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Abstract—We propose a new method for deformable regis-
tration of pre-operative and post-recurrence brain MR scans of
glioma patients. Performing this type of intra-subject registration
is challenging as tumor, resection, recurrence, and edema cause
large deformations, missing correspondences, and inconsistent
intensity profiles between the scans. To address this challeng-
ing task, our method, called PORTR, explicitly accounts for
pathological information. It segments tumor, resection cavity,
and recurrence based on models specific to each scan. PORTR
then uses the resulting maps to exclude pathological regions
from the image-based correspondence term while simultaneously
measuring the overlap between the aligned tumor and resection
cavity. Embedded into a symmetric registration framework, we
determine the optimal solution by taking advantage of both
discrete and continuous search methods. We apply our method
to scans of 24 glioma patients. Both quantitative and qualitative
analysis of the results clearly show that our method is superior
to other state-of-the-art approaches.

Index Terms—Brain tumor MRI, deformable registration,
tumor segmentation, tumor growth model, discrete-continuous
optimization

I. INTRODUCTION

THE treatment of brain gliomas could greatly benefit from
discovering imaging markers in the pre-operative scans

that accurately predict tumor infiltration and subsequent tumor
recurrence [1]–[3]. One possible approach for discovering
these markers is to first align the pre-operative and the post-
recurrence structural brain MR scans of a patient and then
to analyze the imaging characteristics of tissue that later turn
into tumor recurrence [4], [5]. This strategy relies on accurate
registration as the size of tumor recurrence is usually not very
large. However, non-rigid registration of the pre-operative and
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post-recurrence scans is very challenging due to large defor-
mations, missing correspondences, and inconsistent intensity
profiles between the scans. The large deformations and missing
correspondences are due to the glioma in the pre-operative
scans causing large mass effects [6] as well as the resection
cavities and tumor recurrence in the post-recurrence scans,
which are acquired several months or years after surgery.
The inconsistent intensity profiles result from tissue labeled
as edema in the pre-operative scan transforming to healthy
tissue in the post-recurrence scan (and vice versa). Thus, cor-
responding regions can have very different intensity profiles.
Fig. 1 shows a typical case with the anatomy around the tumor
being confounded by resection cavity, tumor recurrences, and
edema. In this paper, we develop a registration method to cope
with the missing correspondence issue between the scans and
show that the results are much more accurate than general-
purpose registration methods.

Existing registration methods mostly deal with the missing
correspondence issue by excluding the pathology during the
mapping process [7]–[9]. They require segmentations of the
brain scans, such as Clatz et al. [10], who align the pre-
operative and intra-operative brain scans by first matching
selected regions of healthy tissue. The approach then applies
a bio-mechanical model to the resulting map to interpolate
the deformations to the remaining image domain. Risholm et
al. [11] avoid the prerequisite of a label map by alternating
between extracting the resection area and estimating deforma-
tions. However, it is difficult to estimate gross deformation
on brain glioma scans by excluding the pathology. To take
explicit account of the tumor region, approaches register tumor
scans to a healthy brain template by simulating mass effects of
the tumor on the template [12], [13]. Alternatively, generative
models, such as Prastawa et al. [14] and Menze et al. [15],
inject a prior of the tumor into an atlas of a healthy population
and segment the tumor by aligning this atlas to the scan. Gooya
et al. [16] extend this idea to non-rigid registration by growing
the tumor inside the atlas until the deformed atlas resembles
the pathology and healthy tissue shown in the brain tumor
scan.

To the best of our knowledge, this paper proposes the
first approach specifically targeted towards the registration
of pre-operative and post-recurrence glioma scans, called
Pre-Operative and post-Recurrence brain Tumor Registration
(PORTR). One could register an atlas to each scan individually,
for example via [16], and then concatenate the corresponding
registrations [17]. However, this approach ignores the fact that
the scans are from the same patient. It thus has to solve the
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Fig. 1. An example of the pre-operative scan B and the corresponding
post-recurrence scan F . The pre-operative scan B clearly shows the tumor in
the T1-CE scan and edema in FLAIR scan. Edema is also clearly visible in
the FLAIR scan of the post-recurrence scan F . The T1-CE of F now shows
resection cavity and tumor recurrence.

much more difficult problem of registering an atlas of a healthy
population to scans showing pathology. Alternatively, one can
directly register the scans using state-of-the-art intensity- or
feature-based registration methods [18]–[20]. However, these
approaches do not explicitly account for pathologies and
therefore may produce unreasonable correspondences in these
areas. PORTR instead makes use of the fact that both scans
are from the same patient and explicitly models constraints
enforced by the pathology in each scan.

PORTR determines the optimal deformation between two
scans by finding the minimum of an energy function, which is
based on the concept of symmetric registration [19], [21]–[24].
This energy function is not only comprised of image-based
correspondences and smoothness constraints as customary
for other registration methods, but also includes pathological
information. The pathological information is inferred from
the results of two segmenters that are targeted to each scan.
Specifically, we develop a new method for segmenting post-
recurrence scans, which generally consist of resection cavities
after brain surgery and multiple tumor recurrences. For the pre-
operative scans, we adapt the segmenter by Gooya et al. [16] to
outline a single brain glioma which causes a large mass effect
on healthy tissue. The resulting segmentations of both scans
are a central component in the definition of the image and
the shape-based correspondence terms within our symmetric
registration framework. Determining the minimum within this
framework is difficult as the function contains many local min-
ima. We deal with these difficulties by combining discrete and
continuous optimizations. The discrete optimization method
finds the optimal solution in a coarse solution space. The
continuous optimization method locally improves this solution
in a finer solution space. We measure the accuracy of PORTR
on 24 subjects. The results indicate that the proposed method
outperforms Avants et al. [19] and Ou et al. [20], two examples
of the state-of-the-art in general-purpose registration methods.

II. A DEFORMABLE REGISTRATION FRAMEWORK FOR
TUMOR SCANS

We now describe PORTR, which aligns the pre-operative
scan (baseline, denoted as B) with the post-recurrence scan
(follow-up, denoted as F ) of the same subject. As outlined
in Fig. 2, our approach first applies atlas-based segmenters to

Fig. 2. Our deformable registration framework consists of three steps. We
first create a scan-specific atlas for F by segmenting the scan (Step 1). We
then jointly register this atlas to B and segment the scan, which provides
an initial mapping between F and B (Step 2). Finally, we register the scans
using the results from the previous two steps (Step 3).

F (Step 1) and B (Step 2) to extract pathological information
needed to register the scans (Step 3). Our analysis starts with F
instead of B as the glioma shown in B is surgically removed
in F . Thus, the healthy tissue of F is not impacted by the
large mass effect of that glioma [25], [26] so that segmenters
guided by atlases of healthy populations are generally easier
adapted to F than B. We do so in Step 1 by exploring a
new multi-tumor model for modifying the atlas of the healthy
population to scan F . We then interpret the results of Step
1 as a scan-specific atlas for Step 2 guiding the joint atlas
registration and segmentation of the pre-operative scan B [16].
The registration of Step 2 initializes the registration between
F and B of Step 3. For Step 3, we propose a new probabilistic
registration framework coupling the results of the previous
steps with the image-based correspondences between F and
B.

A. Step 1: Segmentation of Post-Recurrence Scan

The goal of this step is to compute probabilities regarding
the presence of healthy tissue and pathology within the post-
recurrence scan F . We do so by simultaneously registering
an atlas to scan F and segmenting the anatomy in that scan.
The atlas provides spatial information about the structures of
interest, which is needed to distinguish between the similar
MR intensity patterns of healthy tissue and pathology. In the
remainder of this section, we first provide a simple model for
transforming an atlas of a healthy population to one including
pathological information specific to scan F . We then integrate
the atlas into our Bayesian approach for joint segmentation
and registration of the post-recurrence scan.

Before describing our probabilistic model in further detail,
we introduce the following nomenclature: T denotes the label
map across the image domain ΩF of scan F . The possible
label t of T at a specific location x ∈ ΩF is WM (white
matter), GM (gray matter), CSF (cerebrospinal fluid), ED
(edema), and TU (tumor), which includes enhanced tumor,



KWON et al.: PORTR: PRE-OPERATIVE AND POST-RECURRENCE BRAIN TUMOR REGISTRATION 3

Sc
an

&
A

tla
s

(a) T1-CE of F (b) FLAIR of F (c) WM (d) GM (e) CSF

M
od

ifi
ed

A
tla

s

(f) TU (g) ED (h) WM (i) GM (j) CSF

A
lig

ne
d

A
tla

s

(k) TU (l) ED (m) WM (n) GM (o) CSF

0

1

Fig. 3. The atlas created by Step 1. The figure shows the post-recurrence scan
F in (a) and (b), and a probabilistic atlas of a healthy population in (c)-(e).
(f)-(j) are the spatial probabilities pF (Tt) based on our multi-tumor model
applied to the healthy atlas. (k)-(o) shows the spatial probabilities aligned to
the scan. Those spatial distributions better fit to the scan than the original
ones (f)-(j).

necrosis and cavity. For short, we denote this as ‘Tt|x’ instead
of ‘T = t|x’. pA is the probabilistic brain tissue atlas of a
healthy population, which we assume to be affinely aligned
with F . Let ΘA , {WM,GM,CSF} be the labels of the
healthy tissue types then pA(Tt|x) is the probability of tissue
t ∈ ΘA being present at location x ∈ ΩF (see Fig. 3 (c)-(e)).
Similarly, pF corresponds to the probabilistic model associated
with scan F , Θ , {WM,GM,CSF,ED, TU} are the labels
of all possible tissue types on pF , and the spatial probability
pF (Tt|x) is the conditional probability of tissue t ∈ Θ being
present at location x ∈ ΩF .

We now define pF (Tt|x) for each t ∈ Θ by combining
pA with a simple model for pathology. This model is based
on the empirical observation that the post-recurrence scan F
generally shows multiple small tumor recurrences, resection
cavities, and edema. These pathologies do not cause a large
mass effect on the healthy tissue in general. Our spatial
probabilities pF (Tt|x) are therefore based on the simplifying
assumptions that the mass effect of the pathologies on healthy
tissue can be ignored and that each pathological region is
contained within a relatively small sphere. If we assume F
shows M tumors then each tumor i ∈ {1, . . .M}, which
we loosely use for tumor recurrences and resection cavities,
can thus be characterized by its center location oi ∈ ΩF and
its size or radius ri. We manually set oi and ri so that the
resulting sphere encompasses the abnormal region as shown on
T1-CE scans. Based on the previous assumptions, we model its
corresponding spatial probability via the generalized logistic
function [27]:

Y (x,oi, ri, a) ,
1

1 + exp
{
a · (||x− oi|| − ri)

} , (1)

where || · || is the `2-norm and a controls the steepness of
the function. Fig. 4 plots the radial profile for Eq. (1) with
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Fig. 4. Radial profiles of spatial probability functions Y with varying
parameters. As Y is radially symmetric, we set the x-axis as the distance
from the tumor center (oi is located at zero). The four sample curves for
Y are based on different parameter settings for ri ∈ {15, 30, 45, 60} and
a ∈ {0.8, 0.6, 0.4, 0.2}. The plot in blue is an edema model combining
graphs labeled as Y1 and Y2. The graphs show the curves start to slope
further away from the origin the larger ri is and their slope steepen the larger
a is.

different parameters. The graph shows that the curves start
to slope further away from the origin as ri gets larger and
their slope steepens as a gets larger. This slope represents the
diffusion of the tumor into healthy tissue. For simplicity, we set
a = aTU uniformly across all tumors. The spatial probability
pF (TTU |x) across all tumors is then defined by the maximum
value of the M individual spatial probabilities Y as follows:

pF (TTU |x) , max
i

{
Y (x,oi, ri, aTU )

}
. (2)

We use the maximum across the spatial distributions of all
tumors as the function preserves the probabilistic profile of
individual tumors (assuming they are well spaced) and ensures
the range of pF (TTU |x) to be within [0, 1].

The spatial probability of edema is based on the assumption
that edema is in close proximity of tumors and its signal
strength decays smoothly as the distance from the tumor center
increases. Furthermore, edema is contained inside white matter
and should be defined in relation to tumor. In other words, the
more probable the presence of tumor, the less probable edema
should be. These assumptions are summarized in the following
definition of the spatial probability of edema:

pF (TED|x) , 0.5 · pA(TWM |x) ·
(
1− pF (TTU |x)

)
·max

i

{
Y (x,oi, bED · ri, aED)

}
. (3)

We set aED < aTU , which means edema is more dispersed
than tumor. bED defines the area of edema with respect to
the ith pathological region. Also, the factor 0.5 ensures that
our atlas does not favor edema over WM (or vice versa) in
areas of Y ≈ 1 in Eq. (3). Fig. 4 shows the radial profile for
pF (TTU |x) (red line) and pF (TED|x) (blue line) assuming a
single tumor is present and its size is ri = 15. One can see
that the probability of edema is close to zero inside the tumor,
increases to 0.5, and then it smoothly decays to zero again.

Next, we model the spatial probabilities of the healthy tissue
classes. We combine the atlas pA with pF (TTU |x) based on
the observation that in areas where pF (TTU |x) is relatively
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Fig. 5. An example of spatial probabilities in Step 2. We show the pre-
operative scan B in (a) and (b) and scan-specific atlas in (c)-(e). In (f)-(j),
we show spatial probabilities pB(Tt) obtained by applying the tumor growth
model on scan-specific atlas. (k)-(o) shows the spatial probabilities aligned to
the scan. This atlas now fits well to healthy tissue and pathological regions
shown in (a) and (b).

large, the probability of healthy tissue should be small. For
GM and CSF, this observation is reflected by the following
product (t ∈ {GM,CSF}):

pF (Tt|x) , pA(Tt|x) ·
(
1− pF (TTU |x)

)
.

For WM, we take the complement of spatial probabilities of
the other labels:

pF (TWM |x) , 1−
{
pF (TTU |x)+pF (TED|x)+pF (TGM |x)

+ pF (TCSF |x)
}
.

Note that pF (TWM |x) is always non-negative. Fig. 3 (f)-(j)
shows an example of our spatial probabilities. The spatial
probability for edema is high in close proximity of tumors.
Furthermore, spatial probabilities for WM, GM and CSF are
decreased in comparison to their values in the healthy atlas in
areas where tumor or edema appears to be present.

Having defined the spatial probabilities pF (Tt|x), we now
describe our approach for computing the posterior probabilities
of all tissue types. For pF (Tt|x) to be informative it needs to
match F . Fig. 3 (f)-(j) shows that this is generally not the
case. For example, pF (Tt|x) implies a high probability of
tumor outside the pathology shown in F . We address this issue
by jointly computing posterior probabilities and registering
pF (Tt|x) to F .

One of the parameters of our joint registration and seg-
mentation model is hF , the ‘voxel wise mapping’ from the
ΩF to the atlas space. A voxel-wise mapping projects a voxel
from the source to target space according to the 3D vector
stored in the underlying deformation map at that location.
The second set of parameters are the tissue specific mean and
covariances ΦF , which define the multivariate Gaussian of
the image likelihood pF (F |Tt,ΦF ,x). The joint registration
and segmentation problem is then defined via the following

optimization problem

{h∗F ,Φ∗F } , arg max
hF ,ΦF

( ∏
x∈ΩF

∑
t∈Θ

pF (Tt|hF (x))

· pF (F |Tt,ΦF ,x)
)
. (4)

We obtain h∗F and Φ∗F via an implementation of the
Expectation-Maximization (EM) algorithm [28]. The details
of this implementation are provided in Appendix A. Then we
define the posteriors for the post-recurrences scan with respect
to the anatomy t ∈ Θ as

pF (Tt|F,x) , pF (Tt|F,h∗F ,Φ∗F ,x)

∝ pF
(
Tt|h∗F (x)

)
· pF (F |Tt,Φ∗F ,x) .

(5)

Fig. 3 (k)-(o) show the aligned spatial probability
pF (Tt|h∗F (x)) obtained by applying h∗F to the original
spatial probability pF (Tt|x) of Fig. 3 (f)-(j). The probability
for each tissue is transformed to match the scan. The aligned
spatial probability of tumor (k) correlates now very well with
the scan compared to its original (f).

B. Step 2: Segmentation of Pre-Operative Scan

The goal of this step is to segment pathological regions from
the pre-operative scan B and to provide a rough estimation of
the deformation between F and B. We achieve this goal via the
joint segmentation and registration approach by Gooya et al.
[16], called GLISTR. GLISTR explicitly models the generally
large mass effects on healthy tissue caused by brain glioma in
scan B. We now describe the integration of the results of Step
1 into this approach and provide a brief review of the method.

Similar to Step 1, GLISTR uses the EM algorithm to jointly
register an atlas to the scan B and segment the scan B
into healthy tissue and pathological regions. For our specific
application, we replace the atlas of a healthy population
proposed in [16] with the scan-specific atlas defined for tissue
t ∈ ΘA as

pS(Tt|x) , pA(Tt|h∗F (x)) , (6)

where the mapping h∗F was defined according to Eq. (4) in
Step 1. Fig. 5 (c)-(e) shows an example of the scan-specific
atlas. This atlas is not affected by pathology and is aligned
with F (see Fig. 3 (a) and (b)).

By registering this atlas to scan B, the method also ap-
proximates the mapping between F and B. We note that we
could have also based the atlas on the posteriors of Eq. (5)
instead of pA(Tt|h∗F (x)). Compared to pA(Tt|h∗F (x)), the
posteriors have generally higher certainty about the presence
or absence of healthy tissue throughout the image domain. The
higher certainty causes the method to have less flexibility in
registering pS to B. In practice, this makes the registration
problem more difficult causing the method to be less stable
than when using our proposed atlas.

The remainder of this section provides a brief overview
of how GLISTR simultaneously models tumor growth in the
atlas space, registers the corresponding atlas to scan B, and
segments B. We denote with pB the probabilistic model
specific to the scan B and ΩB as the space of the pre-operative
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scan. As in the previous step, T represents the label map
that at each image location is assigned to the labels of Θ.
The approach adapts pS to B by simulating tumor growth on
ΩF via the diffusion-reaction-advection model by Hogea et
al. [29]. Given the parameters q, which contain the seed lo-
cation of the tumor, the model produces the tumor probability
pB(TTU |q,x) and the voxel-wise mapping u according to this
tumor probability. We manually set the seed in the center of
the tumor. The approach then combines pB(TTU |q,x) and u
with the atlas pS . Now, the spatial probabilities for GM and
CSF (t ∈ {GM,CSF}) are defined as

pB(Tt|q,x) , pS(Tt|u(x)) ·
(
1− pB(TTU |q,x)

)
. (7)

Unlike the spatial probability of edema in Step 1 ( Eq. (3)),
GLISTR models the close proximity of edema to tumor via the
Heaviside function H(·), (H(a) = 0 for a ≤ 0 and H(a) = 1
for a > 0) resulting in

pB(TED|q,x) , 0.5 ·pS(TWM |u(x)) ·
(
1−pB(TTU |q,x)

)
·H
(
pB(TTU |q,x)

)
, (8)

where we multiply 0.5 in order to avoid preference of edema
over WM (or vice versa) as in Eq. (3). The Heaviside
function explicitly confines edema to the region inferred
from the outcome of the tumor growth model represented by
pB(TTU |q,x). This region generally encompasses edema as
the tumor growth model accounts for diffusion into healthy
tissue. Note that Step 1 did not include a dynamic tumor
model. We instead modeled diffusion through the logistic
function with a fixed slope ( Eq. (1)), which we then used
to define the edema region. The spatial probability for WM is
defined by the complement of spatial probabilities of the other
labels:

pB(TWM |q,x) , 1−
{
pB(TTU |q,x) + pB(TED|q,x)

+ pB(TGM |q,x) + pB(TCSF |q,x)
}
.

The EM algorithm determines the optimal parameters of this
model, which are the tumor parameters q∗, the voxel-wise
mapping h∗B of the posteriors of B to the scan-specific atlas,
and the Gaussian intensity distribution parameters Φ∗B . The
posterior of structure t ∈ Θ for the pre-operative scan B is
then defined as

pB(Tt|B,x) , pB(Tt|B,q∗,h∗B ,Φ∗B ,x)

∝ pB(Tt|q∗,h∗B(x)) · pB(B|Tt,Φ∗B ,x) .
(9)

Let u∗ represent the mapping according to the tumor growth
model, which is parameterized by q∗. We approximate the
mapping between scan B and F by concatenating ‘◦’ two
mappings h∗B and u∗:

f0
BF , u∗ ◦ h∗B . (10)

Note that the voxel-wise mapping f0
BF approximates the

alignment from B to F as we use pS instead of image and
pathological information for F .

Fig. 5 (f)-(j) shows an example of spatial probabilities
pB(Tt|x). The spatial probability of tumor (f) covers the tumor
shown in (a) and (b), the one of edema (g) is neighboring the
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Fig. 6. An example of posteriors estimated by Step 1 and 2. For the pre-
operative scan B shown in (a) and (b), the posteriors of (c) tumor and (d)
edema are obtained by Step 2. For the post-recurrence scan F shown in (f)
and (g), posteriors of (h) tumor and (i) edema are obtained by Step 1. In
(h), the yellow arrow marks the regions for cavity and the red arrow marks
the region for tumor recurrence. The probabilities for pathological regions (e)
pB,PT and (j) pF,PT are defined as the sum of the posteriors of tumor and
edema. In (e) and (j), the regions indicating high probability of tumor being
present are matched well with pathological regions in B and F , respectively.
Thus, those two maps are well suited for masking out pathological regions in
the matching cost function.

tumor, and probabilities of healthy tissues are displaced by
mass effect of the tumor. Fig. 5 (k)-(o) shows aligned spatial
probabilities pB(Tt|h∗B(x)) which better seem to fit the scan
than those of Fig. 5 (f)-(j).

C. Step 3: Deformable Registration of Pre-Operative and
Post-Recurrence Scans

The goal is now to register the pre-operative scan B and
the post-recurrence scan F to accurately match the inten-
sities of the non-pathological regions while simultaneously
inferring reasonable deformations for the pathology based on
the posterior probabilities of the previous two steps. We do
so by applying the concept of symmetric registration [19],
[21]–[24] to our scenario. The idea behind the symmetric
registration is not to favor either scan by matching both scans
to a ‘center coordinate system’. The mapping between the two
scans is now essentially split into two. This splitting allows
us to reliably determine the large deformations between the
scans. To determine the optimal mapping, we apply a hybrid
optimization method combining discrete and continuous op-
timizations. It allows us to refine the global solution of the
coarse search space determined by the discrete optimization
with the local search by the continuous optimization.

1) Symmetric Registration Framework: Let ΩC be the
center coordinate system, fCB : ΩC → ΩB the diffeomorphic
mapping from ΩC to ΩB , fCF : ΩC → ΩF the diffeomorphic
mapping from ΩC to ΩF , and ‘◦’ concatenates two mappings.
Then

fBF , fCF ◦ (fCB)−1 (11)

maps B to F . The solution to our symmetric registration
problem {f∗CB ,f

∗
CF } minimizes an energy function E(·)

{f∗CB ,f
∗
CF } = arg min

fCB ,fCF
E
(
fCB ,fCF ;B,F, pB , pF

)
.

(12)
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E(·) encodes the relationship between ΩC , ΩB and ΩF by
a correspondence term EC measuring the agreement between
image patches of B and F , a pathology term EP capturing
the overlap between posteriors of tumors in both scans, and a
smoothness term ES enforcing consistency across the defor-
mation fields. Thus the energy function is of the form

E
(
fCB ,fCF ;B,F, pB , pF

)
,

λD · EC
(
fCB ,fCF ;B,F, pB , pF

)
+λD · λP · EP

(
fCB ,fCF ; pB , pF

)
+ES

(
fCB ,fCF

)
,

(13)

where λD is a weight of data terms (EC and EP ) compared
to ES and λP is a weight of EP among data terms. The
remainder of this section describes the three terms in further
detail.

The correspondence term EC is based on Normalized
Cross-Correlation (NCC) [30] to measures the image similarity
of healthy tissue between the aligned baseline scan B ◦ fCB
and follow-up scan F ◦ fCF in ΩC . We choose NCC as it is
often used for intra-subject registrations [18]. In our case, each
scan consists of N co-registered, multi-modal images (e.g. T1,
T1-CE, T2, and FLAIR) and Bi (or Fi) denotes the ith image
of B (or F ). The NCC of these multi-modal images at voxel
x ∈ ΩC is the mean NCC score across the modalities

DNCC

(
B◦fCB , F ◦fCF ,x

)
,

1

N

N∑
i=1

〈Bi, Fi〉√
〈Bi, Bi〉 · 〈Fi, Fi〉

,

(14)
with 〈·, ·〉 being the inner product of aligned and intensity-
corrected patches Bi and Fi. To compute Bi and Fi, we define
the region of the patch R(x) ⊂ ΩC centered around x and
compute the mean intensity value m(x) for that patch. Then

Ii ,
{
Ii
(
fCI(y)

)
−m(x) | y ∈ R(x)

}
,

for each I ∈ {B,F}. To confine the correspondence term
EC(·) to healthy tissue, we incorporate the probability for
pathological regions in this term. As the pathology is indicated
by tumor and edema, the probability for pathological regions
pI,PT in each scan I ∈ {B,F} is defined as the sum of the
posteriors of tumor and edema, i.e.

pI,PT (x) , pI(TTU |I,x) + pI(TED|I,x) .

As shown in Fig. 6 (e) and (j), pB,PT and pF,PT are good
indicators for pathology. Now we know that pathology creates
image patterns that are scan specific and thus unreliable
for image matching. The opposite is true for healthy tissue.
One way to reflect this observation in EC is to use these
probabilities as saliency information weighing DNCC more in
healthy regions and less in pathological regions. The following
definition of the correspondence terms does exactly that

EC
(
fCB ,fCF ;B,F, pB , pF

)
,∫

x∈ΩC

{
1− pB,PT

(
fCB(x)

)}
·
{

1− pF,PT
(
fCF (x)

)}
·DNCC

(
B ◦ fCB , F ◦ fCF ,x

)
dx . (15)
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Fig. 7. An example of scans and posteriors aligned by Step 3. The upper
row shows input scans and their estimated posteriors of (c) tumor and (d)
cavity. The posterior of cavity (d) is obtained from the posterior of tumor
shown in Fig. 6 (h) using Eq. (16). The lower row shows the aligned scans
and posteriors. Specifically, (g)-(i) are warped from (a)-(c) using f∗CB and
(j)-(l) are warped from (d)-(f) using f∗CF . Now the tumor nicely matches the
cavity region.

The pathology term EP measures the overlap between the
tumor in B and the resection cavity in F . Similar to EC , we
use the posterior of tumor of Step 2 to indicate the tumor
region in B. To flag the cavity region in F , we separate the
seeds used for the posterior of tumor of Step 1 in those that are
associated with cavities versus those with tumor recurrences.
We then set the indicator variable 1CA(x) at voxel x ∈ ΩF
to one if the index i(x) = arg maxi{Y (x,oi, ri, a)} used
in Eq. (2) corresponds to seeds for the cavity, and otherwise
set to zero. Then the posterior probability of cavity is

pF,CA(x) , pF (TTU |F,x) · 1CA
(
h∗F (x)

)
. (16)

Fig. 7 (d) shows an example of pF,CA obtained from Fig. 6
(h) using Eq. (16). Only the cavity region of Fig. 6 (h) is
correctly selected in Fig. 7 (d).

We now define the pathology term EP in such a way that
it penalizes mismatches between the aligned posteriors of the
tumor in B and of the cavity in F , i.e. we measure the squared
`2-norm between the aligned pB,TU and pF,CA [31], [32]

EP
(
fCB ,fCF ; pB , pF

)
,∫

x∈ΩC

{
pB,TU

(
fCB(x)

)
− pF,CA

(
fCF (x)

)}2

dx . (17)

In our experiments, this term performed slightly better than
information theoretic measures such as the Jensen-Shannon
(JS) divergence [33]. This is not surprising for shape alignment
according to Wang et al. [34]. More importantly, the above
term is more efficient to compute than JS. During optimiza-
tions, EP leads tumor and cavity regions to correspond to
each other which is difficult to do based on image-based
correspondences. Fig. 7 (c) and (d) show the tumor and cavity
posteriors, and Fig. 7 (i) and (j) show the corresponding
regions with (c) and (d) transformed to have similar shapes
after optimizations.

The third and final term of E(·) is the smoothness term ES ,
which penalizes discontinuities in both fCB and fCF . ES
measures the smoothness of the mappings fCB and fCF via
the Tikhonov operator L [35]–[37]. Let ci be a non-negative
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Input: f0
BF , B, F, pB , pF

Output: fCB ,fCF

// (Initialize solution)
set fCB ←

(
Id+

f0
BF−Id

2

)−1

and fCF ←
(
Id+

f0 −1
BF

−Id

2

)−1

for coarse to fine scale do
resample {B,F, pB , pF ,fCB ,fCF } to current scale

// (Apply discrete optimization)
set B′ ← B ◦ fCB , pB′ ← pB ◦ fCB , fB′B ← fCB

F ′ ← F ◦ fCF , pF ′ ← pF ◦ fCF , fF ′F ← fCF

calculate {fCB′ ,fCF ′} using Eq. (20) and Eq. (21)
set fCB ← fB′B ◦ fCB′ and fCF ← fF ′F ◦ fCF ′

// (Apply continuous optimization)
repeat

set B′ ← B ◦ fCB , pB′ ← pB ◦ fCB , fB′B ← fCB

F ′ ← F ◦ fCF , pF ′ ← pF ◦ fCF , fF ′F ← fCF

calculate {fCB′ ,fCF ′} using Eq. (23)
set fCB ← fB′B ◦ fCB′ and fCF ← fF ′F ◦ fCF ′

until convergence

end

Algorithm 1: Our hybrid optimization method. We initialize the solution using
f0
BF and then update the mappings {fCB ,fCF } from coarse to fine scales

sequentially executing discrete and continuous optimizations for each image
resolution.

constant and Id(x) = x be the identity mapping, then the
Tikhonov operator of a mapping f is

Lf ,
∞∑
i=0

ci ·
∣∣∇i(f − Id)

∣∣2 , (18)

where ∇i(f − Id) is the ith order derivative of the displace-
ment field (f − Id). The smoothness term is now defined as

ES
(
fCB ,fCF

)
,
∫

x∈ΩC

{
LfCB(x) + LfCF (x)

}
dx .

(19)
This regularizer favors smooth deformations as it penalizes
magnitude of higher order derivatives [36]. We note that our
method is not specific to the Tikhonov operator so that any
other operator penalizing discontinuities in the displacement
field could be used at this point.

This completes our definition of the energy function E,
whose minimum (see Eq. (12)) defines our solution for
determining the mappings fCB and fCF .

2) Hybrid Optimization Method: We determine the mini-
mum of Eq. (12) via a hybrid approach combining discrete
with continuous optimization, a concept recently explored
in optical flow estimations [38], [39]. Discrete optimizations
generally determine the global minimum (or a strong local
minimum) but do so with respect to a limited search space.
On the other hand, continuous optimization methods search
in a much richer solution space but often get trapped in
local minima causing them to be sensitive towards their
initialization. To take advantage of both approaches, we first
apply our discrete optimization method and use those results
as initialization of the continuous optimization method.

As outlined in Algorithm 1, we initialize our algorithm by

‘splitting’ the initial displacement f0
BF of Eq. (10) in half:

fCB ←
(

Id+
f0
BF − Id

2

)−1

, fCF ←
(

Id+
f0 −1
BF − Id

2

)−1

.

We note that this initialization is one of many schemes
that fulfill Eq. (11), i.e. the requirement of our symmetric
registration framework. We choose this specific one due to its
simplicity.

We then successively apply our discrete and continuous
optimization methods based on the coarse-to-fine scheme [40].
At each iteration, our algorithm determines the deformations
maps {fCB ,fCF } that minimize the energy function of
Eq. (13) for the resolution associated with this iteration. In the
ideal case, the resulting intermediate images B′ , B ◦ fCB
and F ′ , F ◦fCF are equal on the healthy tissue with respect
to this resolution. The remainder of this section describes our
discrete and continuous optimizations in further detail.

Based on the deformations {fCB ,fCF } computed by the
previous iteration, the discrete approach estimates the solution
to Eq. (13) by first computing the intermediate warped images
{B′, F ′}, and the intermediate posteriors pB′ , pB ◦fCB and
pF ′ , pF ◦ fCF . The deformation from the image B to the
warped image B′ is simply fB′B , fCB (and fF ′F , fCF
accordingly). Next, we search for the maps {fCB′ ,fCF ′}
minimizing the energy function ED(·, ·;B′, F ′, pB′ , pF ′), the
discrete form of Eq. (13) (see Appendix B). ED is defined
on a Markov Random Field, which consists of a set of nodes
V placed on a regular grid over the image domain ΩC . Each
node s ∈ V is associated with a pair of labels {ls,CB′ , ls,CF ′},
where the value of each label is confined to the discrete set
L. The function d : L → R3 maps a label to a corresponding
3D displacement vector, e.g. d(ls,CB′) is the displacement of
the region in ΩC associated with node s pointing to ΩB′ . To
determine the optimal mapping {fCB′ ,fCF ′}, we now solve
the following minimization problem

{l∗CB′ , l∗CF ′} , arg min
lCB′ ,lCF ′

ED(lCB′ , lCF ′ ;B
′, F ′, pB′ , pF ′) .

(20)
via the tree re-weighted message passing method [41], [42]
(see Appendix B for further details).

Having determined the optimal labeling l∗CB′ and l∗CF ′ , we
create a smooth mapping with respect to the current image
resolution by computing the weighted sum of displacement
vectors on a set of neighboring nodes N (x) for each voxel
location x ∈ ΩC :

fCB′(x) , x +
∑

s∈N (x)

ωs(x) · d(l∗s,CB′) ,

fCF ′(x) , x +
∑

s∈N (x)

ωs(x) · d(l∗s,CF ′) .
(21)

The weight ωs(x) is defined by the conventional free form
deformation model based on cubic B-splines [43] guaranteeing
a smooth interpolation of the displacement vectors d(·) defined
on the grid across the entire image domain ΩC . We note that
making the interpolations of Eq. (21) exact at a coordinate
xs of a node s ∈ V , i.e., fCB′(xs) − xs = d(l∗s,CB′) and
fCF ′(xs) − xs = d(l∗s,CF ′), would require B-spline pre-
filtering [44], which we omitted for computational reasons.
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Based on the mappings determined by the discrete optimiza-
tion, we update the map from the original images to the center
coordinate system via

fCB ← fB′B ◦ fCB′ , fCF ← fF ′F ◦ fCF ′ . (22)

and use them to initialize the continuous optimization.
Our continuous approach determines the solution by min-

imizing the original, continuous energy function E(·) of
Eq. (13) through the fluid registration scheme [45]. We iterate
between
• setting the intermediate images {B′, F ′}, probabilities
{pB′ , pF ′}, and deformations {fB′B ,fF ′F }

• computing the mappings from the intermediate to the
center coordinate system {fCB′ ,fCF ′} by multiplying
the gradient ∇E (as defined in Appendix C) with step
size ε:

fCB′ , Id− ε · ∇fCB′E
(
fCB′ ,fCF ′ ;B

′, F ′, pB′ , pF ′
)
,

fCF ′ , Id− ε · ∇fCF ′E
(
fCB′ ,fCF ′ ;B

′, F ′, pB′ , pF ′
)
,

(23)
• and using those results to update current mappings ac-

cording to Eq. (22).
We repeat this iteration until a local optimum is found,
i.e. when the gradients of Eq. (23) approach zero. After
convergence, we return to the beginning of the for-loop to
continue on the finer scale.

In summary, we propose a specific framework for determin-
ing the deformation between pre-operative and post-recurrence
scans. Our approach, called PORTR, first generates an explicit
model for the pathology and produces an initial mapping
inferred by the tumor growth model. PORTR then determines
the deformation between scans by confining the solution to
the symmetric deformations and using the hybrid optimization
method.

III. COMPARATIVE STUDY ON 24 SUBJECTS

We registered the pre-operative and post-recurrence scans
of 24 subjects and compared PORTR with DRAMMS [20],
a state-of-the-art method based on attribute vectors, mutual
saliency, and discrete optimization, and ANTS [19], a widely
used method based on symmetric registration and continuous
optimization. We now first describe the experimental set up,
including the data, the accuracy scores, and implementation
details of each method. We then show that our method
achieves the highest overall accuracy on this specific data set.
We confirm the quantitative findings by visually comparing
the registration results. The last experiment highlights the
importance of specific components for the accuracy of our
method.

A. Experimental Data

Our data set consists of 24 pairs of pre-operative and post-
recurrence MR brain scans of glioma patients. We segmented
each scan and had experts place landmarks in 10 pairs. We
used the segmentations and landmarks to measure the accuracy

(a) Pre-Operative B (b) Post-Recurrence F

Fig. 8. Landmarks placed on (a) the pre-operative scan B and (b) the post-
recurrence scan F (Subject 6). The landmarks of Group 1 (placed inside of
30 mm distance to the tumor boundary) are shown in cyan and the landmarks
of Group 2 (placed outside of that region) are shown in yellow. Also, the
tumor and cavity are shown in red and the ventricles in green. The images
highlight the vast spatial distribution of the landmarks across the brain, with
the landmarks of Group 1 being in close proximity to the tumor.

of each approach. We now describe each of these components
of our data set in further detail.

Each of the 24 glioma patients was scanned before surgery,
referred to as pre-operative or baseline (B). The enhanced
tumor region shown on the baseline scan was completely re-
moved through surgery. The post-recurrence or follow-up scan
(F ) was taken after the tumor had recurred. While the time
interval between the scans varied between 2 and 24 months
(average 8 months), the scans themselves were acquired using
the same MR acquisition protocol. Every acquisition consisted
of a T1, T1-CE, T2, and FLAIR image acquired on a 3 Tesla
MRI scanner systems (MAGNETOM Trio Timstem, Siemens
Medical Systems, Erlangen, Germany) at the Hospital of the
University of Pennsylvania. The dimension of each slice was
(192×256) with pixel spacing (0.9766×0.9766 mm2). T1 and
T1-CE scans had 1 mm slice thickness and the T2 and FLAIR
had 3 mm. Each scan was smoothed and corrected for MR
field inhomogeneity [46]. Then, we co-registered T1, T2, and
FLAIR to the T1-CE via affine registration based on mutual
information [47]. Each modality now has the same dimension
(192×256×192) and voxel size (0.9766×0.9766×1.0 mm3).
We ended the preprocessing of the data by skull stripping [48]
and affinely registering the post-recurrence to the pre-operative
scans via [47].

For all 24 subjects, an expert manually segmented the tumor
from the baseline scan and the cavity of the follow-up scan. We
then automatically segmented the ventricles for each scan by
intersecting the map inferred from the corresponding posterior
of CSF ( Eq. (9) or Eq. (5)) with the aligned atlas of the
ventricles. The segmentations for ventricles were verified by
experts.

Two experts placed landmarks on the scans of 10 randomly
selected subjects. For each pre-operative scan, the first expert
placed 20 landmarks inside the band defined by the 30 mm
distance to the tumor boundary (Group 1) and 30 landmarks
beyond the 30 mm perimeter (Group 2). The tumor boundary
was inferred from the previous segmentation. The expert
placed the landmarks on anatomical markers such as the
bifurcations of blood vessels, the omega shape of the cortex,
and midline of the brain. Both experts then independently
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placed the corresponding landmarks in the post-recurrence
scan. In the remainder of this section, we view the landmarks
set by the first expert as the gold standard and the outcome of
the second expert as a reference standard in the comparison
of the automatic method.

Fig. 8 shows the landmarks placed on one pre-operative scan
and the corresponding post-recurrence scan. The cyan dots
represent landmarks of Group 1 and the yellow dots of Group
2. As a reference, the image also shows the tumor (red) and
ventricles (green) as well as one axial T1-CE slice. The figure
nicely illustrates the distribution of the landmarks, which are
scattered across most of the brain area with the landmarks in
Group 1 being closer to the tumor than those of Group 2.

B. Accuracy Scores

We determined the accuracy of each approach by measuring
errors with respect to automatic landmark placement and
overlap between aligned segmentations. The landmark error
of an approach is defined as the mean distance between the
landmarks aligned by the approach and the corresponding ones
set by the expert. We used leave-one-out cross-validation to
compute this error for all of the 10 cases with manually placed
landmarks. In other words, we first determined the set of
parameters of an approach that lead to the minimal overall
error on 9 cases. We then recorded the landmark errors for
the remaining test case by applying the method with that
parameter setting to the corresponding scans. We repeated
that process until we recorded the landmark errors for each of
the 10 cases. After computing the average landmark error for
each case and method, we then called the outcome of the two
methods significantly different if the Wilcoxon signed rank
test [49] between the sets of average landmark errors revealed
a p-value below 0.05.

Segmentation overlap was measured across all 24 subjects.
Using the previous registration results for the selected 10
landmark cases and registering the remaining 14 subjects
based on the parameter setting that minimizes the landmark
error across those 10 subjects, we computed the Dice score
[50] between the segmentations of the aligned post-recurrence
scan and the ones of the pre-operative scan. Specifically,
we recorded the Dice score of the ventricle regions, which
generally are severely deformed due to the mass effects of
tumors, and the Dice score between the aligned cavity on the
post-recurrence scan and the tumor on the pre-operative scan.
Higher Dice scores indicate better registrations. We repeated
the previous significance testing by replacing the landmark
errors with the Dice scores.

C. Implementation Details

As previously mentioned, we compared the accuracy of
PORTR to ANTS and DRAMMS. We now go over the specific
implementations of each approach.

1) PORTR: Our method registered the scans (Step 3) by
first segmenting the pathology of the follow-up scan (Step 1)
and baseline scan (Step 2). In Step 1, we estimated the tumor
and cavity of Eq. (2) by first finding the smallest circle that
encompasses each abnormal region as shown by the hyper or

hypo intensities on T1-CE. We set aTU = 0.8 of pF (TTU |x)
in Eq. (2) and aED = 0.2 of pF (TED|x) in Eq. (3), which
results in the slope of the radial profile of pF (TTU |x) to be
steeper than that of pF (TED|x). Furthermore, we set bED = 4
of pF (TED|x) in Eq. (3) so that the radius implied by
pF (TED|x) is 4 times larger than that of pF (TTU |x). We
note that our method is not very sensitive to changes in
aTU , aED, and bED. The variation of the mean landmark
error was below 1% when varying those parameters by 20%
around the chosen settings. Thus, our method is also robust
towards smaller changes in the segmentation of the follow-up
scans. This observation deterred us from coupling Step 1 and
2 to create a joint intra-subject registration and segmentation
approach as we would expect marginal improvement at best
while substantially increasing the computational burden.

Finally, we initialized ΦF in Eq. (4) by taking samples
inside the corresponding tissues across all four modalities
(T1, T1-CE, T2 and FLAIR). For Step 2, we repeated the
previous procedures for the baselines scans estimating the
initial seed location of the tumor parameter q in Eq. (7) and
initializing ΦB of Eq. (9). The registration of Step 3 was only
based on T1 and T1-CE (N = 2). We omitted the other two
modalities (T2 and FLAIR) as their lower resolutions decrease
the accuracy of the NCC measure in Eq. (14). Using both
T1 and T1-CE improved the mean landmark errors by 16%
compared to using T1 or T1-CE alone. The NCC measure
was based on a patch width of 9 voxels. In Eq. (18), we used
ci = σ2i/(i!·2i) so that we can minimize the smoothness term
ES by applying the Gaussian kernel with standard deviation
σ to the gradients of EC and EP [36] (see Appendix C).
We fixed σ =

√
3 in all experiments. We then determined the

optimal weighing parameters λD and λP of Eq. (13) via leave-
one-out cross-validation. The search space of λD was [0.8, 1.2]
and of λP was [0.1, 0.3]. This implementation of PORTR is
freely available for download via the website of the Section
of Biomedical Image Analysis, University of Pennsylvania.

2) DRAMMS and mDRAMMS: We choose DRAMMS [20]
as a representative of registration methods based on discrete
optimization. Its mutual-saliency concept is well suited for
our data set, which requires the registration of scans with
missing correspondences. DRAMMS produced the best results
based just on the T1 modality. Note that DRAMMS currently
works only for a single-channel. Thus, it cannot take advantage
of the multiple channels such as the other methods of this
comparison and might therefore be at a disadvantage in our
comparisons. We also included a second implementation of
DRAMMS in our comparison, called mDRAMMS, which is
guided by the segmentation of pathology for pre-operative
scans generated by our approach in Step 2. Specifically, we
confined mDRAMMS to the mask of the baseline scan defined
by the complement of the posterior of pathological regions
1− pB,PT of Eq. (15). The mask for the follow-up scan was
omitted as the current publicly available version of DRAMMS
does not accept it as input. For each implementation, we
searched for the optimal regularization parameter g in the
range of [0.1, 0.5] and mutual saliency parameter c by setting
it to 0 or 1. These ranges were suggested by the creators of
DRAMMS for registering image pairs with large deformation.
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TABLE I
AVERAGE RUNNING TIME

PORTR DRAMMS mDRAMMS ANTS mANTS

3.5 h 0.8 h 0.7 h 1.7 h 1.2h

3) ANTS and mANTS: We choose ANTS [19] as a
representative for registration methods based on continuous
optimization. Its symmetric registration scheme is well
suited for the large mass effects caused by the tumor. In
addition, the method compares favorably to other approaches
in various registration tasks [51], [52]. For the same reason
as with PORTR, we achieved the highest accuracy confining
ANTS to T1 and T1-CE channels. Like mDRAMMS, we
also include a second implementation in our comparison,
called mANTS, which used 1 − pB,PT as a mask of the
baseline scan and ignored the mask for the follow-up scan.
The publicly available version of ANTS currently cannot
be constrained by the mask of the follow-up scan. Each
implementation used cross correlation (CC) to measure image
similarity, hierarchically iterated based on (100 × 100 × 50),
and used the symmetric image normalization (SyN) scheme.
We furthermore determined the optimal setting during cross
validation for the step-size s of the SyN scheme in the range
of [0.25, 0.5] and the regularization on the deformation field
t in the range of [0.0, 1.5], where t = 0.0 allows maximum
flexibility. These intervals were chosen based on the recent
evaluation by the creators of ANTS [53].

We end the description of our applications by mentioning
their running time summarized in Table I. On an Intel Core
i7 3.4 GHz machine with Windows operating system, PORTR
average running time was 3.5 h (less than ten minutes for Step
1, 1.5 h for Step 2, and 1.9 h for Step 3) while ANTS took 1.7
h and mANTS 1.2 h. DRAMMS and mDRAMMS took 0.8 and
0.7 hours respectively on an Intel Xeon 3.06 GHz machine
with Linux operating system.

D. Registration Results

We now compare the accuracy of each implementation on
our data set of 24 subjects in three steps. We first review
the landmark-based error followed by the segmentation-based
error. Then we visually compare the results, which confirm
the findings of the two quantitative evaluations. We end with
checking the role of specific components of PORTR. Note
that the baseline for comparison is the outcome of affine
registration [47] referred to as AFFINE, and those of the
second rater referred to as RATER.

1) Landmark-Based Errors: Fig. 9 shows the box-and-
whisker plots of average landmark errors based on landmarks
inside the 30 mm tumor boundary (Group 1) in the top graph
as well as the one for the remaining landmarks (Group 2) in
the bottom graph across the 10 subjects. The error statistics
were computed with respect to the distance of the landmarks
set by the first rater. For each method, the black dot represents
the mean landmark error.

The errors of all non-rigid registration methods are signif-
icantly lower than those of AFFINE. Among non-rigid reg-

Fig. 9. The box-and-whisker plots of average landmark errors evaluated using
landmarks of Group 1 (top) and landmarks of Group 2 (bottom) across the
10 subjects. The bars start at the lower quartile and end at the upper quartile
with the white line representing the median. The whiskers show minimum
and maximum values within 1.5 interquartile ranges from lower and upper
quartile, respectively (outliers are not shown). The black dots represent the
mean landmark errors. RATER denotes the landmark errors of the second rater
and AFFINE shows the errors of the affine registration. Among the registration
approaches, PORTR performs best and has the lowest mean score and smallest
variation.

istration methods, PORTR has the lowest mean error, closest
to that of RATER. The mean error of PORTR is 25% lower
than DRAMMS, 24% lower than mDRAMMS, 9% lower than
ANTS, and 7% lower than mANTS for landmarks of Group
2. For landmarks nearby tumor (Group 1), these performance
gaps respectively widen to 46%, 42%, 38%, and 34%. PORTR
was significantly better than the other competing methods with
respect to the landmark error of Group 1 (p < 0.01) as well
as Group 2 (p < 0.05).

Among the alternative methods, ANTS performed better than
DRAMMS, however the difference between the mean errors is
smaller than that between PORTR and ANTS. The methods
with tumor masks (mDRAMMS or mANTS) performed similar
(performance gaps are less than 5%) to their counterparts
(DRAMMS or ANTS) as these methods assume smooth de-
formations inside the masked tumor regions. This assumption
is inaccurate with respect to recovering mass effects.

We note that landmarks were placed in regions that could
be clearly recognized anatomically by the experts. As many
tumors induce large deformations and great signal changes
around them, identifying such landmarks very close to the
tumor is nearly impossible. Therefore, it is likely that the true
registration error in the immediate vicinity of the tumor is
larger than the error measured in Fig. 9.
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Fig. 10. The box-and-whisker plots of Dice scores evaluated on segmen-
tations of ventricles (top) and pathology (bottom) across the 24 subjects.
The results show that PORTR performs better than the other approaches for
ventricles and pathology.

2) Segmentation-Based Errors: Fig. 10 summarizes the
Dice score of each implementation across the 24 subjects.
For the ventricles (top graph) and the pathology (bottom
graph), AFFINE received the lowest mean score. As expected,
AFFINE performed worst as the registration does not have
enough degrees of freedom to model the impact of pathology
on all brain structures. All other methods were fairly accurate
in registering the ventricles. We note that none of the ap-
proaches, including PORTR, explicitly modeled this anatomy
in their cost function. Thus, the Dice score of the ventricles
provides an unbiased comparison across the methods. In this
comparison, the mean score of PORTR is at least 3% better
than that of any other method. Overall, PORTR was signifi-
cantly better than the other competing methods (p < 0.0001).

Fig. 10 (bottom graph) shows the Dice scores for the
pathological regions. With the exception of PORTR, the scores
of the automatic methods significantly dropped compared to
the scores achieved for the ventricles. Out of those methods,
ANTS performed slightly better with a mean Dice score of
41%. Interestingly, the implementations based on the tumor
masks (mDRAMMS or mANTS) did not perform better than
their counterparts (DRAMMS or ANTS). This indicates that
simply masking tumor regions does not lead to better overlaps
on pathological regions. Unlike the other methods, PORTR
explicitly matched the pathologies across scans via Eq. (17).
The explicit modeling enabled our approach to achieve quite
good accuracy with an average score of 74%, which is 33%
better than ANTS. Overall, PORTR was significantly better

than the other competing methods (p < 0.0001).
3) Visual Comparisons: We now visually compare the

registration results of 10 subjects used for measuring landmark
errors. Fig. 11 (a) shows the T1-CE image of the baseline scan
with the tumor outlined in red and ventricles in green. Fig. 11
(b) shows the corresponding follow-up scan. Fig. 11 (c)-(g)
show the follow-up scan registered to the baseline according
to each method. As a reference, the tumor (red) and ventricles
(green) of the baseline are overlaid in the aligned scans.

The images confirm our quantitative findings. For each
subject, the aligned follow-up of PORTR much better matches
the baseline scan than those of other competing methods. The
ventricles of the follow-up scans aligned by PORTR overlap
well with the baseline across all examples. This is not the
case for the results of the competing methods where the
ventricles leak to the adjacent tumor regions in Subjects 3 and
6. Furthermore, the ventricles inaccurately match in Subjects
2, 7 and 10. In Subject 4, 5 and 9, all methods align the
ventricle regions well as the tumor is distant from ventricles.
For the registration quality around pathology, PORTR well
aligns tumor and cavity regions in all examples. However,
results of other competing methods generally failed to produce
reasonable overlaps on pathological regions except Subject 9
where the mass effect is small.

Interestingly, there are no big visual differences between
DRAMMS and mDRAMMS. We presume that their mutual-
saliency term puts low confidences on pathological regions,
so the tumor masks do not greatly help in those regions. On
the other hand, the results of mANTS look different from those
of ANTS, especially on Subject 1, 3, and 7, but not necessarily
improved. mANTS tends to preserve the appearance of follow-
up scans in pathological regions as the region is masked out
in the corresponding energy function. For mDRAMMS and
mANTS, the tumor masks only assist in maintaining smooth
deformations on pathological regions. The poor matches by
the four competing methods (ANTS, mANTS, DRAMMS and
mDRAMMS) on pathological regions thus indicates that it
is hard to match pathological regions between baseline and
follow-up scans using imaging information alone.

Next, we review the quality of our registration specifically
in cortical regions nearby the tumor. We do so in Fig. 12 by
taking a closer look at two examples: the registration results
with respect to Subjects 5 and 7. The red arrow in Subject
5 points to the cortex, whose shape in the aligned image by
PORTR (g) matches the one in the original image (a). This is
not the case for the results generated by the other methods (c)-
(f). PORTR is also the only method where the cortical region
around the recurrence (yellow arrow) is properly aligned to
the baseline scan. It does so by dramatically shrinking the
recurrence in the aligned scans, which the other methods
failed to do. In Subject 7, PORTR is again the only method
that accurately aligns the cortex region pointed out by the
red arrow. While the other methods try to match tumor
recurrence to the original tumor, our approach correctly aligns
the resection cavity to the pathology. Especially in this case,
the goal of PORTR to match the resection cavity to the tumor
seems to help in registering the healthy tissue.

In summary, PORTR produced the visually the most rea-
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Fig. 11. The registration results of follow-up onto baseline scans. In each row, we show T1-CE images of the pre-operative scan (baseline) in (a) and the post-
recurrence scan (follow-up) in (b). (c)-(g) show the registered post-recurrence scans using DRAMMS, mDRAMMS, ANTS, mANTS, and PORTR, respectively.
For baseline and registered scans, boundaries of segmented tumor (red) and ventricles (green) of baseline are overlaid. Based on visual comparison of these
images, PORTR shows more reasonable results than the other non-rigid registration methods in all 10 cases.
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Fig. 12. The magnified views of follow-up onto baseline scans for selected subjects. The figures are shown in the same order as in Fig. 11. In each figure,
the red arrow marks cortical structure and the yellow arrow marks tumor recurrence. Based on visual comparisons, The results of PORTR outperforms the
other methods.

sonable results among the non-rigid registration methods. In
all cases, the resection cavity of the follow-up scan properly
overlapped with the tumor on the baseline scan. The same
is true for the ventricles. Overall, the visual results echoed
our quantitative findings based on landmark end segmentation
error.

E. Role of Specific Components of PORTR

We follow up the previous comparisons by taking a closer
look at the different components of PORTR. Specifically,
we analyze the role of the hybrid optimization method, the
symmetric framework, the pathology term, and the initial
mapping in Step 3.

We further validate our chosen registration framework by
confining PORTR to the discrete optimization (called Dis-
crete), the continuous optimization (called Continuous), and
by replacing the symmetric approach with directly mapping B
to F (called Asymm). In Asymm, fCB is fixed to the identity so
that fCF is actually the mapping fBF . The landmark errors
for these three implementations are summarized in Fig. 13.
As expected, PORTR produced lower errors than the other
methods with respect to the landmarks of Group 1 as well
as Group 2. For landmarks nearby tumor (Group 1), the
mean error of PORTR is 20% lower than Discrete, 7% lower
than Continuous, and 10% lower than Asymm. Overall, the
error scores of PORTR were significantly lower than those
of Discrete and Asymm for Group 1 (p < 0.01) and that of
Discrete for Group 2 (p = 0.0120). Compared to Continuous,
PORTR may be better with respect to Group 2 (p = 0.0969)
but proving this hypothesis would require additional error
measurements. Combining these results, PORTR improved
the performances compared to its simplified versions, which
further justifies our design choices.

Next, we analyze the impact of the results generated in
Step 1 and 2 on the accuracy of PORTR. We first ran PORTR
with λp in Eq. (13) set to zero (called Without EP ). In
other words, Without EP ignored the tumor matching term
EP during registration. We also ran PORTR by setting the
initial mapping f0

BF of Eq. (10) to the identity function
(called Without f0

BF ). Thus, Without f0
BF ignored the

Fig. 13. The box-and-whisker plots of average landmark errors with respect
to Group 1 (left) and Group 2 (right) obtained by changing the optimization of
PORTR. Specifically, the graphs compare the accuracy of Discrete (PORTR
running the discrete optimization part only), Continuous (PORTR running
the continuous optimization part only), Asymm (the asymmetric version of
PORTR), and PORTR. The results indicate that PORTR performs better than
the other variants.

Fig. 14. The box-and-whisker plots of Dice scores with respect to the
segmentations of ventricles (left) and pathology (right). The implementations
listed on the horizontal axis are Without EP (PORTR without the term EP

in Eq. (17)), Without f0
BF (PORTR initialized with the identity function),

and PORTR. The results show PORTR performs better than Without EP and
Without f0

BF for pathological regions while they have similar Dice scores
with respect to the ventricles.

deformation computed in Step 2. Fig. 14 summarizes the
segmentation-based error of both implementations on the 24
subjects. With respect to pathology, the mean Dice value of
PORTR is 13% higher than Without EP and 6% higher than
Without f0

BF . In comparison, the differences of mean scores
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are less than 2% for the ventricles. Overall, the Dice scores
of PORTR with respect to pathology were significantly better
than those of Without EP and Without f0

BF (p < 0.0001),
which further motivates the need for the information gained
from Step 1 and 2 of our registration framework.

In summary, our experiments show that the proposed
method is more accurate for the registration of pre-operative
and post-recurrence glioma scans than certain state-of-the
art approaches. Our method achieved the highest accuracy
in the landmark comparison, produced the most plausible
deformations on pathological regions, and received the highest
Dice scores with respect to ventricles and pathologies.

IV. CONCLUSION

We presented a new deformable registration approach that
matches intensities of healthy tissue as well as glioma to
resection cavity. Our method extracted pathological informa-
tion on both scans using scan-specific approaches and then
registers scans by combining image-based matchings with
pathological information. To achieve unbiased deformation
fields on either scan, we used a symmetric formulation of our
energy model comprised of image- and shape-based correspon-
dences and smoothness constraints. We determined the optimal
registration results by minimizing the energy function using
a hybrid optimization strategy which takes advantages both
of discrete and continuous optimizations. We compared our
approach to state-of-the-art registration methods in registering
pre-operative and post-recurrence MR scans of 24 glioma
patients. We quantitatively compared their outcome with re-
spect to matching landmarks and segmentations, following up
this comparison with visual inspection. In this comparison,
our approach performed significantly better than the other
registration methods.
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APPENDIX A
A BAYESIAN MODEL FOR JOINT SEGMENTATION AND

REGISTRATION

We now describe in detail our approach for joint segmenta-
tion and registration in Step 1. As defined in Step 1, hF is the
unknown vector field representing the mapping from ΩF to the
atlas space and ΦF is the unknown intensity distributions of
the different tissue classes. Inspired by Ashburner and Friston
[54] and Pohl et al. [55], [56], one way to jointly compute the
probabilities and align the atlas is by solving the following
maximum a posteriori (MAP) estimation problem:

{h∗F ,Φ∗F } = arg max
hF ,ΦF

pF (hF ,ΦF |F )

= arg max
hF ,ΦF

(∑
T
pF (hF ,ΦF , T |F )

)
, (24)

where we marginalize over T to simplify the modeling.

To decompose this MAP problem, we make use of the
following independence assumptions: F is independent of hF
conditioned T , T is independent of ΦF conditioned hF , hF is
independent of ΦF , and T is composed as a set of independent
random variables across the image grid ΩF . pF (T |hF ) and
likelihoods pF (F |T ,ΦF ) are defined by the product of the
corresponding probabilities over all the voxels in ΩF . Then
Eq. (24) simplifies to:

{h∗F ,Φ∗F } = arg max
hF ,ΦF

(∑
T
pF (T |hF ) · pF (F |T ,ΦF )

)
= arg max

hF ,ΦF

( ∏
x∈ΩF

∑
t∈Θ

pF (Tt|hF ,x) · pF (F |Tt,ΦF ,x)
)
.

(25)

Note that we dropped terms not depending on hF or ΦF .
We define the first term of the above equation,

pF (Tt|hF ,x), through deforming our atlas pF (Tt|x) via hF :

pF (Tt|hF ,x) , pF (Tt|hF (x)) . (26)

We model the second term, the image likelihood
pF (F |Tt,ΦF ,x), as a multivariate Gaussian with the
tissue specific mean mt and covariance Σt composing ΦF .
We obtain Eq. (4) by applying Eq. (26) on Eq. (25).

Ashburner and Friston [54] and Pohl et al. [55], [56] have
shown that the solutions to problems such as Eq. (25) can
robustly be estimated via the EM algorithm [28]. The EM
algorithm iteratively determines the solution by computing the
posterior

pF (Tt|F,x) , pF (Tt|F,h′F ,Φ′F ,x)

∝ pF
(
Tt|h′F (x)

)
· pF (F |Tt,Φ′F ,x)

in the E-Step and updating in the M-Step the parameters

Φ′F ← arg max
ΦF

( ∑
x∈ΩF

∑
t∈Θ

pF (Tt|F,x)·log pF (F |Tt,ΦF ,x)
)

which is solved in a closed form of [57], and

h′F ← arg max
hF

( ∑
x∈ΩF

∑
t∈Θ

pF (Tt|F,x) · log pF (Tt|hF ,x)
)

which iteratively can be solved as in [16]. After convergence,
we assign h′F and Φ′F to h∗F and Φ∗F , respectively.

APPENDIX B
ENERGY FUNCTIONS FOR DISCRETE OPTIMIZATION

We now specify the discrete version of our energy model
in Eq. (13) based on the input {B′, F ′, pB′ , pF ′}. This discrete
version is based on a Markov Random Field (MRF) model
that consists of a set of nodes V placed on a cubic grid in
ΩC and a set of hyperedges E , where each edge is defined by
three successive nodes on one axis [58], [59]. For example on
the x-axis (and y-axis and z-axis accordingly), one hyperedge
is defined for each set of nodes (x − 1, y, z), (x, y, z), and
(x + 1, y, z). We restrict the maximum displacement of the
discrete optimization to 0.4 times of the spacing between
neighboring nodes ensuring that the resulting deformation is
diffeomorphic [60]. Using the notations in Step 3, we define
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the correspondence term of Eq. (15) as

EDC (lCB′ , lCF ′ ;B
′, F ′, pB′ , pF ′) ≈∑

s∈V

{
1−pB′,PT

(
xs+d(ls,CB′)

)}
·
{

1−pF ′,PT
(
xs+d(ls,CF ′)

)}
·DNCC

(
B′, F ′,xs + d(ls,CB′),xs + d(ls,CF ′)

))
, (27)

where xs is a coordinate of a node s ∈ V . For DNCC , we
use slightly different definition of Eq. (14). Let us define the
region of the patch on I as R(xI) centered on xI for each
I ∈ {B′, F ′}. Then the NCC between two patches respectively
centered on xB′ and xF ′ is defined as

DNCC

(
B′, F ′,xB′ ,xF ′

)
,

1

N

N∑
i=1

〈B′i, F ′i 〉√
〈B′i, B′i〉 · 〈F ′i , F ′i 〉

,

where m(xI) is the mean value of the patch and

Ii = {Ii(y)−m(xI) | y ∈ R(xI)} (28)

is an intensity corrected patch for each I ∈ {B′, F ′}. As
we measure NCC between translated patches, this function
approximates Eq. (15). For discrete optimizations, it is cur-
rently intractable to solve the exact conversion of Eq. (15) as
it introduces higher-order potentials encoding each movement
of the neighboring nodes. Next, we discretize the pathology
term of Eq. (17) as follows

EDP (lCB′ , lCF ′ ; pB′ , pF ′) =∑
s∈V

{
pB′,TU

(
xs+d(ls,CB′)

)
−pF ′,TU

(
xs+d(ls,CF ′)

)}2

.

(29)

Finally we convert the smoothness term in Eq. (19) as follows:

EDS (lCB′ , lCF ′) ≈∑
(s,t,u)∈E

{∣∣∣∣d(ls,CB′)− 2 · d(lt,CB′) + d(lu,CB′)
∣∣∣∣2

+
∣∣∣∣d(ls,CF ′)− 2 · d(lt,CF ′) + d(lu,CF ′)

∣∣∣∣2} ,
(30)

where ||·|| is `2-norm. We incorporate a second-order smooth-
ness prior [58], [59] as an approximation of the regularization
in Eq. (19). The second order prior is selected as it produces
smoother deformations than the first order one conventionally
used in discrete registration approaches [18]. The discrete
energy function ED is defined as a weighted sum of Eqs. (27)-
(30) using λD and λP as in Eq. (13):

ED
(
lCB′ , lCF ′ ;B

′, F ′, pB′ , pF ′
)
,

λD · EDC
(
lCB′ , lCF ′ ;B

′, F ′, pB′ , pF ′
)

+λD · λP · EDP
(
lCB′ , lCF ′ ; pB′ , pF ′

)
+EDS

(
lCB′ , lCF ′

)
.

(31)

According to Eq. (20), we obtain {l∗CB′ , l∗CF ′} by deter-
mining the label minimizing Eq. (31). However, this task is
difficult as the complexity of the solution space is in O(L2).

Instead, we perform coordinate descent:

l∗CB′ ← arg min
lCB′

ED(lCB′ , l
∗
CF ′ ;B

′, F ′, pB′ , pF ′) , (32)

l∗CF ′ ← arg min
lCF ′

ED(l∗CB′ , lCF ′ ;B
′, F ′, pB′ , pF ′) . (33)

We initialize each label with the zero displacement
d(l∗s,CB′) = d(l∗s,CF ′) = 0 and repeat solving the two
minimization problems until the labels converge.

We solve Eq. (32) (and Eq. (33) accordingly) taking
advantage of the fact that l∗ = l∗CF ′ is fixed so that we can
reduce ED(·) to the parts that depend on l = lCB′ and omit
all others, i.e.

E′D(l) =
∑
s∈V

θs(ls) +
∑

(s,t,u)∈E

θstu(ls, lt, lu) (34)

with the unary potential

θs(ls) , λD · {1− pB′,PT (xs + d(ls))}
· {1− pF ′,PT (xs + d(l∗s))}
·DNCC(B′, F ′,xs + d(ls),xs + d(l∗s)))

+ λD · λP · {pB′,TU (xs + d(ls))− pF ′,TU (xs + d(l∗s))}2

defined according to Eq. (27) + Eq. (29), and the ternary
potential

θstu(ls, lt, lu) , ||d(ls)− 2 · d(lt) + d(lu)||2

defined according to Eq. (30). The solution of E′D is the
same as that of Eq. (32), which we determine via the tree
re-weighted message passing method (TRW) [41], [42]. We
choose TRW as it performed favorably in comparison to the
state-of-the-art on related discrete optimization tasks [61].

As TRW works only on pairwise MRFs, we convert θstu
into pairwise potentials by creating for each edge (s, t, u) ∈ E
an auxiliary node α. The node α takes on label zα ∈ Z , where
Z is a combination of the label spaces defined for s, t, and
u. We assume any value of zα has one-to-one correspondence
with a triplet (zs, zt, zu) where {zs, zt, zu} ∈ L. We now
define a pairwise potential ψαi(·) penalizing inconsistencies
between the auxiliary node α and the (ordinary) node i ∈
{s, t, u} as

ψαi(zα, li) =

{
0 if zi = li
∞ otherwise

,

and the unary, data potential ψα(·)

ψα(z) = θstu(zs, zt, zu) ,

so that

θstu(ls, lt, lu) = min
zα

{
ψα(zα)+

∑
i∈{s,t,u}

ψαi(zα, li)
}
. (35)

Let VA be a set of auxiliary nodes and EA be a set of
edges between auxiliary nodes α ∈ VA and ordinary nodes
i ∈ V . Using Eq. (35), we convert the energy function of
Eq. (34) into an energy function of an MRF model with
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pairwise potentials

E′′D(l, z) =
∑
s∈V

θs(ls) +
∑
α∈VA

ψα(zα)

+
∑

(α,i)∈EA

ψαi(zα, li) ,

which we then plug into TRW to determine the solution
{l∗, z∗} = arg minl,z E

′′D(l, z). Note that l∗ minimizes
Eq. (32) as minz E

′′D(l, z) = E′D(l).

APPENDIX C
GRADIENTS FOR CONTINUOUS OPTIMIZATION

We now determine the gradients for our continuous opti-
mization of Step 3 based on the input {B′, F ′, pB′ , pF ′}. The
gradients in Eq. (23) are defined as

∇fCB′E = Gσ ∗
(
λD · ∇fCB′EC + λD · λP · ∇fCB′EP

)
,

∇fCF ′E = Gσ ∗
(
λD · ∇fCF ′EC + λD · λP · ∇fCF ′EP

)
,

(36)
where Gσ is the Gaussian kernel with standard deviation σ,
which is the Green’s function for the Tikhonov regularization
of Eq. (18) with ci = σ2i/(i! · 2i) [36]. The gradients for the
correspondence term in Eq. (15) are defined as

∇fCB′EC(x) =
(
1− pB′,PT (x)

)
·
(
1− pF ′,PT (x)

)
· 1

N

N∑
i=1

1
√
νi · ωi

(
F ′i (x)− µi

νi
·B′i(x)

)
· ∇B′i(x) ,

∇fCF ′EC(x) =
(
1− pB′,PT (x)

)
·
(
1− pF ′,PT (x)

)
· 1

N

N∑
i=1

1
√
νi · ωi

(
B′i(x)− µi

ωi
· F ′i (x)

)
· ∇F ′i (x) ,

(37)
where B′i and F ′i are intensity corrected patches defined in
Eq. (28) and we set µi , 〈B′i, F ′i 〉, νi , 〈B′i, B′i〉, and ωi ,
〈F ′i , F ′i 〉. The gradients for the pathology term in Eq. (17) are

∇fCB′EP (x) = 2 ·
(
pB′,TU (x)− pF ′,TU (x)

)
· ∇pB′,TU (x) ,

∇fCF ′EP (x) = 2 ·
(
pF ′,TU (x)− pB′,TU (x)

)
· ∇pF ′,TU (x) .

(38)
The gradients in Eq. (23) are calculated by applying Eq. (37)
and Eq. (38) to Eq. (36).

REFERENCES

[1] S. J. Price, R. Jena, N. G. Burnet, T. A. Carpenter, J. D. Pickard, and
J. H. Gillard, “Predicting patterns of glioma recurrence using diffusion
tensor imaging,” Eur. Radiol., vol. 17, no. 7, pp. 1675–1684, 2007.

[2] R. Verma, E. I. Zacharaki, Y. Ou, H. Cai, S. Chawla, S.-K. Lee, E. R.
Melhem, R. Wolf, and C. Davatzikos, “Multiparametric Tissue Char-
acterization of Brain Neoplasms and Their Recurrence Using Pattern
Classification of MR Images,” Acad. Radiol., vol. 15, no. 8, pp. 966–
977, 2008.

[3] W.-D. Heiss, P. Raab, , and H. Lanfermann, “Multimodality assessment
of brain tumors and tumor recurrence,” J. Nucl. Med., vol. 52, no. 10,
pp. 1585–1600, 2011.

[4] J. M. Provenzale, S. Mukundan, and D. P. Barboriak, “Diffusion-
weighted and Perfusion MR Imaging for Brain Tumor Characterization
and Assessment of Treatment Response,” Radiology, vol. 239, no. 3, pp.
632–649, 2006.

[5] A. D. Waldman, A. Jackson, S. J. Price, C. A. Clark, T. C. Booth,
D. P. Auer, P. S. Tofts, D. J. Collins, M. O. Leach, and J. H. Rees,
“Quantitative imaging biomarkers in neuro-oncology,” Nat. Rev. Clin.
Oncol., vol. 6, no. 8, pp. 445–54, 2009.

[6] B. L. Dean, B. P. Drayer, C. R. Bird, R. A. Flom, J. A. Hodak, S. W.
Coons, and R. G. Carey, “Gliomas: Classification with MR Imaging,”
Radiology, vol. 174, no. 2, pp. 411–415, 1990.

[7] S. Periaswamy and H. Farid, “Medical image registration with partial
data,” Med. Image Anal., vol. 10, no. 3, pp. 452–464, 2006.

[8] N. Chitphakdithai and J. S. Duncan, “Non-rigid Registration with Miss-
ing Correspondences in Preoperative and Postresection Brain Images,”
in Med. Image Comput. Comput. Assist. Interv. (MICCAI), vol. 6361,
2010, pp. 367–374.

[9] M. Niethammer, G. L. Hart, D. F. Pace, P. M. Vespa, A. Irimia, J. D. V.
Horn, and S. R. Aylward, “Geometric Metamorphosis,” in Med. Image
Comput. Comput. Assist. Interv. (MICCAI), vol. 6892, 2011, pp. 639–
646.

[10] O. Clatz, H. Delingette, I.-F. Talos, A. Golby, R. Kikinis, F. A. Jolesz,
N. Ayache, and S. K. Warfield, “Robust Nonrigid Registration to Capture
Brain Shift From Intraoperative MRI,” IEEE Trans. Med. Imaging,
vol. 24, no. 11, pp. 1417–1427, 2005.

[11] P. Risholm, E. Samset, I.-F. Talos, , and W. Wells, “A Non-rigid
Registration Framework That Accommodates Resection and Retraction,”
in Inf. Process. Med. Imaging (IPMI), vol. 5636, 2009, pp. 447–458.

[12] A. Mohamed, E. I. Zacharaki, D. Shen, and C. Davatzikos, “Deformable
registration of brain tumor images via a statistical model of tumor-
induced deformation,” Med. Image Anal., vol. 10, no. 5, pp. 752–763,
2006.

[13] E. I. Zacharaki, D. Shen, S.-K. Lee, and C. Davatzikos, “ORBIT: A
Multiresolution Framework for Deformable Registration of Brain Tumor
Images,” IEEE Trans. Med. Imaging, vol. 27, no. 8, pp. 1003–1017,
2008.

[14] M. Prastawa, E. Bullitt, S. Ho, and G. Gerig, “A brain tumor segmen-
tation framework based on outlier detection,” Med. Image Anal., vol. 8,
no. 3, pp. 275–283, 2004.

[15] B. H. Menze, K. V. Leemput, A. Honkela, E. Konukoglu, M.-A. Weber,
N. Ayache, and P. Golland, “A Generative Approach for Image-Based
Modeling of Tumor Growth,” in Inf. Process. Med. Imaging (IPMI), vol.
6801, 2011, pp. 735–747.

[16] A. Gooya, K. M. Pohl, M. Billelo, L. Cirillo, G. Biros, E. R. Melhem,
and C. Davatzikos, “GLISTR: Glioma Image Segmentation and Regis-
tration,” IEEE Trans. Med. Imaging, vol. 31, no. 10, pp. 1941–1954,
2012.

[17] H. Lamecker and X. Pennec, “Atlas to Image-with-Tumor Registration
based on Demons and Deformation Inpainting,” in MICCAI Workshop
Comput. Imaging Biomark. Tumors (CIBT), 2010.

[18] B. Glocker, N. Komodakis, G. Tziritas, N. Navab, and N. Paragios,
“Dense image registration through MRFs and efficient linear program-
ming,” Med. Image Anal., vol. 12, no. 6, pp. 731–741, 2008.

[19] B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee, “Symmetric
diffeomorphic image registration with cross-correlation: Evaluating au-
tomated labeling of elderly and neurodegenerative brain,” Med. Image
Anal., vol. 12, no. 1, pp. 26–41, 2008.

[20] Y. Ou, A. Sotiras, N. Paragios, and C. Davatzikos, “DRAMMS: De-
formable registration via attribute matching and mutual-saliency weight-
ing,” Med. Image Anal., vol. 15, no. 4, pp. 622–639, 2011.

[21] G. E. Christensen and H. J. Johnson, “Consistent Image Registration,”
IEEE Trans. Med. Imaging, vol. 20, no. 7, pp. 568–582, 2001.

[22] S. Joshi, B. Davis, M. Jomier, and G. Gerig, “Unbiased diffeomorphic
atlas construction for computational anatomy,” NeuroImage, vol. 23,
no. 1, pp. S151–S160, 2004.

[23] H. D. Tagare, D. Groisser, and O. M. Skrinjar, “Symmetric non-rigid
registration: A geometric theory and some numerical techniques,” J.
Math. Imaging Vis., vol. 34, no. 1, pp. 61–88, 2009.

[24] A. Sotiras and N. Paragios, “Discrete Symmetric Image Registration,”
in IEEE Int. Symp. Biomed. Imaging (ISBI), 2012, pp. 342–345.

[25] K. P. Vives and J. M. Piepmeier, “Complications and expected outcome
of glioma surgery,” J. Neurooncol., vol. 42, no. 3, p. 289302, 1999.

[26] F. W. Kreth, A. Berlis, V. Spiropoulou, M. Faist, R. Scheremet, R. Ross-
ner, B. Volk, and C. B. Ostertag, “The Role of Tumor Resection in
the Treatment of Glioblastoma Multiforme in Adults,” Cancer, vol. 86,
no. 10, pp. 2117–2123, 1999.

[27] K. M. Pohl, J. Fisher, S. Bouix, M. Shenton, R. W. McCarley, W. E. L.
Grimson, R. Kikinis, and W. M. Wells, “Using the logarithm of odds
to define a vector space on probabilistic atlases,” Med. Image Anal.,
vol. 11, no. 5, pp. 465–477, 2007.

[28] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood
from Incomplete Data via the EM Algorithm,” J. R. Stat. Soc. Series B.,
vol. 39, no. 1, pp. 1–38, 1977.



KWON et al.: PORTR: PRE-OPERATIVE AND POST-RECURRENCE BRAIN TUMOR REGISTRATION 17

[29] C. Hogea, C. Davatzikos, and G. Biros, “An image-driven parameter
estimation problem for a reaction-diffusion glioma growth model with
mass effects,” J. Math. Biol., vol. 56, no. 6, pp. 793–825, 2008.

[30] G. P. Penney, J. Weese, J. A. Little, P. Desmedt, D. L. G. Hill, and
D. J. Hawkes, “A Comparison of Similarity Measures for Use in 2-D-
3-D Medical Image Registration,” IEEE Trans. Med. Imaging, vol. 17,
no. 4, pp. 586–595, 1998.

[31] B. Jian and B. C. Vemuri, “A Robust Algorithm for Point Set Regis-
tration Using Mixture of Gaussians,” in IEEE Int. Conf. Comput. Vis.
(ICCV), vol. 2, 2005, pp. 1246–1251.

[32] A. S. Roy, A. Gopinath, and A. Rangarajan, “Deformable Density
Matching for 3D Non-rigid Registration of Shapes,” in Med. Image
Comput. Comput. Assist. Interv. (MICCAI), 2007, vol. 4791, pp. 942–
949.

[33] J. Lin, “Divergence Measures Based on the Shannon entropy,” IEEE
Trans. Inf. Theory, vol. 37, no. 1, pp. 145–151, 1991.

[34] F. Wang, B. Vemuri, and T. Syeda-Mahmood, “Generalized L2-
divergence and its Application to Shape Alignment,” in Inf. Process.
Med. Imaging (IPMI), vol. 5636, 2009, pp. 227–238.

[35] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-posed problems.
W.H. Winston & Sons, 1977.

[36] A. L. Yuille and N. M. Grzywacz, “A mathematical analysis of the
motion coherence theory,” Int. J. Comput. Vis., vol. 3, no. 2, pp. 155–
175, 1989.

[37] M. Nielsen, L. Florack, and R. Deriche, “Regularization, Scale-Space,
and Edge Detection Filters,” J. Math. Imaging Vis., vol. 7, pp. 291–307,
1997.

[38] V. Lempitsky, S. Roth, and C. Rother, “FusionFlow: Discrete-Continuous
Optimization for Optical Flow Estimation,” in IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), 2008, pp. 1–8.

[39] L. Xu, J. Jia, and Y. Matsushita, “Motion Detail Preserving Optical Flow
Estimation,” IEEE Trans. Pattern Anal. and Mach. Intell., vol. 34, no. 9,
pp. 1744–1757, 2012.

[40] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and
D. J. Hawkes, “Nonrigid Registration Using Free-Form Deformations:
Application to Breast MR Images,” IEEE Trans. Med. Imaging, vol. 18,
no. 8, pp. 712–721, 1999.

[41] M. J. Wainwright, T. Jaakkola, and A. S. Willsky, “MAP Estimation Via
Agreement on Trees: Message-Passing and Linear Programming,” IEEE
Trans. Inf. Theory, vol. 51, no. 11, pp. 3697–3717, 2005.

[42] V. Kolmogorov, “Convergent Tree-Reweighted Message Passing for
Energy Minimization,” IEEE Trans. Pattern Anal. and Mach. Intell.,
vol. 28, no. 10, pp. 1568–1583, 2006.

[43] T. W. Sederberg and S. R. Parry, “Free-form deformation of solid
geometric models,” ACM SIGGRAPH Comput. Graph., vol. 20, no. 4,
pp. 151–160, 1986.

[44] T. M. Lehmann, C. Gönner, and K. Spitzer, “Survey: Interpolation
Methods in Medical Image Processing,” IEEE Trans. Med. Imaging,
vol. 18, no. 11, pp. 1049–1075, 1999.

[45] M. Bro-Nielsen and C. Gramkow, “Fast Fluid Registration of Medical
Images,” in Vis. Biomed. Comput., 1996, pp. 267–276.

[46] J. G. Sled, A. P. Zijdenbos, and A. C. Evans, “A nonparametric method
for automatic correction of intensity nonuniformity in MRI data,” IEEE
Trans. Med. Imaging, vol. 17, no. 1, pp. 87–97, 1998.

[47] M. Jenkinson, P. R. Bannister, J. M. Brady, and S. M. Smith, “Improved
optimization for the robust and accurate linear registration and motion
correction of brain images,” NeuroImage, vol. 17, no. 2, pp. 825–841,
2002.

[48] S. Smith, “Fast robust automated brain extraction,” Hum. Brain Mapp.,
vol. 17, no. 3, pp. 143–155, 2002.

[49] F. Wilcoxon, “Individual Comparisons by Ranking Methods,” Biometrics
Bull., vol. 1, no. 6, pp. 80–83, 1945.

[50] L. R. Dice, “Measure of the amount of ecological association between
species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945.

[51] A. Klein, J. Andersson, B. A. Ardekani, J. Ashburner, B. B. Avants,
M.-C. Chiang, G. E. Christensen, D. L. Collins, J. C. Gee, P. Hellier,
J. H. Song, M. Jenkinson, C. Lepage, D. Rueckert, P. M. Thompson,
T. Vercauteren, R. P. Woods, J. J. Mann, and R. V. Parsey, “Evaluation
of 14 nonlinear deformation algorithms applied to human brain MRI
registration,” NeuroImage, vol. 46, no. 3, pp. 786–802, 2009.

[52] K. Murphy, B. van Ginneken, J. M. Reinhardt, S. Kabus, K. Ding,
X. Deng, K. Cao, K. Du, G. E. Christensen, V. Garcia, T. Vercauteren,
N. Ayache, O. Commowick, G. Malandain, B. Glocker, N. Paragios,
N. Navab, V. Gorbunova, J. Sporring, M. de Bruijne, X. Han, M. P.
Heinrich, J. A. Schnabel, M. Jenkinson, C. Lorenz, M. Modat, J. Mc-
Clelland, S. Ourselin, S. E. A. Muenzing, M. A. Viergever, D. D. Nigris,

D. L. Collins, T. Arbel, M. Peroni, R. Li, G. C. Sharp, A. Schmidt-
Richberg, J. Ehrhardt, R. Werner, D. Smeets, D. Loeckx, G. Song, N. J.
Tustison, B. B. Avants, J. C. Gee, M. Staring, S. Klein, B. C. Stoel,
M. Urschler, M. Werlberger, J. Vandemeulebroucke, S. Rit, D. Sarrut,
and J. P. W. Pluim, “Evaluation of Registration Methods on Thoracic
CT: The EMPIRE10 Challenge,” IEEE Trans. Med. Imaging, vol. 30,
no. 11, pp. 1901–1920, 2011.

[53] B. B. Avants, N. J. Tustison, G. Song, P. A. Cook, A. Klein, and J. C.
Gee, “A reproducible evaluation of ANTs similarity metric performance
in brain image registration,” NeuroImage, vol. 54, no. 3, pp. 2033–2044,
2011.

[54] J. Ashburner and K. J. Friston, “Unified segmentation,” NeuroImage,
vol. 26, no. 3, pp. 839–851, 2005.

[55] K. M. Pohl, J. Fisher, J. J. Levitt, M. E. Shenton, R. Kikinis, W. E. L.
Grimson, and W. M. Wells, “A Unifying Approach to Registration, Seg-
mentation, and Intensity Correction,” in Med. Image Comput. Comput.
Assist. Interv. (MICCAI), vol. 3749, 2005, pp. 310–318.

[56] K. M. Pohl, J. Fisher, W. E. L. Grimson, R. Kikinis, and W. M. Wells, “A
Bayesian model for joint segmentation and registration,” NeuroImage,
vol. 31, no. 1, pp. 228–239, 2006.

[57] K. V. Leemput, F. Maes, D. Vandermeulen, and P. Suetens, “Automated
Model-Based Bias Field Correction of MR Images of the Brain,” IEEE
Trans. Med. Imaging, vol. 18, no. 10, pp. 885–896, 1999.

[58] D. Kwon, K. J. Lee, I. D. Yun, and S. U. Lee, “Nonrigid Image
Registration Using Dynamic Higher-Order MRF Model,” in Eur. Conf.
Comput. Vis. (ECCV), vol. 5302, 2008, pp. 373–386.

[59] D. Kwon, I. D. Yun, K. M. Pohl, C. Davatzikos, and S. U. Lee, “Nonrigid
Volume Registration Using Second-Order MRF Model,” in IEEE Int.
Symp. Biomed. Imaging (ISBI), 2012, pp. 708–711.

[60] D. Rueckert, P. Aljabar, R. A. Heckemann, J. V. Hajnal, and A. Ham-
mers, “Diffeomorphic Registration Using B-Splines,” in Med. Image
Comput. Comput. Assist. Interv. (MICCAI), 2006, pp. 702–709.

[61] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov,
A. Agarwala, M. Tappen, and C. Rother, “A Comparative Study of
Energy Minimization Methods for Markov Random Fields,” in Eur.
Conf. Comput. Vis. (ECCV), vol. 3952, 2006, pp. 16–29.


