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Abstract—Estimation of tissue stiffness is an important means
of noninvasive cancer detection. Existing elasticity reconstruction
methods usually depend on a dense displacement field (inferred
from ultrasound or MR images) and known external forces. Many
imaging modalities, however, cannot provide details within an
organ and therefore cannot provide such a displacement field.
Furthermore, force exertion and measurement can be difficult for
some internal organs, making boundary forces another missing
parameter. We propose a general method for estimating elasticity
and boundary forces automatically using an iterative optimization
framework, given the desired (target) output surface. Duringthe
optimization, the input model is deformed by the simulator, and
an objective function based on the distance between the deformed
surface and the target surface is minimized numerically. The op-
timization framework does not depend on a particular simulation
method and is therefore suitable for different physical models.
We show a positive correlation between clinical prostate cancer
stage (a clinical measure of severity) and the recovered elasticity
of the organ. Since the surface correspondence is established,
our method also provides a non-rigid image registration, where
the quality of the deformation fields is guaranteed, as they are
computed using a physics-based simulation.

Index Terms—Elasticity reconstruction, Physically-based sim-
ulation, Non-rigid image registration.

I. I NTRODUCTION

M ATERIAL property estimation has been an important
topic in noninvasive cancer diagnosis, since cancerous

tissues tend to be stiffer than normal tissues. Traditional
physical examination methods, such as palpation, are limited
to detecting lesions close to the skin, and reproducible mea-
surements are hard to achieve. With the advance of medical
imaging technologies, it becomes possible to quantitatively
study the material properties using noninvasive procedures.

Computer vision methods in combination with force or
pressure sensing devices have been proposed to find material
properties of tissues [1], [2]. These methods require a con-
trolled environment in order to capture the video and force
(pressure), and therefore the experiments are usually done
ex vivo. Kauer et al. [1] combined the video and pressure
capturing components into a single device to simplify the
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measurement process, so that it can be performedin vivo
during a surgical intervention. However, the device still needs
to be in direct contact with the tissue, and only a small portion
of the tissue can be measured due to the size of the device.

Elasticity reconstruction, or elastography, is a noninvasive
method for acquiring strain or stiffness images using known
external forces and a known displacement field [3], [4]. The
reconstruction is usually formulated as an inverse problemof
a physically-based simulation of elastic bodies, and a popular
choice of the simulator is based on a linear elasticity model
solved with the finite element method (FEM) [5], where
the domain of the image is subdivided into tetrahedrons or
hexahedrons calledelements, with vertices known asnodes.
Boundary conditions (displacement vectors or forces) on some
of the nodes must be given to drive the simulation. Under this
framework, nodal displacement vectors need to be computed
based on a pair of images, and the force exertion mechanism
needs to be controlled so that external forces can be measured.
Otherwise, without measured forces, only relative elasticity
values can be recovered. Ultrasound elastography [6], for
example, compares two ultrasound images, one taken at the
rest pose, and the other taken when a known force is applied.
The displacement vector for each pixel can be estimated using
cross-correlation analysis [3], [7] or dynamic programming
[8] to maximize the similarity of echo amplitude and dis-
placement continuity. Alternatively, in dynamic elastography
(for example, magnetic resonance elastography (MRE) and
vibro-elastography), an MRI or ultrasound machine in tune
with an applied mechanical vibration (shear wave) or focused
ultrasound beams is used to find the displacement field [4],
[9], [10]. With known external forces and displacement field,
the elasticity can be computed by solving a least-squares
problem [11], [12], [13], if the algebraic equations resulting
from the physical model is linear. A real-time performance has
been reported using thisdirect method with a simplified 2D
domain that assumes homogeneous material within a region
[13]. Another type of method uses iterative optimization to
minimize the error in the displacement field generated by
the simulator [14], [15], [16]. Although slower than directly
solving the inverse problem, this type of method does not
assume linearity of the underlying physical model. A different
kind of elastography [17], [18], [19] maximizes image simi-
larity without requiring the displacement field or boundary
conditions to be known, but the method relies on salient
features within the object (such as the breast), which may
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not be present in CT images of organs such as the prostate.
A phantom study applied the method to the prostate [18],
but the model and boundary conditions are greatly simplified,
and their method has not been applied to real patient data.
A Bayesian framework has also been proposed to solve the
elastography problem without requiring known boundary con-
ditions [20]. That method, however, depends on assumptions
about probability distribution functions and extensive sampling
in a very high dimensional parameter space (elasticity and
boundary conditions), which significantly limits the number
of boundary nodes. While these methods are instrumental in
their respective fields of interest, they are less well suited for
a more general, multi-organ case where the image intensity
may be almost constant within an organ, such as the prostate,
and the lack of image details within the object makes it im-
possible to rely on pixel-wise correspondence. Moreover, the
force exertion or vibration actuation mechanism can become
complicated when the target tissues are deep inside the body.
For example, for an elastography of the prostate, an actuator
or a pressure sensor is sometimes inserted into the urethra or
the rectum [21], [9], [22].

Elasticity parameters are also essential in cardiac function
estimation, where sequential data assimilation [23], [24]has
been applied to estimate simulation parameters and displace-
ments simultaneously for dynamic mechanical systems. The
parameters and observations of displacements (states) at each
time step are modeled with a probability distribution, and a
filtering procedure is applied over some time to estimate the
states. Due to the computational complexity of the method,
the number of estimated parameters has been very limited
in work on cardiac function estimation [23]. On the other
hand, our parameter space includes external forces as well
as the Young’s modulus, and the displacement field cannot be
acquired directly from some common imaging modality like
CT.

We propose an entirely passive analysis of a pair of images
that only uses information about the boundaries of correspond-
ing internal objects. We assume the images have already been
segmented, that is, the organ boundaries have been found.
Since we do not assume a good correspondence for pixels
inside an object, the resolution of the resulting elastogram
is limited to the object boundaries. Namely, we assume that
the elasticity is fixed within each object whose boundary can
be identified. Natural movements inside the body provide the
deformation of the organs, and we do not need an additional
force exertion or vibration actuating mechanism. We minimize
the distance between the deformed reference surface and the
target surface and optimize for the elasticities and boundary
forces. Currently, as a simplification, we consider only Young’s
modulus (which measures the stiffness or elasticity of the
material). It is the simplest parameter to work with, and it
is also important in noninvasive cancer detection techniques.
The general optimization framework extends naturally to the
inclusion of other parameters such as Poisson’s ratio (which
measures compressibility of the material), and in fact is
suitable for a variety of physical models. In our experiments,
the images are obtained from a prostate radiotherapy, where
there is one reference (planning) CT image and multiple target

(daily) images for each patient, and the Young’s moduli of
the prostate recovered from the pairs of images are averaged.
Our initial investigation involving 10 patient data sets shows
that the recovered elasticity values positively correlatewith
the clinical tumor stages, which demonstrates its potential as
a means of cancer stage assessment complementary to exist-
ing elastography methods. Furthermore, compared broadly to
other work on simulation parameter estimation, our method
does not require the inclusion of forces as part of the input
and can therefore avoid the process of measuring the external
forces (at the cost of only providing relative force information
in our results).

Our method also produces an image registration [25], [26]
(pixel-wise correspondence between images) since the distance
between the pair of surfaces (segmentations) is minimized.The
FEM has been applied to image registration, given that the
images are segmented [27], [28], [29], [30], [31], [32], [33].
Material properties, however, are not trivial to find from the
images, and most authors useex vivoexperimental results to
set up the materials. Moreover, due to the patient-to-patient
differences, these material properties sometimes need hand
adjustments. Alterovitz et al. [34] incorporated an optimization
of Young’s modulus and Poisson’s ratio into an FEM-based
registration, but the method has only been implemented for
coarse 2D meshes. As a non-rigid image registration method,
ours improves over previous simulation-based methods by
providing an automatic means of finding the parameters that
are missing in the images. Our current implementation uses
both standard linear and nonlinear material models, but the
optimization framework should be applicable to tissues with
more advanced and complex physical models.

We explain the elastic model and the optimization scheme
in Section II, followed in Section III by experimental results
using two synthetic scenes and 10 sets of real CT images to
demonstrate the feasibility of our method. We conclude with
a summary and discussion of future work.

II. M ETHOD

The idea of the algorithm is to optimize a function based
on the separation between corresponding organ boundaries.
In each iteration, the objective function is computed by first
simulating and deforming the surface using the current set of
parameters, and then computing surface distances. We consider
only the elasticity value (Young’s modulus), with Poisson’s
ratios being chosen according to previous work on simulation-
based medical image registration [31].

The inputs to the correspondence problem are two seg-
mented images: a fixed image with segmentationSf and
a moving image with segmentationSm. The bones are al-
ready aligned using a rigid registration method described in
[35]. Each segmentation is represented as a set of closed
triangulated surfaces, one for each segmented object. We
construct a tetrahedralization of the moving volume such
that each face ofSm is a face in the tetrahedralization,
so that Sm is characterized entirely by its set of nodes.
Our optimization framework is built on a physically-based
simulator that generates deformation fields withn unknown
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Figure 1: Flow chart of the optimization loop; the deformation field generated by the simulator is used in the objective function
to update the parameters, which are fed back into the simulator, and so on.

parametersx = [x1, · · · , xn]
T , and a numerical optimizer

to minimize an objective functionΦ(x) : Rn → R defined
by the deformation and surface matching metrics. During
the optimization process, the physical model is refined in
terms of more accurate parameters and converges to a model
describing the deformation needed for the particular surface
matching problem. Here we use the linear FEM to illustrate
the optimization scheme, although the framework can also
be incorporated with a nonlinear FEM. A flow chart of our
algorithm is shown in Fig. 1 and will be explained in detail
in this section.

A. Linear Elasticity Model and Finite Element Modeling

In the optimization loop, the displacement fieldu =
[u, v, w]

T is always generated by a physically-based sim-
ulation, where the FEM is used to solve the constitutive
equations of the linear elasticity model. Assuming isotropic
linear elasticity, we can writeσ = Dε, whereσ is the stress
vector induced by thesurface forces, ε is the strain vector
defined by the spatial derivatives of the displacementu, and
D is a matrix defined by the material properties (assuming
an isotropic material, the properties are Young’s modulusE
and Poisson’s ratioν). To solve the equations numerically, we
approximate the derivatives of the deformation with the FEM,
where the domain is subdivided into a finite set of elements,
and each element consists of several nodes. Fig. 4a shows the
finite element model used in one of our experiments, where
four-node tetrahedral elements are used. The deformation field
uel for any pointp within an element is approximated with a
piecewise linear function̂uel(p) =

∑4
j=1 u

el
j N

el
j (p), where

uel
j is the deformation of thej-th node of the element, and

Nel
j (p) is the linear shape function that has value one at node

j and is zero at all other nodes and outside of the element.
After combining the approximated piecewise linear equation
for each element, the resulting linear system is

Ku = F, (1)

where K is called the stiffness matrix, which depends on
the material properties (Young’s modulus and Poisson’s ratio)
and the geometry of the elements;F is a vector of external
forces. For a 3D domain withNn nodes,K is a 3Nn × 3Nn

matrix. Notice that since bothK and F are unknown, they

can be scaled by the same factor without changing the output
deformation field. Therefore, unless we know the exact values
of the forces, only the relative values of the material properties
can be recovered.

To make the nodes deform, some boundary conditions need
to be enforced, either by assigning displacement values or by
assigning forces to some nodes. If all the surface nodes, includ-
ing boundaries between two materials, are assigned displace-
ment values, then the simulation is essentially an interpolation
of the displacement field from surface matching results. This
means that the elasticity values only affect internal nodes,
for which we do not know the target positions. Therefore
the elasticity cannot be recovered. Instead, we only assign
boundary conditions to a part of the surface nodes, and other
surface nodes without boundary conditions will be affected
by the relative elasticities. For example, in a simulation of
the male pelvis area, the bladder and the rectum are usually
the organs that drive the deformation of the prostate, while
the pelvic bone is considered static. An intuitive choice isto
apply boundary conditions on boundary nodes of the bladder,
the rectum, and the pelvic bone, and set all other entries in
the force vector to zero (no external forces), as proposed in
[31].

B. Sensitivity Study

Since our method is based on the assumption that the de-
formed surface depends on both the elasticity and the external
forces, we first conduct an experiment of forward simulations
using different parameter values to see how sensitive the
surface is to these parameters. The synthetic scene consists
of two concentric spheres that form two regions, one inside
the inner sphere, and the other between the two spheres, as
shown in Fig. 2.

We fix the elasticity of the outer region and alter the elas-
ticity of the inner sphere, as only the ratio of the two elasticity
values matters. A force with a specified magnitude pointing
towards the center of the spheres is applied on each node of
the outer surface, and no external forces are applied on the
inner surface. Several simulations using different elasticities
of the inner region and force magnitudes were performed, and
the plots of the sphere radius versus the elasticity value and
versus force magnitude are shown in Fig. 3.
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(a) (b) (c)

(d) (e) (f)

Figure 3: The plots of the radius of the inner sphere (in cm) after deformation: (a) inner radius versus elasticity value (in kPa) of
the inner region; (b) inner radius versus magnitude of forces (in N) acting on the outer surface; (c) inner radius (z-coordinate)
versus elasticity and force magnitude with isocontours of inner radius onxy-plane; (d) outer radius versus elasticity; (e) outer
radius versus magnitude of forces; (f) outer radius (z-coordinate) versus elasticity and force magnitude with isocontours of
outer radius onxy-plane. The radii before deformation are 3 cm and 3.75 cm for two spheres, respectively, and the elasticity
for the outer region is 10 kPa. The Poisson’s ratios are fixed to 0.40 and 0.35 for the two regions, respectively.

Figure 2: A sliced view of the synthetic scene, which consists
of two concentric spheres; the inner (red) and outer (green)
regions have different stiffness values (blue triangles represent
outer surface, which is considered part of the green region).

Notice that in these plots, the slope is much higher when
the elasticity is low for each curve, which indicates that the
shapes of both spheres are much more sensitive to the elasticity
when the elasticity value is lower. These results suggest that
our ability to recover the parameters is limited by how stiffthe

object is. When an object has a very high stiffness, its shape
becomes insensitive to the parameters. In this case, the shape
can still be recovered, but the resulting parameters may not
be accurate. Notice that the problem of solving for elasticity
and for boundary forces is ill-posed with a single object. For
example, drawing horizontal lines at some inner radius value
in the plots in Fig. 3 would give multiple combinations of
elasticity and external forces. However, when both the inner
and outer surfaces are taken into account, the problem becomes
well-posed: in the two-dimensional space formed by elasticity
value and force magnitude, there is one curve that implies
some radius of the inner sphere (an isocontour on thexy-plane
in Fig. 3c) and another curve that results in some radius of the
outer sphere (an isocontour on thexy-plane in Fig. 3f). The
solution is at one of the intersections of the two curves, and
we can eliminate unwanted solutions by limiting the range
of elasticity and force magnitude according to experimental
results on the specific materials.

C. Distance-Based Objective Function

The parameters needed in the simulator arex = [E;F],
whereE consists of the material properties (in our case, the
Young’s moduli), andF is the vector of external forces on
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boundary nodes. The objective function to be minimized is
defined as the difference between the segmentations in the
moving and target images,

Φ(x) =
1

2

∑

vl∈Sm

‖d (vl + ul(x),Sf )‖
2
. (2)

Hereu(x) is the deformation field computed by the simulator
with parametersx, interpreted as a displacement vector for
each surface nodevl in the tetrahedralization. The notation
d(v,S) denotes the shortest distance vector from the surface
S to the nodev, and the sum is taken over all nodes of the
moving surface.

The gradient of the objective function, which is needed in
the iterative optimization, is given by the chain rule,

∇Φ(x) =
∑

vl∈Sm

[

∂ul

∂x

] [

∂d (vl + ul,Sf )

∂ul

]

d (vl + ul,Sf )

=
∑

vl∈Sm

JT
u JT

d d (vl + ul,Sf ) , (3)

whereJu =
[

∂ui

∂xj

]

is the Jacobian matrix ofu(x) with respect

to the parameters, andJd =
[

∂di

∂uj

]

is the Jacobian matrix ofd
with respect to the deformation vector. Here we use the bracket
[·] to represent a matrix and the curly braces{·} to denote a

vector. Each column ofJd, namely
{

∂d(vl+ul,Sf )
∂uj

}

, is the

derivative ofd (vl + ul,Sf ) with respect to thej-th spatial
coordinate (j = 1, 2, 3). The derivatives ofu with respect to
the material properties are computed by differentiating both
sides of (1),

[

∂K

∂Ej

]

u+K

{

∂u

∂Ej

}

= 0, (4)

Therefore we have
{

∂u
∂Ej

}

= −K−1
[

∂K
∂Ej

]

u. The Jacobian
matrix can then be computed by solving for each column of
Ju. The derivatives with respect to the boundary forces are
computed in the same manner; by taking derivatives of both
sides of (1), we have

[

∂K
∂Fj

]

u + K
{

∂u
∂Fj

}

= ej , whereej
is thej-th coordinate vector. On the right hand side, only the
j-th entry is nonzero sincedFi

dFj
= 0 when i 6= j. And since

K is independent ofFj , ∂K
∂Fj

= 0. Therefore we can solve for

each column of the Jacobian with the equationK
{

∂u
∂Fj

}

=

ej . In practice,d (vl + ul(x),Sf ) can be looked up in the
precomputed vector distance map of the fixed organ,Sf , and
the derivatives∂d/∂uj can be approximated with a centered
finite difference operator applied on the map. Fig. 4b shows
one of the distance maps used in our experiments. Notice that
the physical model can be different, as long as the derivatives
∂ui/∂xj can be computed.

In our experiments, however, we observed that the mag-
nitudes of gradients with respect to the material properties,
‖∂Φ/∂E‖, are about 1000 times smaller than that with respect
to the forces,‖∂Φ/∂F‖, which caused the material properties
to converge very slowly. To obtain a faster convergence ofE,
we embed the optimization of the forces into the objective
function evaluation at eachE value. That is, every timeΦ(E)

(a) (b)

Figure 4: Input to our algorithm: (a) a sliced view of the
tetrahedral model of the moving image (light-blue triangles
represent surfaces, not FEM regions; bladder and rectum are
hollow); (b) a slice of the distance map of the prostate surface
in the reference image.

is evaluated, a full optimization ofF is performed with the
fixed value ofE.

D. Numerical Optimization

We use a line search scheme for optimization: in each
iteration k, we find a descent directionpk, find an optimal
step sizeα in that direction with a line search algorithm,
and then update the parameters withxk+1 = xk + αpk. The
descent direction can be computed by using Newton’s method
to solve the equation∇Φ = 0: pk = −B−1

k ∇Φ(xk), where

B is the Hessian matrix,
[

∂2Φ
∂xi∂xj

]

. A modified Newton’s
method has been used in elasticity reconstruction [15], butthe
Hessian matrices can only be approximated and are usually ill-
conditioned. Alternatively, we can use a Quasi-Newton method
such as the BFGS formula to avoid computing the Hessian
[36].

Quasi-Newton methods can reduce the computation yet still
retain a super-linear convergence rate. A line search enforcing
the curvature condition (sTk yk > 0) needs to be performed to
keep the approximate Hessian positive definite. In our case,the
number of parameters can be in the thousands, and therefore
we adopt a limited-memory quasi-Newton method known as
the L-BFGS method [36].

E. Initial Guess of Parameters

A good initial guess can prevent the optimizer from getting
stuck in a local minimum. Our initial guess for the forces is
based on the distance field of the target surface: each node
requiring a boundary condition is moved according to the
distance field to compute a Dirichlet boundary condition. A
forward simulation is performed using the set of boundary
conditions and the initial guess of elasticities, and the output
deformation is used, via (1), to compute the corresponding
forces, which become the initial guess for the forces.

In the case of medical image registration, the initial guess
of the elasticity is chosen based on knowledge of the simu-
lated organs. Our example images involve two materials: the
prostate and the surrounding tissue. There have beenex vivo
experiments on the prostate using different elasticity models.
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Figure 5: Plot ofΦ andE (in kPa) with several sample values
for finding an initial guess of elasticity value in a synthetic
multi-organ scene. The plot suggests that the best initial guess
is 50 kPa.

Krouskop et al. [37] reported an elastic modulus of 40-80 kPa
for normal prostate tissue, 28-52 kPa for BPH tissue, and 80-
260 kPa for cancerous tissue when receiving 4% compression.
They also reported 10-30 kPa for breast fat tissue. Based on
these numbers for fat tissue, we chose an elasticity value of
10 kPa for the tissue surrounding the prostate. This value is
fixed, in our calculations, since only the ratio of the elasticity
values matters.

The initial guess of elasticity for the prostate is chosen bya
parameter search: we perform force optimizations with several
elasticity values between 30 kPa and 200 kPa and choose the
elasticity with the lowest objective function value after the
force optimization. An example result of the parameter search
is shown in Fig. 5, where the target surfaces are generated
by artificially deforming a set of organ boundaries, so that
we know the true elasticity value. The plot shows that the
parameter search successfully located the global minimum in
the synthetic case with multiple organs. In our experiments
using synthetic and real organ boundaries of the male pelvis
area, we have observed similar curves with a single minimum.
If more than one local minimum is observed, an optimization
can be performed using each of these values as the initial
guess. To reduce the computation time, we use a lower-
resolution mesh for the parameter search, and the resulting
optimal forces are used as the initial guess when using a
higher-resolution mesh for elasticity optimization.

III. E XPERIMENTS

We used the male pelvis area as the test scene. To build
the reference surfaces, we obtained segmentations of a 3D
CT image of the male pelvis area, including the surfaces of
the bladder, prostate, rectum, and bones. A tetrahedral finite
element mesh is constructed from a set of reference surfaces,
as shown in Fig. 4a. The corresponding target surfaces are
used to compute the distance map, as shown in Fig. 4b. In the
tetrahedral mesh, the bladder and the rectum are made hollow
to reflect the actual structure, and the bones are fixed during

the simulations. Since the prostate is the main organ of interest,
we apply forces only on the boundaries of the bladder and the
rectum to reduce the uncertainty on the prostate, which will
be moved by surrounding tissues. The setting also reflects the
fact that the bladder and the rectum are the organs that have
larger deformations due to different amount of fluid and gas,
and the prostate is usually deformed by their movement.

During the iterative optimization, the objective function
is evaluated over the surfaces of the bladder, rectum, and
prostate. The Poisson’s ratios are fixed (0.40 for the prostate
and 0.35 for surrounding tissues, chosen based on literature
in image registration [29], [38], [31]), and we optimize for
the elasticity values because of its importance in noninvasive
cancer detection. Since only the relative values of material
properties can be recovered, we fix the Young’s modulus of the
surrounding tissues (the region outside all organs and bones)
to 10 kPa and optimize that of the prostate.

We tested our algorithm on two types of surface data.
First, we tested the accuracy of the optimization scheme using
synthetic target surfaces generated by forward simulations,
so that we know the true elasticity values. We then applied
the technique to prostate cancer stage assessment based on
multiple segmented target images of the same patient to show
applicability to real data. Since the distances between reference
and target surfaces are minimized, we also compare the visual
result (the warped image) with that of an image-based image
registration method.

The reference and target organ surfaces are obtained from
real 3D CT images of the male pelvis area using the software
MxAnatomy (Morphormics, Durham, NC), and the bones are
segmented using ITK-SNAP [39]. Given the moving surfaces
in the form of triangle meshes, the tetrahedral model for the
entire domain is built with the software TetGen [40], and the
library ITK [41] is used to compute the vector distance maps of
the target surface. The FEM simulator uses the linear algebra
library PETSc [42].

Mesh generation:The image segmentation was done with
an early semi-automatic version of software MxAnatomy. For
the prostate, the user typically needed to specify 15-20 initial
boundary points on five image slices, and it usually took 20
minutes to segment the three main organs (prostate, bladder,
and rectum) in a CT image. The semi-automatic segmentation
of bones (ITK-SNAP) requires some initial pixels (specified
with a few spheres) that are roughly in line with the bones,
and the algorithm iteratively grows or shrinks from these initial
pixels until an optimal binary image of the bone is achieved.It
usually takes 15 minutes for the segmentation of bones. Once
the surface meshes are generated, the tetrahedralization takes
a few seconds using the software TetGen.

A. Synthetic Scene with Multiple Organs

To test how well our algorithm recovers elasticity values, we
use synthetic target surfaces generated with known elasticity
and boundary conditions. The target surfaces are generated
by a forward simulation with Dirichlet boundary conditions
acquired from a real pair of segmented images applied to
the bladder and rectum surfaces. The moving surfaces and
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Figure 6: The moving surfaces and ground-truth boundary
conditions in the two synthetic multi-organ scenes: the arrows
shows Dirichlet boundary conditions applied to surfaces of
bladder and rectum; the scaling of arrows are according to the
magnitude of displacements.

boundary conditions in the two synthetic scenes are shown in
Fig. 6, where the boundary conditions are shown with scaled
3D arrows. The elasticity value of the prostate is controlled,
and we can therefore compare the value recovered by our
method to the ground truth. We tested our algorithm with three
elasticity values, and the results are shown in Table I. The op-
timization process is terminated when‖∂Φ/∂E‖ < 10−7 ‖E‖
and‖∂Φ/∂F‖ < 10−4 ‖F‖, or when the optimizer cannot find
a direction in the parameter space that reduces the value of
the objective function. The relative error is less than 12% in
the cases where the elasticity values do not exceed 150 kPa,
which corresponds to an elasticity ratio of 15 between the
prostate and the surrounding tissue. Notice that accordingto
the literature [37], the ratio is already beyond the range for
normal tissues and is within the range for cancerous tissues.
Therefore we expect to see worse accuracy in the case of stiffer
cancerous tissues.

Effect of inaccurate Poisson’s ratios:In order to show
the effect of selecting different Poisson’s ratios, we repeat the
experiments using synthetic target surfaces generated with five
different Poisson’s ratios for the prostate (0.3, 0.35, 0.4, 0.45,
and 0.49), while the assumed value is fixed to 0.4 during the
optimization process. (Most previous work on image registra-
tion or elastography assumes values between 0.3 and 0.49).
As shown in Fig. 7, the relative errors in recovered elasticity
increase with larger deviation of the Poisson’s ratio, and the
effect is especially prominent in the cases with lower elasticity
values (soft) and low Poisson’s Ratios (compressible). We
observe errors of 45–60% with an elasticity of 50 kPa and a
Poisson’s ratio of 0.3. The errors are generally below 13.3%in
cases with Poisson’s ratios of 0.40–0.45 and can be as high as
20% for a ratio of 0.49 (nearly incompressible). These results
show that our method is robust to inaccurate Poisson’s ratios
in most cases.

B. Noninvasive Assessment of Prostate Cancer Stage

To show the effectiveness of our method applied to prostate
cancer assessment, we repeated the experiments on the multi-
organ settings, but with both the deformed and target surfaces
taken from segmented 3D CT images of the male pelvis area.
We consider 10 patient data sets (a total of 112 target images)
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Figure 8: Histogram of distances between the pairs of cor-
responding reference and target prostate meshes used in our
experiments on segmented CT images.

taken throughout courses of radiotherapy for prostate cancer.
Each patient data set consists of a set of reference surfaces
(bladder, prostate, rectum, and bones), which is from the CT
image (reference image) taken before the radiotherapy, and
multiple sets of target surfaces, each of them representingthe
internal structures in one daily CT image during the therapy.
The reference image is taken about a week before the first
treatment, and treatment (target) images are typically taken
twice a week. For each patient data set, we repeated the
process of deforming the reference surfaces toward a set of
target surfaces with our method, so that one elasticity value
of the prostate is recovered for each daily image. Fig. 8 shows
the histogram of surface-surface distance between pairs of
reference and target prostate surfaces used in the experiments.
The surface-surface distance is defined as the maximum of
node-surface distance,

max
vl∈Sm

d(vl,Sf ), (5)

whereSm is the reference (moving) prostate surface, andSf is
the target surface. The average surface distance for the prostate
among the 112 pairs of images is 0.41 cm, which is less than
10% of the diameter of a typical prostate (around 4–5 cm).

The convergence graphs (plots ofΦ and ‖∇Φ‖ versus
iteration number) and for boundary forces and for the material
property from a typical image pair are shown in Fig. 9 (conver-
gence graphs for other experiments are similar). Note that the
optimization of forces was done in batches (in each evaluation
of Φ(E)), and the convergence graph for force optimization
is the result of concatenating the steps for optimizingF. With
our current code, each iteration for the force optimizer takes
about 19 seconds for a mesh with 34,705 tetrahedral elements
and 6,119 nodes on a Xeon X3440 CPU, and the total number
of iterations is around 1,700 (the total time is about nine
hours), which means that our current implementation is only
suitable for off-line processes. Note that we have not utilized
any parallelism in the FEM computation. In the future, we
plan to explore faster implementations of the FEM, such as
those utilizing a many-core processor and reduced-dimension
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Table I: Error in recovered modulus of elasticity in two synthetic multi-organ scenes; note that the error becomes much larger
for elasticity values greater than 150 kPa.

True Elasticity (kPa) 50 100 150 200 250 300 350

Scene Recovered Value 49 101.18 158.79 141.57 136.65 204.45 176
1 Relative Error -2% +1.2% +5.9% -29.2% -45.3% -31.9% -49.7%

Scene Recovered Value 51.33 102.90 167.5 225.0 222.91 275.0 277.97
2 Relative Error +2.7% +2.9% +11.7% +12.5% -10.8% -8.3% -20.6%
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Figure 7: Plots of relative errors in recovered elasticity vs. different Poisson’s ratios for the prostate (0.3, 0.35, 0.4, 0.45, and
0.49) used for generating the synthetic surface data; each plot shows the result from one test scene, and each curve represents a
true elasticity value (50, 100, and 150 kPa) used in the synthetic case. During the optimization process, the assumed Poisson’s
ratio is always fixed to 0.4.

Figure 9: Convergence graphs (plot ofΦ and‖∇Φ‖ versus iteration number) for a pair of CT image data: (left) convergence
of the external forces; (right) convergence of the elasticity.

models.

Each of the 10 patient data sets tested include 6 to 17 sets
of target surfaces (daily images), namely 112 target images
in total, and the recovered elasticity values of the prostate for
each patient are shown in Table II. Notice that the recovered
values from all image pairs are within the range suggested
in the literature [37], and the result shows consistency within
each patient.

The aim of this study is to assess the relation between
the recovered elasticity value and the cancer stage of each
patient, under the assumption that prostates with more ad-
vanced tumors have higher stiffness. A common cancer staging
system is the TNM (Tumor, lymph Nodes, Metastasis) system,
where the clinical T-stage describes the size and extent of the
primary tumor [43]. The definitions of T-stages are shown in
Table III. We focus on the T-stage because of its relevance

Table II: Average and standard deviation of elasticity values
for the prostate recovered from the patient data sets; the last
column is the clinical cancer staging for the tumor for each
patient.

Number of Average Young’s Std. Clinical
Targets Modulus (kPa) Deviation T-Stage

Patient 1 8 48.60 2.41 T1
Patient 2 6 53.99 10.28 T3
Patient 3 7 71.97 4.35 T3
Patient 4 6 60.81 1.25 T2
Patient 5 16 38.06 13.91 T1
Patient 6 16 45.42 10.26 T1
Patient 7 17 40.67 16.34 T2
Patient 8 15 52.40 7.72 T2
Patient 9 9 51.47 7.50 T1
Patient 10 12 56.19 7.95 T2



9

Table III: Definition of clinical T-stages for prostate cancer

Stage Definition

TX Primary tumor cannot be assessed
T0 No evidence of primary tumor
T1 Clinically inapparent tumor neither palpable nor visibleby imaging
T2 Tumor confined within prostate
T3 Tumor extends through the prostate capsule
T4 Tumor is fixed or invades structures other than seminal vesicles
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Figure 10: Box plot of average recovered elasticity value and
cancer T stage for each patient data set shown in Table II.

to the stiffness of the prostate. The clinical T-stages for the
patients are shown in the last column of Table II. In order to
analyze the data statistically, we treat the average recovered
elasticities and tumor stages as two random variables and use
numbers 1, 2, and 3 to represent T-stages T1, T2, and T3,
respectively (T0 and T4 are not present in our data sets),
and we test if the recovered elasticity values and the T-
stages are positively correlated. The resulting Pearson (linear)
correlation coefficient is 0.662, and the p-value for the two-
sided correlation test is 0.037, which indicates a significant
positive correlation between the recovered elasticity values and
the T-stages, based on a p-value threshold of 0.05. Since the
tumor stage values are discrete and might be nonlinear with
respect to the elasticity, a rank correlation coefficient, such as
the Spearman’s rank correlationρ, may be more suited for the
test. From the samples we have Spearman’sρ = 0.701 and an
estimated p-value of 0.024, which shows again a significant
positive correlation. The box plot of the elasticity valuesand
cancer stages is shown in Fig. 10.

C. Study: Inhomogeneous Materials

We assume a constant material property within an organ due
to the limitation of the image modality, where the intensityis
almost constant within the prostate, so that it is impossible
to segment the tumor. The elasticity values recovered by our
method are therefore “average” values in some sense, and a

Figure 11: A sliced view of the tetrahedral mesh with a tumor
(yellow) embedded in the prostate (red); the mesh is used to
generate the synthetic target surface, while the prostate is still
considered homogeneous in the optimization process.

Table IV: The recovered elasticity values for the prostate as
a homogeneous material, when the organ contains a synthetic
tumor of different sizes and a normal tissue; elasticity values
are set to 100 kPa for the tumor and 50 kPa for normal prostate
tissue.

tumor size / prostate size (%)
10% 25% 50% 75%

Scene 1 51.24 54.98 62.15 63.44
Scene 2 53.55 56.90 69.62 70

higher recovered elasticity indicates either a stiffer tumor or
a larger tumor. Since the clinical T-stage for prostate cancer
depends on the extent of the tumor, we conducted a study to
show the correlation between the tumor size and the recov-
ered elasticity value. Based on the settings in the synthetic
multi-organ experiments in Section III-A, we embedded an
additional tumor inside the prostate for generating synthetic
target surfaces, as shown in Fig. 11. The elasticity values for
the tumor and the normal prostate tissues are set to 100 and 50
kPa, respectively. Notice that in the elasticity recovery process,
we do not know the extent of the tumor due to the imaging
limitation, and we only recover one value for the prostate.
Table IV shows the recovered elasticity values with different
tumor sizes relative to the entire prostate. The results show
increasing elasticity values with increasing tumor sizes in both
scenes. Even though we assume homogeneous materials, the
recovered values can still be used as an indicator of the extent
of the tumor and are therefore correlated to cancer stages.

D. Application: Registration of Segmented CT Images

Since the distance between the fixed and moving surfaces
is minimized during the optimization process, we also have
an image registration as a result of optimizing for forces and
elasticities. In our experiments, the final average value ofthe
objective function is0.09, corresponding to an RMS error of
0.01 cm, and a maximum of0.22 cm, which are within the
image resolution,0.1×0.1×0.3 cm. The deformed images of
a typical image pair before and after registration are shownin
Fig. 13, with the segmentations of the reference image (red)
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(a)

(b)

Figure 13: Registration results for a pair of test images: (a) axial and sagittal views of the moving image, and a 4x4 checkerboard
comparison with the planning image, before registration; (b) the two views of the registered image, along with a checkerboard
comparison with the planning image; superimposed by segmentations of the reference image, shown in red, and the segmentation
of the prostate in the daily image, shown in blue; notice thatthe image deforms towards the red contours.

Figure 12: Close-up view of the surfaces before (left) and after
(right) deformation; the transparent white surface shown is the
target surface of the prostate. Notice how the prostate surface
move towards the white surface. Bladder and rectum surfaces
are those with external forces applied.

and the prostate in the moving image (blue) superimposed on
the image. Notice how the prostate in the images moves from
the blue contour to the red contour. Fig. 12 shows a 3D close-
up view of the deforming surfaces from another image pair,
where the surfaces of the bladder and the rectum are those with
external forces applied, and the target surface of the prostate
is shown in white.

We also compared our registration results with a popular

image-based approach, the Demons method [44], by looking at
some landmarks inside the prostate. In most cases, the image
intensity is almost constant inside an organ, but five of the
patient data sets (a total of 32 image pairs) we experimented
on have three “seeds” implanted in the prostate for location
tracking during each treatment fraction, resulting in bright
spots that can be observed in the CT image. The distance
between the target and the deformed landmark positions from
the two methods are shown in Table V, and the two-tail t-
tests for paired samples (distances) show that our method
produces statistically significantly better results in three out
of five patient data sets (with a p-value threshold of 0.05).
For regions with nearly uniform intensity, the deformation
computed by the Demons method is entirely governed by
the registration regularization terms, which do not need to
be physically meaningful for the image-based method. Our
method enforces physically-based constraints and resultsin
errors within the diameter of the spot. Notice that for the
Demons method, we replaced the voxel values inside the
prostate with the average intensity within the organ, sincethe
intensity and gradient information from the landmarks could
also be utilized in the image-based registration, giving itan
additional advantage, while our method is based purely on the
physics-based simulation and does not take advantage of the
landmarks.
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Table V: Average error in landmark positions (distance in cm) inside the prostate, computed with the Demons method and our
method; t-tests show that our method performs statistically significantly better in three of the five data sets.

# Target Demons Our Method Paired t-test
Images Avg. (cm) Std. dev. Avg. (cm) Std. dev. p-value

Patient 1 8 0.27 0.17 0.26 0.18 0.07
Patient 2 6 0.21 0.11 0.16 0.11 0.03
Patient 3 7 0.18 0.06 0.10 0.04 1.5e-4
Patient 4 6 0.17 0.07 0.13 0.03 0.02
Patient 5 5 0.21 0.15 0.20 0.08 0.86

Table VI: Error in recovered nonlinear modulus of elasticity
in two synthetic multi-organ scenes.

True Elasticity (kPa) 50 100 150 200

Scene Recovered Value 50.18 105.64 159 174
1 Relative Error +0.35% +5.6% +6% -13%

Scene Recovered Value 45 105 141.5 197
2 Relative Error -10% +5% -5.67% -1.5%

E. Extension: Nonlinear FEM

To demonstrate that our optimization framework can also
be applicable to nonlinear models, we incorporated a geo-
metrically nonlinear FEM and the neo-Hookean model with
the elasticity optimization scheme. The linearized equilibrium
formulation of the nonlinear FEM is

K(un) ·∆u = fext − f int, (6)

wherefext andf int are the external and internal force vectors,
K(un) is the stiffness matrix that depends on the current
displacement vectorun, and∆u is used to update the vector
un in a Newton iteration (un+1 = un + ∆u). The Jacobian
matrix Ju =

[

∂ui

∂Ej

]

(derivative of displacementsu with re-
spect to the elasticity parameterEj) for the elasticity optimizer
is approximated using the finite difference method due to the
complexity of differentiating the internal forces with respect
to the elasticity. Notice that we have not implemented force
optimization for the nonlinear model, and boundary conditions
given by a surface matching is always used in the simulation.

1) Synthetic scene with multiple organs:We used the same
multi-organ scenes in Section III-A and deformed them using
the nonlinear FEM to generate the synthetic target surfaces.
That is, the nonlinear FEM is used in both generating synthetic
cases and in the optimization scheme. The resulting recovered
elasticity values are shown in Table VI. The errors are within
13% for the range we tested (50-200 kPa).

Effect of inaccurate elasticity values for surrounding
tissues:The elasticity value for tissue surrounding the prostate
is fixed to 10 kPa in our experiments. While only the ratio
between two elasticity values can be recovered with a linear
model without knowing true force values (as discussed in
Section II-A), the surrounding tissue elasticity could have a
different effect on nonlinear models. However, with the small
amount of displacement we have observed, we expect the
surrounding tissue elasticity to have a similar effect as inthe
linear model. For example, if the true elasticity values for
the prostate and surrounding tissue are 100 kPa and 20 kPa,
respectively, we expect to recover the value 50 kPa for the
prostate since the surrounding tissue elasticity is fixed to10

Table VII: Error in recovered nonlinear modulus of elasticity
in two synthetic multi-organ scenes where the elasticity of
surrounding tissue is doubled (20 kPa) when generating the
synthetic data. The surrounding tissue elasticity is stillset
to 10 kPa in the optimization process, and we expect to see
recovered values for the prostate to be half of the true values.

Elasticity for Surroundings 20 kPa
Elasticity for Prostate (kPa) 50 100 150 200
Expected Value for Prostate 25 50 75 100

Scene Recovered Value 28.05 50.17 72.98 106.17
1 Relative Error +12.2% +0.34% -2.7% +6.17%

Scene Recovered Value 25 45 76.52 108.16
2 Relative Error 0% -10% +2.02% +8.16%

kPa in the optimization. Table VII shows the results using the
nonlinear FEM where the true elasticity is twice the value used
in the optimization process. The recovered elasticities for the
prostate are very close to what we expect, with relative errors
below 13%.

2) Assessment of prostate cancer stage:We repeated the
experiments in Section III-B using the nonlinear FEM. The
recovered elasticity values for the 10 patient data sets are
shown in Table VIII, and the box plot of average recovered
elasticity and clinical T-stage is shown in Fig. 14. The Pearson
(linear) correlation coefficient for recovered elasticityvalues
and T-stages is 0.704 with a p-value of 0.023, and the
Spearman’s rank correlationρ is 0.636 with a p-value of 0.048,
which again shows a significant positive correlation between
the stiffness value and the cancer stage for this group of
patients. However, the recovered values are less consistent than
those from the linear FEM implementation. We conjecture that
the implementation using nonlinear FEM is more sensitive to
the material properties and boundary conditions, and therefore
the recovered values vary more than those using the linear
FEM.

IV. CONCLUSION AND FUTURE WORK

We have presented a novel physically-based method for
simultaneously estimating the 3D deformation of soft bodies
and determining the unknown material properties and bound-
ary conditions. Previous elastography methods are limitedby
imaging modalities and force measurement schemes, and we
overcome these limitations by utilizing the surface information
extracted from 3D images. Although the resolution of the
resulting elastogram is limited to the object boundaries, we
showed that the recovered value reflects the distribution of
materials within the object, and the recovered elasticity values
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Table VIII: Average and standard deviation of elasticity values
for the prostate recovered from the patient data sets using
nonlinear FEM; the last column is the clinical cancer staging
for the tumor for each patient.

Average Young’s Std. Clinical
Modulus (kPa) Deviation T-Stage

Patient 1 47.29 3.25 T1
Patient 2 69.28 8.09 T3
Patient 3 78.91 4.81 T3
Patient 4 63.62 2.92 T2
Patient 5 47.45 16.62 T1
Patient 6 59.85 18.37 T1
Patient 7 62.73 18.34 T2
Patient 8 60.23 11.93 T2
Patient 9 69.74 11.46 T1
Patient 10 69.25 17.64 T2
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Figure 14: Box plot of average recovered nonlinear elasticity
value and cancer T stage for each patient data set shown in
Table VIII.

have a significant positive correlation with clinical prostate
cancer staging in small-scale experiments. Therefore, our
method has the potential to become a means of noninvasive
cancer detection.

As a non-rigid image registration method, ours automati-
cally determines the patient-specific material propertiesduring
the registration. The resulting deformation field is enforced to
be physically plausible, since it is computed by the 3D FEM
simulator with appropriate contact constraints among organs.
The observed error on the boundary is within the resolution of
the segmented images, and the error on the internal bright spots
as landmarks in the prostate is comparable to the diameter of
the spots.

The optimization framework for joint estimation of both
3D deformation and material parameters is generalizable. It is
not limited to elasticity reconstruction and could be used for
more sophisticated physiological models than the basic linear
and nonlinear elasticity models we chose for simplicity in our

current implementation. As an image registration technique,
our method is reliable in terms of the registration error; asa
parameter estimation method, our system can save an enor-
mous amount of efforts adjusting the simulation parameters
manually by automatically extracting patient-specific tissue
properties. Furthermore, since only the 3D surfaces are used in
our algorithm, applications other than medical image analysis
could also adopt the method.

Our current implementation assumes that the Poisson’s
ratio can be treated as known, which is also the case in
most elastography studies, since the Young’s modulus has
more clinical significance in cancer detection. However, ithas
been reported that the Poisson’s ratio plays a more important
role than the elasticity in modeling deformation of breasts
[38], where the optimal Poisson’s ratio also depends on the
boundary conditions — lower values could improve the results
when volume changes need to be modeled. Therefore, a study
of how different Poisson’s ratios affect elastography results
could be a topic for future investigation.

In the near future, we plan to accelerate performance of
the iterative scheme by many-core computing and model
reduction. The resulting implementation can then be applied
to more complicated physical and geometric models, such
as situations with complex material property distributions,
surface sliding, and large deformations. We would also like
to explore the possibility of clinical trials of our method to
noninvasive cancer staging based on the stiffness value. Virtual
surgery and material engineering are some example application
domains that would benefit from an automatic estimation of
material properties and they can also directly benefit from this
framework, worthy of further exploration.
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