is a window function, t is time, and u is angular

frequency. Instead of considering a transform of the entire

time-domain signal, s(t), at once, the signal is chopped into a

series of small overlapping pieces, and each of these pieces

is windowed and then individually Fourier transformed. Its

energy density spectrum

Edðt;uÞ Z jFðt;uÞj2 (2)

is called a spectrogram. The spectrogram (and other TFRs)

suffers from the Heisenberg uncertainty principle, making it

impossible to simultaneously have perfect resolution in both

time and frequency [8].

In conventional reassignment, energy is moved from its

original point of computation to a center of gravity, thus

localizing the information of the spectrogram. Note that

reassignment is not only restricted to spectrograms, but can
be applied to any time-frequency shift invariant distribution

of Cohen’s class [8]. Auger and Flandrin [4] show that the

reassigned coordinates t̂ and û for the spectrogram can be

calculated by

t̂ Z tKR
FThðt;uÞF

�
h ðt;uÞ

jFhðt;uÞj
2

� �
(3)

and

û Z uK=
FDhðt;uÞF

�
h ðt;uÞ

jFhðt;uÞj
2

� �
(4)

for the STFT, where Fh(t, u) is the STFT of the signal using

a normalized window function h(t); FThðt;uÞ and FDhðt;uÞ

are the STFTs with t times h(t) and (dh(t)/dt) as their

respective window functions; a* denotes the complex

conjugate of a; and R and = are the real and imaginary

portions, respectively.

In other words, the conventional reassignment algorithm

relocates the energy from each time-frequency point with

coordinates (t, u), to a new reassigned location

ðt̂ðt;uÞ; ûðt;uÞÞ. This relocation can be expressed by the

displacement vector field

rðt;uÞ Z
t̂ðt;uÞKt

ûðt;uÞKu

 !
(5)

defined by Eqs. (3) and (4).

Note that if reassignment moves the energy from several

(un-reassigned) time-frequency particles to the same

(reassigned) time-frequency point, then their individual

values will be summed, thus conserving energy. Calculating

the reassignment of a spectrogram produces a much more

distinct time-frequency resolution when compared to a non-

reassigned spectrogram, and has shown to be highly

effective when applied to experimentally measured multi-

mode, dispersive Lamb wave signals [9].

Conventional reassignment relocates (energy from) time-

frequency particles away from their original, un-reassigned

location to their center of gravity. This action can be

expressed as a displacement vector field (Eq. (5)). In contrast,

differential reassignment uses a velocity vector field to

describe the motion of time-frequency particles. First, let the

STFT of a signal be denoted by F(t, u). Then, by using

the complex variable zZuCit and its complex conjugate z*,

the STFT F(t, u) can be rewritten as Bargmann factorization

Fðt;uÞ Z Fðz; z�ÞeðKjzj2=4Þ: (6)

Based on this factorization, Chassande-Mottin et al. [5]

deduce that

vðt;uÞ Z V log jFjK2
=fvz� log Fg

Rfvz� log Fg

 !
(7)

is the desired velocity field, holding over the set

R2nfðt;uÞjFðt;uÞZ0g, i.e. it holds everywhere except
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at the locations, where the STFT is exactly zero.

An interpretation of this result is that given Eq. (6)—the

Bargmann factorization of an STFT—its reassignment

vector field can be decomposed into two terms. The first

term is the gradient of the scalar potential log jFj, and the

second term is a measure of the non-analyticity of F.

The use of a Gaussian window of unit variance (whose

isocontours are circles in a Wigner representation) leads to

the Cauchy equations vz* FZ0, and thus

vðt;uÞ Z V log jFj: (8)

The reassignment vector field is then identical to the

gradient of the scalar potential—log jFj for this case. As a

result, the reassignment vectors indicate the direction of

steepest ascend of the STFT modulus. The case of a

different window (not a Gaussian window of unit variance)

is described in [10].

Eq. (7) is a link between the reassignment vector field of

Eq. (5) and a scalar potential log jFj—the reassignment

vector field is the velocity field that controls the motion of

each time-frequency contribution jF(t, u)j2 considered as a

particle, with (t, u) as its starting (un-reassigned) position.

In the unit variance Gaussian case, each particle converges

to some maximum of log jFj, thus localizing diffuse

information by forming peaks and ridges.
2.2. Modified differential reassignment

This research develops a modified differential reassign-

ment algorithm for spectrogram reassignment by using Eq.

(8) in a different way. Chassande-Mottin et al. [5] derived

Eq. (8) based on the STFT; their variable, F, denotes the

complex-valued STFT. This research uses the idea of a

logarithmic scalar potential to manipulate images. The

square of the STFT magnitude, denoted jFj in Eq. (8)

becomes the abstract, two-dimensional scalar field, I (a

positive intensity image). In what follows, make the

identifications t1x, u1y to facilitate a more standard

image processing notation (and not a notation that is directly

tied to the current application of differential reassignment).

Finally, note that Eq. (8) is valid if the distance between

image cells in both dimensions are equal—for convenience,

take DxZDyZ1. Scaling terms are needed if unequal cell

distances are used.

To combine PDE-based image processing algorithms

with differential reassignment it is convenient to write the

Lagrangian particle evolution equation [5]

xt Z v (9)

where x denotes particle position, t denotes time, and every

particle carries its associated (mass) I in its Eulerian (cell-

centered) form which directly describes the evolution of I.

(Note that subscripts denote partial derivatives.) The PDE

which describes the movement of energy particles is then
based on the transport equation

It CvxIx CvyIy Z 0; (10)

where the left hand side is simply the material derivative of I
given the velocity field v, and noting

v Z
vx

vy

 !
(11)

The particle velocity v is given by the reassignment

vector of Eq. (8). Plugging Eq. (8) into Eq. (10) (noting that

the initial image, I0, must be non-negative, which is true for

all spectrograms) and recalling that I0hjFj2 yields

It C ðlog I0ÞxIx C ðlog I0ÞyIy Z 0 (12)

which describes the numerical reassignment flow. Note that

the velocity field v is static and determined by the initial

image I0 only.

The modified differential reassignment algorithm follows

the differential reassignment vector field (Eq. (8)), and thus

guarantees that energy is moved along differential reassign-

ment trajectories; it works on the well-established math-

ematical foundation provided by differential reassignment

theory.

Scaling of v only reparameterizes the particle trajectories

in time. This is expressed by

It CQvxIx CQvyIy Z 0; (13)

where QZQ(x, y) is a constant scalar field; Q is a design

parameter which introduces a degree of freedom that is used

to manipulate the velocity of energy travel along the

differential reassignment trajectories. As a result, differen-

tial reassignment now occurs with the new velocities �vxZ
Qvx and �vy ZQvy.

Eq. (13) may be solved numerically by dimensional

splitting and the donor-cell upwind method for advection

[11]. This scheme ensures that no energy is created or

destroyed—the resulting algorithm is fully conservative.

Good results have been obtained with the design

parameter

Qðx; yÞ Z eKðI0ðx;yÞ=maxðI0ð$;$ÞÞÞ: (14)

This choice uses an exponential function to ensure that Q

helps to further attenuate reassignment flow in high energy

regions, namely along ridges. Discussion of Q selection,

step size, and stability is presented in [10]. An example of

the modified differential reassignment algorithm operating

on a synthetic image is shown in Appendix A.
2.3. Non-linear anisotropic diffusion

Non-linear anisotropic diffusion [6,7] encourages intra-

region smoothing and inhibits inter-region smoothing, thus

preserving edges. (Note that isotropic diffusion does not

preserve edges.)
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This paper is concerned with non-linear anisotropic

diffusion of the form

Iðx; y; tÞt Z V$½cðx; y; tÞVIðx; y; tÞ
: (15)

In this research, I(x, y, t) is the squared STFT modulus,

the spectrogram. The diffusion function c(x, y, t) is selected

such that

cðx; y; tÞ Z f ðjVIðx; y; tÞjÞ: (16)

This allows for locally adaptive diffusion strengths—

edges are selectively smoothed or enhanced. Although any

monotonically decreasing continuous function of PI would

suffice as a diffusion function, the two functions

c1ðx; y; tÞ Z eKðjVIðx;y;tÞj=kÞ2 (17)

c2ðx; y; tÞ Z
1

1 C jVIðx;y;tÞj
k

� �1Ca
;aO0 (18)

are proposed by [7] and are shown in Fig. 1(a).

The parameter k is referred to as the diffusion constant or

the flow constant. Obviously, the behavior of the diffusion

process depends on k. To clarify the effect of k (and the

diffusion function) on the diffusion process, it is helpful to

define the flow function

Fðx; y; tÞ Z cðx; y; tÞVIðx; y; tÞ: (19)

Eq. (15) can then be rewritten as

Iðx; y; tÞt Z VFðx; y; tÞ: (20)

The flow functions, F1 and F2, corresponding to the

diffusion functions, c1 and c2, are plotted in Fig. 1(b).

Notice that flow increases with the gradient to the point

where jPI(x,y,t)jxk, then decreases to zero. This behavior

implies that the diffusion process maintains homogeneous

regions, where jPI(x,y,t)j/k, since little flow is

generated. Similarly, edges are preserved because the flow

is small in regions, where jPI(x,y,t)j[k.
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Fig. 1. Diffusion and
The greatest flow is produced when the image gradient

magnitude is close to the value of k—by choosing k to

correspond to gradient magnitudes produced by noise, the

diffusion process can be used to reduce noise in images.

Assuming an image contains no discontinuities, object

edges can be enhanced by choosing a value of k slightly less

than the gradient magnitude of the edges.

The discrete implementation of non-linear anisotropic

diffusion (Eq. (15)) is fairly straightforward and its

2-dimensional form is presented in [10], while a numerical

example is shown in Appendix B.
2.4. Combined algorithm—modified differential reassign-

ment superimposed with non-linear anisotropic diffusion

The proposed combined algorithm consists of the

carefully weighted contributions of differential reassign-

ment and non-linear anisotropic diffusion. To balance

reassignment with diffusion, a weighting factor

b Z
Dtreassignment

Dtdiffusion

(21)

is introduced, reflecting the relation between reassignment

and diffusion step sizes. Finding a suitable value for b

involves an iterative trial-and-error approach. If the

reassignment part is too strong, b has to be increased. If

the image is diffused too much, then b has to be reduced.

Image evolution is then expressed by a PDE governing

energy movement

It CQðlog I0ÞxIx CQðlog I0ÞyIy Kb½ðc1IxÞx C ðc1IyÞy
 Z 0:

(22)

Q is selected using Eq. (14) together with the diffusion

function c1 according to Eq. (17) which (together with Eq.

(22)) yields

It CeKðI0=maxðI0ÞÞðlog I0ÞxIx CeKðI0=maxðI0ÞÞðlog I0ÞyIy

Kb ðeKðð1=kÞjIxjÞ
2

IxÞx C ðeKðð1=kÞjIyjÞ
2

IyÞy

h i
Z 0: ð23Þ
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Fig. 2. Time-domain signal before (top) and after (bottom) high-pass

filtering.
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With the un-reassigned (or conventionally reassigned)

spectrogram as the initial condition and Neumann boundary

conditions, this PDE fully describes the image evolution of

the combined algorithm.
3. Application of the combined algorithm to lamb waves

3.1. Perfect plate results

Consider the application of the combined algorithm to

Lamb waves measured in a (perfect, un-notched) polished

3003 aluminum plate with dimensions 305 mm!
Fig. 3. Un-reassigned
610 mm!0.99 mm. A Q-switched, Nd:YAG pulse laser

serves as the ultrasonic source (non-contact, broad

frequency bandwidth, point-like) and a dual probe hetero-

dyne interferometer (non-contact, high fidelity, point-like)

serves as the detection system (see [1], [2] and [9] for details

of the instrumentation and measurements).

A typical time-domain signal is first high-pass filtered

with a third order Butterworth filter having a cutoff frequency

of 200 kHz, shown in Fig. 2 before and after high-pass

filtering. The noise spike at time tZ0 is due to the

electromagnetic discharge of the Nd:YAG source laser, is

spurious, and is windowed out of the time-domain signal

before processing. The high-pass filtered time-domain signal

is used to calculate the un-reassigned spectrogram shown in

Fig. 3, which is presented with the theoretical mode

solutions—the solid black lines in Fig. 3 and in all future

images. Note that the spectrogram (and theoretical mode

lines) has been converted to the slowness-frequency domain

by normalizing the signal with respect to propagation

distance; given a propagation distance d and time t, energy

slowness is defined as sleZt/d. This transformation is linear

in time, so it does not impact the image processing.

Conventional reassignment is applied to the same high-

pass filtered time-domain signal in Fig. 2 to obtain a

reassigned version of the same experimentally measured

spectrogram and shown in Fig. 4. Spurious components

introduced by the reassignment algorithm are clearly

visible; Fig. 5(a) is a zoomed-in view of the slowness-

frequency region [3–4.5 MHz, 350–420 sle]. Ridges are far

from smooth, spurious peaks are visible, and noise is

generally present.
spectrogram.



Fig. 4. Conventionally reassigned spectrogram.
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The combined algorithm (modified differential reassign-

ment superimposed with anisotropic diffusion) is instead

applied to the un-reassigned spectrogram shown in Fig. 3.

The free parameters used in the combined algorithm are bZ
5!10K4, kZ1.3, DtZ0.0158 and 60,000 iterations—

Fig. 6 shows the final image. It is clear from Fig. 6 that

differential reassignment moves energy towards the theo-

retical dispersion curves, building up the sharp edges and

pressing ridges together. In addition, reassignment move-

ment along the ridges forms peaks and dips. However, the

anisotropic diffusion algorithm diffuses energy along these

ridges, attenuates undesirable reassignment effects, and

forms smooth, localized curves.
Fig. 5. Comparison of zoomed-in
A comparison of Figs. 4 and 6 shows that the

combined algorithm includes significant energy that

corresponds to the theoretical dispersion curves

(especially in the higher frequencies) which does not

appear in the conventionally reassigned spectrogram—the

combined algorithm extracts more information from

the same time-domain signal. It is important to note that

the combined algorithm dispersion curves are smoother

than their conventionally reassigned counterparts. This

becomes more obvious when considering the zoomed-in

views shown in Fig. 5(a) and (b). The combined algorithm

results in smoother ridges, as well as the elimination of

both spurious peaks and noise.
regions of spectrograms.



Fig. 6. Combined algorithm image.
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Finally, if energy conservation is not an issue, but

instead a clear image of the experimentally measured

data is desired, then a ‘threshold’, d, can be applied to

the combined algorithm image. Fig. 7 (free par-

ameters: bZ5!10-4, kZ1.3, DtZ0.0158 and 60,000

iterations) shows the image obtained when the values
Fig. 7. Combined algorithm image witho
below dZ0.004 in Fig. 6 are set equal to zero, and the

values above dZ0.004 in Fig. 6 are set equal to unity.

This yes/no approach (which does not conserve

energy) can be used in visualization applications,

where a crisper image is more important than energy

conservation.
ut conserving energy (dZ0.004).
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3.2. Notch localization

Previous research [2] formulated a correlation technique

to locate a notch in this same (0.99 mm thick) 3003

aluminum plate using the reflected Lamb wave field. This

procedure uses an understanding of the multi-mode,

dispersive nature of Lamb waves, and is enhanced by

selection of frequency bands that contain significant

reflected energy. The results presented in [2] were

calculated using conventionally reassigned spectrograms

of the perfect and notched plates. Since the combined

algorithm developed in the current study provides an

increase in spectrogram clarity when compared to the

conventionally reassigned algorithm, a final demonstration

applies this new combined algorithm to the correlation

procedure presented in [2].

In brief, the technique in [2] examines a correlation of

the spectrograms measured in a notched plate (known

location of this notch is Dd 0
0 Z29:2 mm) and in a perfect

plate—each calculated with different, assumed propa-

gation distances ðDd 0
0Þ. Reflections (from the notch and

any plate edges) will introduce local maxima in the

correlation curves at certain propagation distances. These

local maxima occur when the reflected modes (within a

spectrogram) coincide with the incident modes, which in

turn provide a notch (or plate edge) location distance. A

ratio of the notched to perfect plate correlations removes

the maxima due to plate edges (the edges are present in

both notched and plate specimens) and will show maxima

only at ‘reflecting’ features that are present in the notched

plate, but not in the perfect plate. The notch is the only

such feature in these experiments. An additional pro-

cedure limits the correlation region to frequency

bandwidths with high reflected energy.
Fig. 8. Ratio curve for the frequency band 330 kHz–2 MHz, with

threshold d.
Fig. 8 shows two ratio curves (ratio of the correlations of

the notched to perfect plates), each obtained when limiting

the correlation to a frequency band of 330 kHz–2 MHz. One

ratio curve is determined with spectrograms calculated

using the combined algorithm developed in this research,

while the other curve is based on the same conventional

reassignment procedure used in [2].

Both algorithms lead to very accurate notch localiz-

ation—they both contain peaks at the correct notch

location distance of Dd 0
0Z29:2 mm to within G0.1 mm.

However, the ratio curve calculated with the combined

algorithm has a peak that is much sharper, and this sharp

peak provides a more definitive indication of the notch

location. The sharpness of this peak also suggests that the

combined algorithm will be more effective in complicated

applications (such as the case of two closely spaced

reflectors), where multiple correlation peaks could be

close to one another.
4. Conclusion

This research establishes the effectiveness of applying

advanced image processing techniques to characterize

multi-mode, dispersive Lamb waves. This work makes a

contribution in bridging the gap between image processing

and non-destructive evaluation, by clearly demonstrating

the effectiveness of applying image processing techniques

to representations of experimentally measured Lamb

waves.

Specifically, this research combines a classical signal

processing technique (the spectrogram, a time-frequency

representation) with edge-preserving smoothing—an image

processing technique. In particular, the differential form of

time-frequency reassignment is employed to facilitate its

combination with powerful PDE-based non-linear aniso-

tropic diffusion, with the goal of image smoothing and noise

reduction, while still preserving edge information.

The proposed modified differential reassignment algor-

ithm provides Lamb wave dispersion curves of excellent

clarity and definition while suppressing noise. The numerics

of the proposed modified differential reassignment algor-

ithm are designed to conserve energy. While quantitative,

local, physical conclusions regarding energy distributions

across frequencies and over modes are not per se possible

with reassignment procedures based on center of mass

considerations (it is not clear that assigning energy to

centers of gravity results in physically meaningful results),

the proposed modified reassignment procedure allows for

qualitative measurements of mode energies and successfully

reduces noise levels.

This advantage is demonstrated in an application that uses

the reflected energy contained in multi-mode, dispersive

Lamb waves. By using a correlation procedure developed by

[2], the combined algorithm is used to locate a notch in a plate

with a high degree of accuracy and confidence.



Fig. A1. Differential reassignment example.
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Appendix A. Modified differential reassignment example

Consider a 2-dimensional example using the modified

differential reassignment algorithm that uses a quadratic
Fig. B1. Non-linear anisotro
image with a resolution of 100!100 (DxZDyZ1)

cells. The analytic, initial image follows the Gaussian

function

Iðx; yÞ Z
1

p4
ffiffiffi
s

p eKððxK50Þ2=2s2Þ C
1

p4
ffiffiffi
s

p eKððyK50Þ2=2s2Þ (24)

with standard deviation sZ10—this function is shown in

Fig. A.1(a) and (b) shows its scalar potential. This particular

image is selected to demonstrate the ability of the proposed
pic diffusion example.
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differential reassignment algorithm to provide localization

of a ridge and reassignment flow towards this ridge.

The modified differential reassignment algorithm (free

parameter DtZ0.0158) is applied and the evolution is

shown after 1000 and 10,000 iterations in Fig. A1(c) and (d).

These images show that ridges and ridge intersections are

well localized—ridge edges are steep and the ‘dip’

formation is comparatively weak.
Appendix B. Non-linear anisotropic diffusion example

Consider a 2-dimensional example using the proposed

non-linear anisotropic diffusion algorithm that uses an

image of 100!100 (DxZDyZ1) cells that is zero except

for the central horizontal and vertical lines

Iðx; 50Þ Z 3 C
1

2
cos

p

10
x

� �

Ið50; yÞ Z 3 C
1

2
cos

p

10
y

� � (25)

and contains random noise with a maximum magnitude of

one added. The resulting image is shown in Fig. B1(a) and

serves as initial image for demonstration purposes. This

particular image is selected to demonstrate the ridge

preserving nature and noise suppression of anisotropic

diffusion.

This example uses kZ0.5 and DtZ0.2 as free

parameters, and Fig. B.1(b) shows the result after 200

iterations. The anisotropic diffusion algorithm has excellent
performance with regard to three different aspects: (i) noise

is diffused; (ii) sharp edges are preserved; and (iii) dips on

the ridges are smoothed out. Note that the ‘mass’ of 2, 738

units is preserved throughout the algorithm.
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