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Time-frequency representations, like the spectrogram or the scalogram, are widely used to
characterize dispersive waves. The resulting energy distributions, however, suffer from the
uncertainty principle, which complicates the allocation of energy to individual propagation modes
�especially when the dispersion curves of these modes are close to each other in the time-frequency
domain�. This research applies the chirplet as a tool to analyze dispersive wave signals based on a
dispersion model. The chirplet transform, a generalization of both the wavelet and the short-time
Fourier transform, enables the extraction of components of a signal with a particular instantaneous
frequency and group delay. An adaptive algorithm identifies frequency regions for which
quantitative statements can be made about an individual mode’s energy, and employs chirplets
�locally adapted to a dispersion curve model� to extract the �proportional� energy distribution of that
single mode from a multimode dispersive wave signal. The effectiveness of this algorithm is
demonstrated on a multimode synthetic Lamb wave signal for which the ground-truth energy
distribution is known for each mode. Finally, the robustness of this algorithm is demonstrated on
real, experimentally measured Lamb wave signals by an adaption of a correlation technique
developed in previous research. © 2006 Acoustical Society of America. �DOI: 10.1121/1.2177587�
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I. INTRODUCTION

Ultrasonic waves are used for material characterization
in many structural health monitoring and nondestructive
evaluation applications. Guided ultrasonic waves �such as
Lamb waves� are particularly effective in interrogating large
structural components, because guided waves propagate far
distances �when compared to body waves�; see Chimenti1 for
details. Unfortunately, the dispersive nature of these guided
waves complicates their analysis in the time-domain, so
time-frequency representations �TFRs� are often employed to
better interpret a guided wave signal. Time-frequency analy-
sis represents the frequency content of a time-domain signal
over time, and is thus ideally suited for the analysis of dis-
persive waves. Niethammer et al.2 demonstrated the effec-
tiveness of using TFRs for Lamb waves, while Hurlebaus
et al.3,4 describe several applications for crack detection and
localization in a plate using TFRs such as the spectrogram
and the scalogram.
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In 1991, Mann et al.5 coined the term “chirplet transfor-
mation” for a new TFR, a generalization of the spectrogram
and scalogram with additional degrees of freedom for time
and frequency shear. While the chirplet transform allows for
the decomposition of time-domain signals into well-localized
components �time-frequency atoms� with a constant chirp
rate �that is, linearly changing instantaneous frequency�, the
resulting representation is of dimension five. This compli-
cates the visualization, computation, and interpretation of a
transformed signal. In order to apply the chirplet transform
to signals containing chirplike components, such as, Doppler
radar signals, electroencephalographies �EEGs�, bird voices
or bat sonar signals, researchers reduce the problem’s com-
plexity by considering only subspaces6,7 of the five-
dimensional parameter space or by employing a matching
pursuit algorithm to search for ridges in a coarsely dis-
cretized parameter space.8

Hong et al.9 utilize a dispersion-based short-time Fourier
transform �a chirplet transform� for the analysis of dispersion
curves from guided wave signals. In contrast, the objective
of the current research is to establish a model-based chirplet
analysis of dispersive waves grounded in the theory devel-
oped by Mann,5 and then to investigate the quantitative be-

havior of the proposed method for the analysis of dispersion
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curves. The dispersion curve model used in this study is the
Rayleigh-Lamb equations, which describes wave propaga-
tion in platelike structures. The proposed algorithm is first
validated on a synthetic signal for which the ground-truth
energy distribution is known for each mode. Finally, the ro-
bustness of this algorithm is demonstrated on real, experi-
mentally measured Lamb wave signals by an adaption of the
correlation technique developed in previous research.4,10,11

II. REVIEW OF TFRS FOR GUIDED WAVES

The dispersive nature of Lamb waves �guided ultrasonic
waves in plates� means that the frequency content of a mea-
sured Lamb wave signal varies as a function of time. A
simple time- or frequency-domain representation of such a
dispersive signal does not �individually� localize the energy
content of a Lamb wave in the time-frequency domain. So,
more advanced tools such as TFRs, are needed for the com-
prehensive analysis of these dispersive signals. One such
TFR, the short-time Fourier transform �STFT�, Cx

stft, is cal-
culated for a signal x�t� as follows:12

Cx
stft�t,�� = �

−�

+�

x���h�� − t�e−i��d� , �1�

where h�t� is a window function. The square modulus of the
STFT is called the spectrogram Psp�t ,��= �Cx

stft�t ,���2 and
yields the energy density of the signal x in the time-
frequency domain.

All TFRs suffer from the uncertainty principle,13 so the
resulting time-frequency values do not necessarily corre-
spond to the exact energy distribution of a signal in the time-
frequency domain; TFRs based on smoothing kernels �like
the spectrogram and scalogram� result in smoothed versions
of the exact energy distribution.14 The extent of the smooth-
ing depends on the smoothing kernel �the window function�
employed. For a spectrogram using a Gaussian window func-
tion

h�t� =
1

�4 �s2
exp�−

1

2
	 t − t0

s

2� ,

this smoothing �averaging� effect is minimized, and the re-
gions of averaging can be approximately visualized by el-

FIG. 1. Tiling of the time-frequency plane by time-frequency representa-
tions. Each ellipse represents one time-frequency atom. �a� Spectrogram. �b�
Scalogram.
lipses of the same size and shape as shown in Fig. 1�a�.
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Other TFRs result in different tilings of the time-
frequency domain; consider, for example, the wavelet trans-
form, Cx

wt of a signal x�t�,

Cx
wt�t,s� = �

−�

+�

x���
1
�s

�*	 � − t

s

d� , �2�

where s is a dilatation and t is a shift parameter, which scale
and shift the mother wavelet ��t� and �·�* denotes the com-
plex conjugate. The energy density Pwt�t ,s�= �Cx

wt�t ,s��2 is
called the scalogram and again localizes the energy of a
signal in the time-frequency domain under the restrictions
of the uncertainty principle, yielding to a tiling of the
time-frequency domain as shown in Fig. 1�b�.

III. THE CHIRPLET TRANSFORM

Both the STFT and the wavelet transform result from the
inner multiplication of the time function under consideration
with a time-frequency atom, g�t�

Cx = �
−�

+�

x���g*���d� . �3�

This time-frequency atom is obtained from the window func-
tion by either shifting it in the time and frequency directions
�STFT�, or with a time shift and scale �wavelet transforma-
tion�; a comparison is shown in Fig. 2�a�.

By introducing the time and frequency shift operators
Tt0

and F�0
and the scale operator Ss as defined in Table I, a

generalized three-dimensional TFR is written as

Cx = �
−�

+�

x���gt0,�0,s
� ���d� �4�

with

gt0,�0,s�t� = Tt0
F�0

Ssh�t� . �5�

Mann7 uses this framework and expands it by two addi-
tional operators to formulate the chirplet transform.

�1� Frequency shear: The time-frequency atom is multi-
plied by a harmonic function of linearly changing frequency

FIG. 2. Representation of time-frequency atoms of a TFR. �a� The gener-
alization of the STFT and wavelet transforms by introducing the operators
Tt0

, F�0
, and Ss which allows arbitrary time and frequency shifts, and scale.

�b� Modulation with a chirp in the time domain �Qq� shears the time-
frequency atom in the frequency direction, modulation with a chirp in the
frequency-domain �Pp� shears in the time direction. The shear parameters p
and q determine the slope of the semiaxes of the chirplet atom ellipses.
�a “chirp” function�
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gq�t� = Qqh�t� = h�t�exp�i
q

2
t2� . �6�

This modulation with a time-dependent frequency results in
a shear Qq of the time-frequency atom in the frequency di-
rection as shown in Fig. 2�b�. The time-frequency atom is
now concentrated along a line with slope 1/q.

�2� Time shear: The corresponding multiplication of a
chirp function with the time-frequency atom in the
frequency-domain �according to a convolution in the time-
domain� constitutes the dual operation to the frequency
shear, the shear Pp in the time direction

gp�t� = Pph�t� =�2�

p
exp�i	−

1

2q
t2 +

�

4

� � h�t� . �7�

The effect of this operation is shown in Fig. 2�b�; one semi-
axis of the time-frequency atom has the slope p. The com-
plex scaling factor ��2� / p�exp�i� /4� results from the
transformation from the frequency domain.

Using these five operations, time-frequency atoms can
be translated, scaled and sheared in the time-frequency do-
main. Each operation specifies a linear or affine coordinate
transformation in the time-frequency domain. The mapping
equations for the transformations are listed in Table I. A time-
frequency atom transformed like this is called a “chirplet
atom” or, in short, “chirplet” gt0,�0,s,q,p�t�

gt0,�0,s,q,p�t� = Tt0
F�0

SsQqPph�t� . �8�

The chirplet transform Cx
ct as defined by Mann et al.5 is

obtained by the inner multiplication of a chirplet atom
with a time-domain signal

Cx
ct�t0,�0,s,q,p� = �

−�

+�

x���gt0,�0,s,q,p
� ���d� . �9�

The operators just described are not commutative, and
interchanging two of them generally results in a phase shift
of the chirplet. This will not be discussed further, as only the
magnitudes of chirplet transforms are processed in this re-
search.

Signal components which are concentrated in the time-

TABLE I. Operations for time-frequency atoms for t

Operation

Time shift Tt0
Tt0

h�t�=h�t− t0�
Frequency shift F�0

F�0
h�t�=ei�0th�t�

Scaling Ss Ssh�t� =
1
�s

h	 t

s



Frequency shear Qq Qqh�t�=h�t�exp�iq � 2 t2�

Time shear Pp Pph�t� = kp exp�− i
1

2q
t2�
frequency domain at a location specified by the parameters
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t0, �0, s, q, and p can be extracted by performing a chirplet
transform. Analogous to the spectrogram and scalogram, one
defines the energy distribution

Pct�t0,�0,s,q,p� = �Cx
ct�t0,�0,s,q,p��2. �10�

For a given basic window, this results in a five-dimensional
representation which is difficult to visualize. So instead of
calculating the entire five-dimensional space, one often con-
fines oneself to a plane spanned by two parameters in order
to visualize the time-frequency content �like �t0 ,�0� for the
spectrogram�.

Note that another approach is to decompose a signal into
the chirplet’s base, e.g., an algorithm to find local maxima in
the five-dimensional space.8 Finally, an alternative formula-
tion of chirplets that is based on the Wigner-Ville distribution
is presented by Baraniuk et al.6

IV. LAMB WAVE ENERGY ASSIGNMENT TO MODES

Lamb waves are multimode signals, so it is of great
practical interest to develop a quantitative description of the
energy distribution of the signal amongst the individual
Lamb modes. The dispersion relationship �the relationship
between wavenumber and frequency, which can be converted
to the time-frequency domain� of guided Lamb waves propa-
gating in a homogenous, isotropic plate of thickness 2h is
described by the Rayleigh-Lamb equations15

tan�q̃h�
tan�p̃h�

= −
4k2p̃q̃

�q̃2 − k2�2 , �11a�

tan�q̃h�
tan�p̃h�

= −
�q̃2 − k2�2

4k2p̃q̃
, �11b�

where k is the wavenumber �k=2� /�, where � is wave-
length�, � is angular frequency ��=2�f , where f is fre-
quency in Hz�, and

p̃2 =
�2

cL
2 − k2, q̃2 =

�2

cT
2 − k2. �12�

cL and cT are the longitudinal and transverse wave speeds,

irplet transform, kp is a complex scaling factor.

Corresponding coordinate
transformation �t ,��→ �t̄ , �̄�

t̄= t− t0 �̄=�

t̄= t �̄=�−�0

t̄ =
t

s
�̄=s�

t̄= t �̄=�−qt

t� t̄= t− p� �̄=�
he ch

� h�
respectively.
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Solutions of these equations, the dispersion curves, are
plotted in Fig. 3 for an aluminum plate of thickness
0.99 mm. Each propagation mode in Fig. 3 corresponds to a
single line, with modes numbered in order of the lowest fre-
quency as they appear, and si and ai denotes modes with
symmetric and antisymmetric displacement profiles �with re-
spect to the axis of propagation�, respectively. These results
are shown in the slowness-frequency domain, where slow-
ness �sle� is defined as the reciprocal value of the group
velocity. This representation is a normalization to the propa-
gation �source-to-receiver� distance �d�, where sle= t /d.

In typical structural health and nondestructive evaluation
applications of guided ultrasonic waves, the displacement or
velocity of a particle on the surface of a structural component
is measured. In general, this displacement �or particle veloc-
ity� contains energy contributions from all the propagating
modes �a superposition of all these modes� and it is difficult
�if not impossible� to separate the contributions from each
individual mode in a measured signal. The ability to accu-
rately separate these individual modal energy contributions
from a measured, multimode Lamb wave would significantly
enhance current structural health and nondestructive evalua-
tion applications. This research uses the chirplet to accu-
rately separate these individual modal energy contributions
from a multimode Lamb wave signal by using the Rayleigh-
Lamb dispersion model given by Eq. �11�—the dispersion
relationship shown in Fig. 3 is assumed to be known.

Consider a synthetically generated Lamb wave signal
�developed following Refs. 16 and 17� where the exact en-
ergy distribution for each individual mode is known. This
synthetic time-domain signal is an “ideal measurement” of a
guided Lamb wave in an aluminum plate of thickness
0.99 mm. This synthetic signal represents ground-truth; the
excitability of each mode is known, so it is possible to abso-
lutely calculate the energy content of each of the propagation
modes.

Note that the energy of a Lamb wave mode is propor-
tional to the square of its displacement, but the constant of
proportionality is mode and frequency dependent. Therefore,
it is not prudent to develop an absolute ratio of the energies
of the individual Lamb modes. Instead, consider the ratio of

the surface displacements of two Lamb wave modes; the
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square root of the chirplet energy distribution defined by Eq.
�10� is proportional to displacement �as is the square root of
the spectrogram�. This paper concentrates on the s0 and
a0-modes—these two lowest modes carry most of the energy
for the example under consideration—and will present the
ratio of the out-of-plane displacements of mode s0 over a0,
which will be referred to as the “mode displacement ratio.”
While not equal to a mode energy ratio, this representation
will allow for the source-independent presentation of the
relative “energy” distributions of each individual mode,
which can be compared to the corresponding theoretical
�ground-truth� values.

A. Calculating the mode displacement ratio using the
spectrogram

First, consider the results when using the spectrogram to
calculate the mode displacement ratio of this synthetic �time-
domain� Lamb wave signal. A synthetic Lamb wave is gen-
erated for a propagation distance of 90 mm and a sampling
frequency of 100 MHz �shown in the time-domain in Fig. 4�
and is then operated on with a 1024-point Hanning window
to calculate the spectrogram shown in Fig. 5 �plus the theo-
retical dispersion curves calculated using Eq. �11��. Note that
the time-domain signal in Fig. 4 contains the ten lowest
modes, represents out-of-plane displacement, and has been
highpass filtered at 0.3 MHz. Most of the energy of the spec-
trogram is localized near the theoretical dispersion curves,
and it is a reasonable next step to calculate the �proportional�
energy of the individual modes by simply using the magni-
tude values of the spectrogram—the amplitudes in the con-
tour plot of Fig. 5 at each slowness-frequency position asso-
ciated with the theoretical dispersion curves. The results of
this operation �mode displacement ratio of s0 over a0� are
plotted as a dotted line in Fig. 6, along with the known
theoretical curve �as a solid gray line�. The mode displace-
ment ratio values calculated with the spectrogram are only
close to the theoretical values in certain frequency regions;
this poor agreement is primarily due to the uncertainty prin-
ciple, since the spectrogram calculates the energy at a par-
ticular slowness-frequency �normalized time-frequency� lo-

FIG. 3. Theoretical solution of Raleigh-Lamb equation
for an aluminum 3003 plate of thickness 0.99 mm in
the slowness-frequency domain. si denotes symmetric,
ai denotes antisymmetric Lamb modes.
cation by taking an average over a certain region in the
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slowness-frequency domain. This behavior is illustrated in
Fig. 7�a�, and note that when evaluating the spectrogram for
one dispersion curve, contributions from its neighboring or
intersecting dispersion curves are often inadvertently in-
cluded.

B. Calculating the mode displacement ratio using
chirplets

It is possible to improve the spectrogram results pre-
sented in Fig. 6 by instead using the additional degrees of
freedom of the chirplet transform, combined with the disper-
sion model of Eq. �11�. By using this dispersion relationship
model, it is possible to adapt the shape of a chirplet to fit the
known group delay of each propagation mode. This group
delay describes which frequencies are present in a Lamb
wave signal at a particular time, and is proportional to the
slowness representation of a Lamb wave’s dispersion curves.
Using this procedure, the �proportional� energy of a particu-
2126 J. Acoust. Soc. Am., Vol. 119, No. 4, April 2006
lar propagation mode is extracted from a multimode signal
with chirplets which are parametrized to be concentrated on
the mode’s dispersion curve in the slowness-frequency do-
main. This is accomplished by shifting chirplets onto the
dispersion curve, and then shearing them to locally match the
slope of the dispersion curve. The chirplet parameters t0 and
�0 are determined by the coordinates of the dispersion curve,
and the parameter p equals the slope of the dispersion curve
at the point �t0 ,�0�.

While the time-frequency atoms of the spectrogram-
based energy analysis only match the position of the disper-
sion curve, a chirplet is concentrated on a straight line with
the same rate as the dispersion curve. This is visualized in
Fig. 7�b�. As a result, the chirplet-based energy analysis
matches the group delay of the signal as a first-order approxi-
mation �in contrast to the zeroth-order approximation of the
spectrogram�. Either a time or a frequency shear operator can
be used to realize this matching of the chirplet onto the dis-

FIG. 4. �Color online� Synthetic time-
domain signal, out-of-plane displace-
ment, propagation distance d=90 mm.

FIG. 5. Spectrogram of the synthetic time signal with
theoretical dispersion curves.
Kuttig et al.: Analysis of dispersion curves using chirplets



persion curve, since each operation shears one of the semi-
axes of the time-frequency region of averaging. Since the
dispersion curves are functions of frequency, only the time
shear operation is used in this research to avoid singularities.
An extension of the chirplet transform to shear operations of
higher order allows for an adaption of a chirplet to dispersion
curves of order higher than one, but does not show signifi-
cant improvements in the accuracy of the mode displacement
ratio calculations,18 so this research only applies first order
shear, and does not use one of the five possible chirplet op-
erations �degrees of freedom�.

This chirplet transformation �using chirplets which are
concentrated along the dispersion curves by shearing them in
the time direction� is used to calculate the mode displace-
ment ratio of s0 over a0, which is compared to the theoretical
and spectrogram-based results in Fig. 8.

It is important to note that the main advantage of the
chirplet over the spectrogram �and scalogram� is this addi-
tional control over the shape, location, and orientation of the
time-frequency atoms. All these TFRs will provide an aver-
age energy over a region in the time-frequency domain, but
the chirplet provides additional degrees of freedom to control
this averaging region. As a result, the chirplet should be bet-
ter in resolving closely spaced modes.

FIG. 6. Mode displacement ratio of mode s0 over mode a0, obtained by
directly evaluating the spectrogram at the dispersion curves. Compare to the
theoretical displacement ratio �solid gray line�.

FIG. 7. �a� Regions over which time-frequency content is averaged when e

chirplets, concentrated along the dispersion curve of the s0 mode.
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C. Adaptive chirplets

Inspection of the chirplet transform results in Fig. 8
shows that the recovered mode displacement ratio is a better
match to the theoretical solution than the spectrogram-based
results. However, there is poor agreement between the
chirplet-based and theoretical solution in the frequency
ranges where two dispersion curves intersect �compare to the
dispersion curves of the plate shown in Figs. 3 and 10�. The
regions of greatest discrepancy in Fig. 8 are indicated by �I�
and �II�, and occur at frequencies where the s0-mode’s dis-
persion curve intersects with the dispersion curve of the a1

mode, or where the s0- and a0-modes are close to each other.
A large portion of those modes’ energy must have been im-
properly assigned to the s0-mode in these frequency ranges
using this procedure.

This error can be addressed by exploiting another �a
fourth� degree of freedom of the chirplet transform—the
scale s. An improved, adaptive chirplet analysis algorithm
can also account for a mode’s intersections �and closeness� to
its neighboring modes, in addition to its own dispersion
curve model. As in the previous chirplet algorithm, chirplets

ting the spectrogram on the dispersion curve of mode s0. �b� Time-sheared

FIG. 8. Mode displacement ratio of mode s0 over mode a0, obtained by
using time sheared chirplets which are concentrated along the dispersion
curves of the modes. Compare to theoretical displacement ratio �solid gray
line�. �I� and �II� denote large discrepancies of the chirplet calculations and
the theoretical displacement ratio, caused by the intersection of the disper-
sion curves of modes s0 and a1 �I�, and by the proximity of modes s0 and a0

�II�, respectively.
valua
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are generated from a Gaussian window centered on a point
on the dispersion curve of the mode under consideration �s0

or a0�, and time sheared as to be concentrated along the
curve. A standard scale s is then chosen analogous to the
window length of a STFT. For this work s=1.3 rad. Next, the
chirplets generated under this procedure are examined to de-
termine whether they interfere with other dispersion curves.
As all window functions have an infinite extent �width� in
either the frequency or time dimension �or both, like the
Gaussian window used in this work�, a threshold is applied
to the window, under which its value is assumed to be 0. In
this research, the finite extent �area� of the Gaussian window
is assumed to be 2.8 times the standard deviation, so that
99.9% of the energy of the window is located within this
area. With this criteria, an interference is defined as another
dispersion curve lying within this 99.9% area.

If the resulting chirplet or its region of averaging inter-
feres with a dispersion curve of another mode, its scaling
factor is varied to avoid interferences. This scaling stretches
the chirplet in one direction �either time or frequency� and
shrinks it reciprocally in the other; this is demonstrated in
Fig. 9. No scaling factor, however, can avoid interference for
points near the intersection of two dispersion curves, or on
portions of a dispersion curve where other dispersion curves

FIG. 9. Region of influence of chirplets concentrated along the s0 mode
neighboring and intersecting dispersion curves, and �III� out-of-range chirpl

FIG. 10. Dispersion curves �dotted lines�, indicating the regions where adapt

other modes for propagation distance d=90 mm �black lines� and d=900 mm �g
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are close. In these instances, the energy distribution cannot
be calculated properly for the corresponding frequencies, so
the chirplet analysis is not performed for these frequencies.
Figure 10 indicates the regions of each dispersion curve
where these adaptive, interference-free chirplets can be de-
signed. Finally, note that these limitations are directly related
to a wave’s propagation distance. For a larger propagation
distance d, a window with a certain time and frequency ex-
tent �area� has a smaller slowness dimension—as slowness is
inversely proportional to propagation distance. This implies
that, for larger propagation distances, it is easier to fit chirp-
lets on dispersion curves while avoiding interferences. Fig-
ure 10 shows these frequency intervals for propagation dis-
tances of d=90 mm �black lines�, and d=900 mm �gray
lines�.

The adaptive chirplet algorithm is applied to the same
synthetic Lamb wave signal, and the results are shown in
Fig. 11. Since this s0-mode distribution is normalized to
mode a0, mode displacement ratio values are only calculated
in frequency regions where both the s0 and a0 energies can
be calculated without interference. Figure 11 shows that the
chirplet transform is capable of accurately extracting the
�proportional� energy distribution of an individual mode
from a multimode signal. Normalization to the a0-mode em-

Chirplets interfering �I� with an intersecting dispersion curve, �II� with
� Adaptive chirplets to avoid interferences.

irplets can be applied to the synthetic time signal without interferences with
. �a�
et. �b
ive ch

ray lines�.
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phasizes small discrepancies, but the computed mode dis-
placement values are very close to the exact �theoretical�
values.

The adaptive chirplet algorithm procedure yields a quan-
titative prediction of the mode energy, and uses the uncer-
tainty principle to identify the slowness-frequency regions
where interference will occur. This research takes a conser-
vative approach to identifying these regions, and an advan-
tage of the proposed adaptive algorithm is that the user can
quantitatively define the interference criteria for a particular
application. For example, a user could specify that certain
modes do not exist �or at least do not carry significant en-
ergy� for higher frequencies, so no interference will occur
with these modes. This would lead to an expanded frequency
region in which to calculate energy content; note that this
adds credibility to the fact that the energy content for higher
frequencies in Fig. 8 is actually correct �but excluded in Fig.
11�.

V. APPLICATION TO EXPERIMENTALLY MEASURED
SIGNALS

As a final step, the accuracy and robustness of the adap-
tive chirplet algorithm is demonstrated on real, experimen-
tally measured Lamb wave signals with an application of the
correlation technique developed in previous research.4,10

Benz et al.10 formulated this correlation technique using the
reflected Lamb wave field to locate a notch in a 0.99 mm
thick, 3003 aluminum plate. These Lamb wave signals are
generated with a pulse laser �noncontact, pointlike, broad
band generation�, and detected with a dual probe laser inter-
ferometer �noncontact, high fidelity, pointlike detection� in
both a notched and a perfect plate. Figure 12 shows a typical
time-domain signal �out-of-plane particle velocity� measured
in the perfect plate; note that the spike at t=0 is spurious, and
corresponds to the firing of the pulse laser. The correlation
procedure of Benz et al.10 uses the spectrogram to calculate
the energy reflected by the notch in a certain frequency band

FIG. 11. Mode displacement ratio of mode s0 over mode a0, obtained by
using adaptive chirplets �solid black line�. Results only exist where both a0

and s0 modes can be evaluated. Compare to theoretical displacement ratio
�solid gray line�, and the previously obtained results by directly evaluating
the spectrogram �dotted line�.
�300 kHz–2 MHz�.
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In brief, their technique examines a correlation of the
spectrograms measured in a notched plate �known location
of this notch is 	d0�=29.2 mm� and in a perfect plate—each
calculated with different, assumed propagation distances,
	d0�. Reflections �from the notch and any plate edges� will
introduce local maxima in the correlation curves at certain
propagation distances. These local maxima occur when the
reflected modes �within a spectrogram� coincide with the in-
cident modes, which in turn provide a notch �or plate edge�
location distance. A ratio of the notched to perfect plate cor-
relations removes the maxima due to plate edges �the edges
are present in both notched and plate specimens� and will
show maxima only at “reflecting” features that are present in
the notched plate, but not in the perfect plate. The notch is
the only such feature in these experiments.

Benz19 notes that the a0-mode carries a large portion of
the energy of a Lamb wave and is less affected by mode
conversion at the notch. This implies that correlation calcu-
lations should focus on that particular mode, and this goal is
achieved in Ref. 10 by restricting the spectrogram calcula-
tion to a limited frequency band �namely, 300 kHz–2 MHz�.

In contrast, the chirplet transform enables the calculation
of the energy of each mode individually, which will be used
to formulate an alternative notch localization technique. In a
fashion similar to Ref. 10, the adaptive chirplet transform is
applied to an experimentally measured time-domain signal
for a number of assumed propagation distances, 	d0�. In other
words, adaptive chirplet analysis is performed on the
a0-dispersion curve in slowness-frequency coordinates ac-
cording to these propagation distances. This results in energy
distributions over frequency for each distance. Instead of
correlating spectrogram images �as in Ref. 10�, the correla-
tion of energy distributions of mode a0 for varying assumed
propagation distances is calculated.

Figure 13 shows two ratio curves �ratio of the correla-
tions of the notched to perfect plates�. One ratio curve is
determined with the adaptive chirplet algorithm developed in
this research, while the other curve is based on the reas-
signed spectrograms as described by Benz et al.10 Both al-
gorithms lead to very accurate notch localization—they both

FIG. 12. Typical time-domain signal �out-of-plane particle velocity� mea-
sured in the perfect plate.
contain peaks at the correct notch location distance of 	d0�
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=29.2 mm to within ±0.4 mm, an error of 1%. However, the
ratio curve calculated with the adaptive chirplet algorithm
has a peak that is much sharper and higher, providing a more
definitive indication of the notch location.

VI. CONCLUSION

This research demonstrates the effectiveness of using the
chirplet transform as a signal processing tool to quantita-
tively determine the energy distribution of the individual
modes of a multimode, dispersive Lamb wave. The proposed
adaptive chirplet algorithm is grounded in the theory devel-
oped by Mann,5 and is model-based; this work uses a model
of the dispersion relationship �the Rayleigh-Lamb equations�
to assign wave energy to the individual propagation modes
by fitting chirplets to these known modelines. An adaptive
algorithm then quantitatively determines the frequency re-
gions �for each mode� in which reliable calculations of mode
energy are possible, and employs chirplets �locally adapted�
to extract the �proportional� energy distribution of that mode
from a dispersive, time-domain wave signal.

This adaptive chirplet algorithm is first validated on a
synthetic Lamb wave signal �time-domain, multimode, dis-
persive�, and shows its effectiveness and accuracy for the
quantitative measurement of mode energy content.

The robustness of this adaptive chirplet algorithm is then
demonstrated on experimentally measured Lamb wave sig-
nals. This application enables a demonstration of another ad-
vantage of the proposed adaptive chirplet algorithm—the
ability to tailor the chirplet atoms to a particular mode, con-
tained within a multimode signal. The correlation procedure
developed by Benz et al.10 is modified for the chirplet algo-
rithm and used to locate a notch in a plate with a high degree
of accuracy and confidence.
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