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Abstract—Estimation of tissue stiffness is an important means measurement process, so that it can be perforinedivo
of noninvasive cancer detection. Existing elasticity reconstru@n  during a surgical intervention. However, the device stieds
methods usually depend on a dense displacement field (inferred to be in direct contact with the tissue, and only a small porti

from ultrasound or MR images) and known external forces. Many f the i b d due to the si f the devi
imaging modalities, however, cannot provide details within an of the ussue can be measured due {o the size of the device.

organ and therefore cannot provide such a displacement field.  Elasticity reconstruction, or elastography, is a noniiwes
Furthermore, force exertion and measurement can be difficult fo  method for acquiring strain or stiffness images using known
some internal organs, making boundary forces another missing external forces and a known displacement field [3], [4]. The
parameter. We propose a general method for estimating elasticity o construction is usually formulated as an inverse protém
and boundary forces automatically using an iterative optimization . . . . .
framework, given the desired (target) output surface. Duringthe a physmally-ba;ed S'mu!at'on of elastic _bOd'es' a”?' .a leopu
optimization, the input model is deformed by the simulator, and Choice of the simulator is based on a linear elasticity model
an objective function based on the distance between the defoed solved with the finite element method (FEM) [5], where
surface and the target surface is minimized numerically. The op- the domain of the image is subdivided into tetrahedrons or
timization framework does not depend on a particular simulation  peyanedrons calledlements with vertices known asiodes
method and is Fh_erefore su!table for dn‘fer_er_lt physical models. Boundary conditions (displacement vectors or forces) oneso
We show a positive correlation between clinical prostate cancer ) - . ; .
stage (a clinical measure of severity) and the recovered elasticity Of the nodes must be given to drive the simulation. Under this
of the organ. Since the surface correspondence is establishedframework, nodal displacement vectors need to be computed
our method also provides a non-rigid image registration, where pased on a pair of images, and the force exertion mechanism
the quality of the deformation fields is guaranteed, as they are s to be controlled so that external forces can be mehsure
computed using a physics-based simulation. . . . o
Otherwise, without measured forces, only relative elésgtic
Index Terms—Elasticity reconstruction, Physically-based sim- yalues can be recovered. Ultrasound elastography [6], for
ulation, Non-rigid image registration. example, compares two ultrasound images, one taken at the
rest pose, and the other taken when a known force is applied.
[. INTRODUCTION The displacement vector for each pixel can be estimatedjusin
ATERIAL property estimation has been an importangross-correlation analysis [3], [7] or dynamic programgnin
topic in noninvasive cancer diagnosis, since cancerol@ to maximize the similarity of echo amplitude and dis-
tissues tend to be stiffer than normal tissues. Tradition@lacement continuity. Alternatively, in dynamic elastaginy
physical examination methods, such as palpation, aredinit(for example, magnetic resonance elastography (MRE) and
to detecting lesions close to the skin, and reproducible-me4dpro-elastography), an MRI or ultrasound machine in tune
surements are hard to achieve. With the advance of medigdih an applied mechanical vibration (shear wave) or foduse
imaging technologies, it becomes possible to quantitgtiveultrasound beams is used to find the displacement field [4],
study the material properties using noninvasive procedure [9], [10]. With known external forces and displacement field
Computer vision methods in combination with force ofhe elasticity can be computed by solving a least-squares
pressure sensing devices have been proposed to find matd¥igblem [11], [12], [13], if the algebraic equations resgt
properties of tissues [1], [2]. These methods require a coifom the physical model is linear. A real-time performanes h
trolled environment in order to capture the video and fordeeen reported using thidirect method with a simplified 2D
(pressure), and therefore the experiments are usually déinain that assumes homogeneous material within a region
ex viva Kauer et al. [1] combined the video and pressufd3]. Another type of method uses iterative optimization to

Capturing components into a Sing|e device to S|mp||fy th@inimize the error in the displacement field generated by
the simulator [14], [15], [16]. Although slower than dirct
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not be present in CT images of organs such as the prostdtiily) images for each patient, and the Young's moduli of
A phantom study applied the method to the prostate [18he prostate recovered from the pairs of images are averaged
but the model and boundary conditions are greatly simplifie@ur initial investigation involving 10 patient data setwis
and their method has not been applied to real patient datsat the recovered elasticity values positively correlaith
A Bayesian framework has also been proposed to solve the clinical tumor stages, which demonstrates its poteatia
elastography problem without requiring known boundary-com means of cancer stage assessment complementary to exist-
ditions [20]. That method, however, depends on assumptidng elastography methods. Furthermore, compared broadly t
about probability distribution functions and extensivengling other work on simulation parameter estimation, our method
in a very high dimensional parameter space (elasticity addes not require the inclusion of forces as part of the input
boundary conditions), which significantly limits the numbeand can therefore avoid the process of measuring the ekterna
of boundary nodes. While these methods are instrumentalfances (at the cost of only providing relative force infotina
their respective fields of interest, they are less well suftg in our results).
a more general, multi-organ case where the image intensityOur method also produces an image registration [25], [26]
may be almost constant within an organ, such as the prostgfexel-wise correspondence between images) since thendist
and the lack of image details within the object makes it imbetween the pair of surfaces (segmentations) is minimizie.
possible to rely on pixel-wise correspondence. Moreoves, tFEM has been applied to image registration, given that the
force exertion or vibration actuation mechanism can becorimages are segmented [27], [28], [29], [30], [31], [32], ]33
complicated when the target tissues are deep inside the bddwterial properties, however, are not trivial to find frometh
For example, for an elastography of the prostate, an actuatnages, and most authors use vivoexperimental results to
or a pressure sensor is sometimes inserted into the urethraet up the materials. Moreover, due to the patient-to-patie
the rectum [21], [9], [22]. differences, these material properties sometimes need han
Elasticity parameters are also essential in cardiac fonctiadjustments. Alterovitz et al. [34] incorporated an optation
estimation, where sequential data assimilation [23], [@d4$ of Young's modulus and Poisson’s ratio into an FEM-based
been applied to estimate simulation parameters and displaegistration, but the method has only been implemented for
ments simultaneously for dynamic mechanical systems. Tbearse 2D meshes. As a non-rigid image registration method,
parameters and observations of displacemesitag3 at each ours improves over previous simulation-based methods by
time step are modeled with a probability distribution, and providing an automatic means of finding the parameters that
filtering procedure is applied over some time to estimate tlaee missing in the images. Our current implementation uses
states. Due to the computational complexity of the methoblpth standard linear and nonlinear material models, but the
the number of estimated parameters has been very limitgstimization framework should be applicable to tissueshwit
in work on cardiac function estimation [23]. On the othemore advanced and complex physical models.
hand, our parameter space includes external forces as welVe explain the elastic model and the optimization scheme
as the Young's modulus, and the displacement field cannotiheSection Il, followed in Section Il by experimental retsul
acquired directly from some common imaging modality likeising two synthetic scenes and 10 sets of real CT images to
CT. demonstrate the feasibility of our method. We conclude with
We propose an entirely passive analysis of a pair of imagesummary and discussion of future work.
that only uses information about the boundaries of cormnedpo
ing internal objects. We assume the images have already been
segmented, that is, the organ boundaries have been found.
Since we do not assume a good correspondence for pixel§he idea of the algorithm is to optimize a function based
inside an object, the resolution of the resulting elastwgraon the separation between corresponding organ boundaries.
is limited to the object boundaries. Namely, we assume that each iteration, the objective function is computed byt firs
the elasticity is fixed within each object whose boundary caimulating and deforming the surface using the current Bet o
be identified. Natural movements inside the body provide tigarrameters, and then computing surface distances. Wedeonsi
deformation of the organs, and we do not need an additiomally the elasticity value (Young's modulus), with Poisson’
force exertion or vibration actuating mechanism. We migini ratios being chosen according to previous work on simutatio
the distance between the deformed reference surface andliheed medical image registration [31].
target surface and optimize for the elasticities and bonda The inputs to the correspondence problem are two seg-
forces. Currently, as a simplification, we consider only¥gs mented images: a fixed image with segmentatibn and
modulus (which measures the stiffness or elasticity of ttee moving image with segmentatid®,,,. The bones are al-
material). It is the simplest parameter to work with, and ieady aligned using a rigid registration method descrilved i
is also important in noninvasive cancer detection techesqu [35]. Each segmentation is represented as a set of closed
The general optimization framework extends naturally ® thriangulated surfaces, one for each segmented object. We
inclusion of other parameters such as Poisson’s ratio fwhiconstruct a tetrahedralization of the moving volume such
measures compressibility of the material), and in fact that each face ofS,, is a face in the tetrahedralization,
suitable for a variety of physical models. In our experinsgntso thatS,,, is characterized entirely by its set of nodes.
the images are obtained from a prostate radiotherapy, whérer optimization framework is built on a physically-based
there is one reference (planning) CT image and multiplestargsimulator that generates deformation fields withunknown
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Figure 1: Flow chart of the optimization loop; the deformatfield generated by the simulator is used in the objectinetfan
to update the parameters, which are fed back into the siorulamd so on.

parametersx = [z1, - ,zn}T, and a numerical optimizer can be scaled by the same factor without changing the output
to minimize an objective functio®(x) : R® — R defined deformation field. Therefore, unless we know the exact \wlue
by the deformation and surface matching metrics. Duriraf the forces, only the relative values of the material propse
the optimization process, the physical model is refined gan be recovered.
terms of more accurate parameters and converges to a moddo make the nodes deform, some boundary conditions need
describing the deformation needed for the particular serfato be enforced, either by assigning displacement valueyor b
matching problem. Here we use the linear FEM to illustratessigning forces to some nodes. If all the surface noddsidinc
the optimization scheme, although the framework can algty boundaries between two materials, are assigned desplac
be incorporated with a nonlinear FEM. A flow chart of oument values, then the simulation is essentially an intaitjmi
algorithm is shown in Fig. 1 and will be explained in detaibf the displacement field from surface matching resultss Thi
in this section. means that the elasticity values only affect internal npdes
for which we do not know the target positions. Therefore
A. Linear Elasticity Model and Finite Element Modeling the elasticity c_a.nnot be recovered. Instead, we only assign
L . ) boundary conditions to a part of the surface nodes, and other
In the optimization loop, the displacement field = surface nodes without boundary conditions will be affected

T . . .
[u,v,w]" is always generated by a physically-based Sm?)’y the relative elasticities. For example, in a simulatidn o

ulatlon, where th? FEM s .u.sed o solve the_ COf?St!tutIVﬁ;_le male pelvis area, the bladder and the rectum are usually
e_:quat|ons (.)f. the linear ela_stlcr[y model. Assgmmg |sotropthe organs that drive the deformation of the prostate, while
linear e_Iast|C|ty, we can write' = De, w_hereo— IS the SIress o pelvic bone is considered static. An intuitive choicéois

vec_tor induced by t_hesurfgce_forcess IS the strain vector apply boundary conditions on boundary nodes of the bladder,
defined by the spatial derivatives of the displacemenand .the rectum, and the pelvic bone, and set all other entries in

; . . : ) "He force vector to zero (no external forces), as proposed in
an isotropic material, the properties are Young's mOdLHDSepl]

and Poisson’s ratio). To solve the equations numerically, w
approximate the derivatives of the deformation with the FEM
where the domain is subdivided into a finite set of elemenf8, Sensitivity Study

and each element consists of several nodes. Fig. 4a shows thgince our method is based on the assumption that the de-
finite element model used in one of our experiments, whef&med surface depends on both the elasticity and the eltern
four-node tetrahedral elements are used. The deformasétth fiforces, we first conduct an experiment of forward simulation
u for any pointp within an element is approximated with a,sing different parameter values to see how sensitive the
piecewise linear functiora®(p) = >;_, u§'N5'(p), where syrface is to these parameters. The synthetic scene @nsist
u¢ is the deformation of thg-th node of the element, andof two concentric spheres that form two regions, one inside
N¢'(p) is the linear shape function that has value one at nogiee inner sphere, and the other between the two spheres, as
J and is zero at all other nodes and outside of the elemesiown in Fig. 2.
After combining the approximated piecewise linear equmatio We fix the elasticity of the outer region and alter the elas-
for each element, the resulting linear system is ticity of the inner sphere, as only the ratio of the two ekisti

Ku — values matters. A force with a specified magnitude pointing

u=F, Q) . :
towards the center of the spheres is applied on each node of

where K is called the stiffness matrix, which depends othe outer surface, and no external forces are applied on the
the material properties (Young’s modulus and Poissonis)ratinner surface. Several simulations using different alists
and the geometry of the elemeniB;is a vector of external of the inner region and force magnitudes were performed, and
forces. For a 3D domain witlV,, nodes,K is a3N,, x 3N,, the plots of the sphere radius versus the elasticity valuk an
matrix. Notice that since botliK and F are unknown, they versus force magnitude are shown in Fig. 3.
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Figure 3: The plots of the radius of the inner sphere (in crtérafeformation: (a) inner radius versus elasticity valnekPa) of
the inner region; (b) inner radius versus magnitude of f@i@@ N) acting on the outer surface; (c) inner radizscordinate)
versus elasticity and force magnitude with isocontourshagr radius oncy-plane; (d) outer radius versus elasticity; (e) outer
radius versus magnitude of forces; (f) outer radins@ordinate) versus elasticity and force magnitude witicastours of
outer radius oncy-plane. The radii before deformation are 3 cm and 3.75 cmviior gpheres, respectively, and the elasticity
for the outer region is 10 kPa. The Poisson’s ratios are fire@.40 and 0.35 for the two regions, respectively.

Force Magnitude

object is. When an object has a very high stiffness, its shape
becomes insensitive to the parameters. In this case, thee sha
can still be recovered, but the resulting parameters may not
be accurate. Notice that the problem of solving for elastici
and for boundary forces is ill-posed with a single object: Fo
example, drawing horizontal lines at some inner radiusevalu
in the plots in Fig. 3 would give multiple combinations of
elasticity and external forces. However, when both therinne
and outer surfaces are taken into account, the problem keEscom
well-posed: in the two-dimensional space formed by eldgtic
value and force magnitude, there is one curve that implies
some radius of the inner sphere (an isocontour on:{hplane
Figure 2: A sliced view of the synthetic scene, which cossisin Fig. 3c) and another curve that results in some radiusef th
of two concentric spheres; the inner (red) and outer (greemjter sphere (an isocontour on theg-plane in Fig. 3f). The
regions have different stiffness values (blue trianglgsasent solution is at one of the intersections of the two curves, and
outer surface, which is considered part of the green regionjve can eliminate unwanted solutions by limiting the range
of elasticity and force magnitude according to experimenta
results on the specific materials.

Notice that in these plots, the slope is much higher when . L i
the elasticity is low for each curve, which indicates that thC' Distance-Based Objective Function
shapes of both spheres are much more sensitive to the Bjastic The parameters needed in the simulator are- [E; F],
when the elasticity value is lower. These results suggesdt thvhere E consists of the material properties (in our case, the
our ability to recover the parameters is limited by how gtif  Young’s moduli), andF is the vector of external forces on



boundary nodes. The objective function to be minimized is
defined as the difference between the segmentations in th
moving and target images,

o) =5 Y lMm+w Sl @

VIES,

Hereu(x) is the deformation field computed by the simulator
with parametersk, interpreted as a displacement vector for .
each surface node; in the tetrahedralization. The notation

d(v,S) denotes the shortest distance vector from the surface @ ®)
S to the nodev, and the sum is taken over all nodes of th&igure 4: Input to our algorithm: (a) a sliced view of the
moving surface. tetrahedral model of the moving image (light-blue triaisgle
The gradient of the objective function, which is needed irepresent surfaces, not FEM regions; bladder and rectum are
the iterative optimization, is given by the chain rule, hollow); (b) a slice of the distance map of the prostate serfa
in the reference image.
ouy 3d(Vz+ul,Sf)
ol = — | |———————=|d S
v = X 5 [ (it Sp)
Vi m
_ Z ITITd (v + w,S;) 3)is evaluated, a full optimization oF is performed with the
" T fixed value ofE.
VIESH,
whereJ, = [g;ﬂ is the Jacobian matrix af(x) with respect p - Numerical Optimization

to the parameters, arlj; = {g;ﬂ is the Jacobian matrix ai We use a line search scheme for optimization: in each

with respect to the deformationvector. Here we use the letackeration k, we find a descent directiopy, find an optimal
[] to represent a matrix and the curly brade} to denote a step sizea in that direction with a line search algorithm,

vector. Each column ofl 4, name|y 9d(vitui,Sy) , is the and then Update the parameters V\t'mh-}—l = Xi + apg. The

E)uj H H H 3
derivative ofd (v, +u;,S;) with respect to thej-th spatial descent direction can be computed by u§{ng Newton’s method
to solve the equatioV® = 0: p, = —B; " V®(x;), where

coordinate { = 1,2, 3). The derivatives ofu with respect to

the material properties are computed by differentiatinthboB is the Hessian matfiX.[%}- A modified Newton's
sides of (1), method has been used in elasticity reconstruction [15]ftmit
9K o Hessian matrices can only be approximated and are usually il
{} u+K { } =0, (4) conditioned. Alternatively, we can use a Quasi-Newton meth
OF; OF; such as the BFGS formula to avoid computing the Hessian
Therefore we have 2% & = —K~! | ZK | u. The Jacobian (361

Quasi-Newton methods can reduce the computation yet still

. J “j
matrix can then be computed by solving for each column ?étain a super-linear convergence rate. A line search enfpr

Ju. The derivatives with respect to the boundary forces afg, ., rvature conditionsf'y; > 0) needs to be performed to

cgmputed in the same manner; by taking derivatives of bO&er the approximate Hessian positive definite. In our ¢hse,
sides of (1), we hav %} u+K ngi = ej, wheree;  numper of parameters can be in the thousands, and therefore
is the j-th coordinate vector. On the right hand side, only thge adopt a limited-memory quasi-Newton method known as
j-th entry is nonzero sincg% = 0 wheni # j. And since the L-BFGS method [36].

K is independent of7, g—}f = 0. Therefore we can solve for

each column of the Jacobian with the equatls g—l‘;j = E. Initial Guess of Parameters
e;. In practice,d (v; + w;(x),Sy) can be looked up Iin the A good initial guess can prevent the optimizer from getting
precomputed vector distance map of the fixed orggn,and stuck in a local minimum. Our initial guess for the forces is
the derivativesdd/0u; can be approximated with a centeredased on the distance field of the target surface: each node
finite difference operator applied on the map. Fig. 4b showsquiring a boundary condition is moved according to the
one of the distance maps used in our experiments. Notice thatance field to compute a Dirichlet boundary condition. A
the physical model can be different, as long as the derestiforward simulation is performed using the set of boundary
Ou,;/0x; can be computed. conditions and the initial guess of elasticities, and thgpwou

In our experiments, however, we observed that the mageformation is used, via (1), to compute the corresponding
nitudes of gradients with respect to the material propgrtidorces, which become the initial guess for the forces.
|lo®/OE||, are about 1000 times smaller than that with respectin the case of medical image registration, the initial guess
to the forces||0®/0F ||, which caused the material propertie®f the elasticity is chosen based on knowledge of the simu-
to converge very slowly. To obtain a faster convergencE&of lated organs. Our example images involve two materials: the
we embed the optimization of the forces into the objectiverostate and the surrounding tissue. There have bgerivo
function evaluation at eacE value. That is, every tim@(E) experiments on the prostate using different elasticity efsd



s ‘ ‘ ‘ ‘ ‘ ‘ ‘ the simulations. Since the prostate is the main organ ofdste

we apply forces only on the boundaries of the bladder and the
rectum to reduce the uncertainty on the prostate, which will
be moved by surrounding tissues. The setting also refleets th
fact that the bladder and the rectum are the organs that have
larger deformations due to different amount of fluid and gas,
and the prostate is usually deformed by their movement.

During the iterative optimization, the objective function
is evaluated over the surfaces of the bladder, rectum, and
prostate. The Poisson’s ratios are fixed (0.40 for the pmsta
and 0.35 for surrounding tissues, chosen based on literatur
in image registration [29], [38], [31]), and we optimize for

‘ ‘ ‘ ‘ ‘ the elasticity values because of its importance in noniveas

0008 B evalPronerty 0 180 200 cancer detection. Since only the relative values of madteria
Sproperties can be recovered, we fix the Young’s modulus of the

for finding an initial guess of elasticity value in a Syntbetisurroundmg tissues (the region outside all organs andgjone

multi-organ scene. The plot suggests that the best initiakg to 10 kPa and optimize _that of the prostate.
is 50 kPa. We tested our algorithm on two types of surface data.

First, we tested the accuracy of the optimization schemegusi
synthetic target surfaces generated by forward simulgtion

Krouskop et al. [37] reported an elastic modulus of 40-80 kP2 that we know the true elasticity values. We then applied
for normal prostate tissue, 28-52 kPa for BPH tissue, and éB? Fechnlque to prostate cancer stage assessmgnt based on
260 kPa for cancerous tissue when receiving 4% compressiHH’.'lt!ple ;sggmented target. 'mages qf the same patient to show
They also reported 10-30 kPa for breast fat tissue. Based gpplicability to real data. S_mpe_the distances betvveemeet:e.
these numbers for fat tissue, we chose an elasticity valuea(g’fd target surfaces' are m|n|m|zed, we alsq compare the.IV|sua
10 kPa for the tissue surrounding the prostate. This valuerf"sSUIt (the warped image) with that of an image-based image

fixed, in our calculations, since only the ratio of the elzsti registration method. ,
values matters. The reference and target organ surfaces are obtained from

The initial guess of elasticity for the prostate is choserabyreal 3D CT images of the male pelvis area using the software
parameter search: we perform force optimizations with e MxAnatomy (Morphorm|cs, Durham,. NC), and th? bones are
elasticity values between 30 kPa and 200 kPa and chooseﬁﬁgmemed using ITK-SNAP [39]. Given the moving surfaces
elasticity with the lowest objective function value aftéret " the form 9f .tr|angle meshes, the tetrahedral model for the
force optimization. An example result of the parametercsfeare_mt're domain IS built with the software TetGe_n [40], and the
is shown in Fig. 5, where the target surfaces are genera{@ﬂary ITK [41] is used to compgte the vectordlsta_nce maps o
by artificially deforming a set of organ boundaries, so thjl e target surface. The FEM simulator uses the linear adgebr
we know the true elasticity value. The plot shows that t rary PETSc [42],' i ) )
parameter search successfully located the global minimum i Mesh generationThe image segmentation was done with
the synthetic case with multiple organs. In our experimen@d €arly semi-automatic version of software MxAnatomy. For
using synthetic and real organ boundaries of the male pel{i Prostate, the user typically needed to specify 15-2aini
area, we have observed similar curves with a single minimuffundary points on five image slices, and it usually took 20
If more than one local minimum is observed, an optimizatiofinutes to segment the three main organs (prostate, bladder
can be performed using each of these values as the inifid rectum) in a CT image. The semi-automatic segmentation
guess. To reduce the computation time, we use a |OW8If_- bones (ITK-SNAP) requires some initial pixels (specified

resolution mesh for the parameter search, and the resultiifj? @ few spheres) that are roughly in line with the bones,
optimal forces are used as the initial guess when usingaﬁd the algorithm iteratively grows or shrinks from theggah

higher-resolution mesh for elasticity optimization.
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Figure 5: Plot of® andE (in kPa) with several sample value

pixels until an optimal binary image of the bone is achieved.
usually takes 15 minutes for the segmentation of bones. Once
the surface meshes are generated, the tetrahedralizakies t

a few seconds using the software TetGen.
We used the male pelvis area as the test scene. To build

the reference surfaces, we obtained segmentations of a 3D . . .

CT image of the male pelvis area, including the surfaces 0f Synthetic Scene with Multiple Organs

the bladder, prostate, rectum, and bones. A tetrahedr&t fini To test how well our algorithm recovers elasticity values, w
element mesh is constructed from a set of reference surfaaese synthetic target surfaces generated with known elgstic
as shown in Fig. 4a. The corresponding target surfaces arel boundary conditions. The target surfaces are generated
used to compute the distance map, as shown in Fig. 4b. In the a forward simulation with Dirichlet boundary conditions
tetrahedral mesh, the bladder and the rectum are made hollwguired from a real pair of segmented images applied to
to reflect the actual structure, and the bones are fixed duritng bladder and rectum surfaces. The moving surfaces and

Ill. EXPERIMENTS
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Figure 6: The moving surfaces and ground-truth boundary
conditions in the two synthetic multi-organ scenes: thewasr
shows Dirichlet boundary conditions applied to surfaces of

bladder and rectum; the scaling of arrows are accordingeo th ¢ M edsace e
magnitude of displacements.

Figure 8: Histogram of distances between the pairs of cor-
responding reference and target prostate meshes used in our

boundary conditions in the two synthetic scenes are shownéiperiments on segmented CT images.

Fig. 6, where the boundary conditions are shown with scaled

3D arrows. The elasticity value of the prostate is contdjlle

and we can therefore compare the value recovered by d&aken throughout courses of radiotherapy for prostateeranc
method to the ground truth. We tested our algorithm withghrd=ach patient data set consists of a set of reference surfaces
elasticity values, and the results are shown in Table I. Tie dbladder, prostate, rectum, and bones), which is from the CT
timization process is terminated whéa® /0E|| < 107 ||E|| image (reference image) taken before the radiotherapy, and
and||0®/0F| < 10~*||F||, or when the optimizer cannot find multiple sets of target surfaces, each of them represetttiag

a direction in the parameter space that reduces the valueingernal structures in one daily CT image during the therapy
the objective function. The relative error is less than 1206 iThe reference image is taken about a week before the first
the cases where the elasticity values do not exceed 150 kiPgatment, and treatment (target) images are typicallgrtak
which corresponds to an elasticity ratio of 15 between tiwice a week. For each patient data set, we repeated the
prostate and the surrounding tissue. Notice that accorgingprocess of deforming the reference surfaces toward a set of
the literature [37], the ratio is already beyond the range féarget surfaces with our method, so that one elasticityevalu
normal tissues and is within the range for cancerous tissuékthe prostate is recovered for each daily image. Fig. 8 show

Therefore we expect to see worse accuracy in the case efstithe histogram of surface-surface distance between pairs of
cancerous tissues. reference and target prostate surfaces used in the expésime

Effect of inaccurate Poisson’s ratiodn order to show The surface-surface distance is defined as the maximum of
the effect of selecting different Poisson’s ratios, we e¢ghe node-surface distance,
experiments using synthetic target surfaces generatédfmeét
different Poisson’s ratios for the prostate (0.3, 0.35, 0.45, vr,%%}fn d(vi, 8y), ®)
and 0.49), while the assumed value is fixed to 0.4 during tWhereS
optimization process. (Most previous work on image registr
tion or elastography assumes values between 0.3 and 0.
As shown in Fig. 7, the relative errors in recovered elatstici
increase with larger deviation of the Poisson’s ratio, amal t
effect is especially prominent in the cases with lower &gt
values (soft) and low Poisson’s Ratios (compressible).
observe errors of 45-60% with an elasticity of 50 kPa and
Poisson’s ratio of 0.3. The errors are generally below 1313%0
cases with Poisson'’s ratios of 0.40—0.45 and can be as hig Fx
20% for a ratio of 0.49 (nearly incompressible). These tesu
show that our method is robust to inaccurate Poisson’ssat|
in most cases.

m is the reference (moving) prostate surface, 8pds
target surface. The average surface distance for tistapeo
ong the 112 pairs of images is 0.41 cm, which is less than
10% of the diameter of a typical prostate (around 4-5 cm).
The convergence graphs (plots & and |V®| versus
iteration number) and for boundary forces and for the malteri
Vg‘?operty from a typical image pair are shown in Fig. 9 (conver
nce graphs for other experiments are similar). Note tiet t
timization of forces was done in batches (in each evaloati
%(E)), and the convergence graph for force optimization
s the result of concatenating the steps for optimiZihd/ith
Sur current code, each iteration for the force optimizeesak
about 19 seconds for a mesh with 34,705 tetrahedral elements
) ) and 6,119 nodes on a Xeon X3440 CPU, and the total number
B. Noninvasive Assessment of Prostate Cancer Stage o jterations is around 1,700 (the total time is about nine
To show the effectiveness of our method applied to prostdteurs), which means that our current implementation is only
cancer assessment, we repeated the experiments on the mauitable for off-line processes. Note that we have notagili
organ settings, but with both the deformed and target sesfa@any parallelism in the FEM computation. In the future, we
taken from segmented 3D CT images of the male pelvis argdan to explore faster implementations of the FEM, such as
We consider 10 patient data sets (a total of 112 target imag#sose utilizing a many-core processor and reduced-dirognsi



Table I: Error in recovered modulus of elasticity in two dyetic multi-organ scenes; note that the error becomes nargen
for elasticity values greater than 150 kPa.

[ True Elasticity (kPa) [ 50 [ 100 [ 150 [ 200 [ 250 [ 300 [ 350 ]
Scene| Recovered Value| 49 101.18 | 158.79 141.57 | 136.65 | 204.45 176
1 Relative Error -2% +1.2% | +5.9% | -29.2% | -45.3% | -31.9% | -49.7%
Scene| Recovered Valug] 51.33 | 102.90 167.5 225.0 222.91 275.0 277.97
2 Relative Error | +2.7% | +2.9% | +11.7% | +12.5% | -10.8% | -8.3% | -20.6%
Relative Errors in Elasticity Relative Errors in Elasticity
60% 50%
50% 40%
40%
30%
30%
20%
20%
10% 10%
0% 0% O
0.3 0.35 0.4 0.45 0.5 0.3 0.35 0.4 0.45 0.5
True Poisson’s Ratio True Poisson’s Ratio
+ E=50 O E=100 E=150 + E=50 O E=100 E=150

Figure 7: Plots of relative errors in recovered elasticisy different Poisson’s ratios for the prostate (0.3, 0.38, 0.45, and
0.49) used for generating the synthetic surface data; datisipws the result from one test scene, and each curvesesgisea
true elasticity value (50, 100, and 150 kPa) used in the gyiatisase. During the optimization process, the assumesk&us
ratio is always fixed to 0.4.
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Figure 9: Convergence graphs (plot®fand ||[V®|| versus iteration number) for a pair of CT image data: (left)hvergence
of the external forces; (right) convergence of the elastici

models.

Each of the 10 patient data sets tested include 6 to 17 sk@d!e II: Average and standard deviation of elasticity ealu

of target surfaces (daily images), namely 112 target imagfé’§ the prostate recovered from the patient data sets; #dte la

in total, and the recovered elasticity values of the prestat colgmn is the clinical cancer staging for the tumor for each
each patient are shown in Table II. Notice that the recoverBatient.

values from all image pairs are within the range suggested Number of | Average Young's|  Std. Clinical
in the literature [37], and the result shows consistencyiwit Targets | Modulus (kPa) | Deviation | T-Stage
each patient. Patient 1 8 48.60 241 T1
Patient 2 6 53.99 10.28 T3
The aim of this study is to assess the relation between Patient 3 7 71.97 4.35 T3
the recovered elasticity value and the cancer stage of eal hgggi;:g 166 gg-gé 11?;2951 E
patient, under the assumption that prostates with more af-pzrenis 6 4547 1096 1
vanced tumors have higher stiffness. A common cancer gfagin Patient 7 17 40.67 16.34 T2
system is the TNM (Tumor, lymph Nodes, Metastasis) system, Patient 8 15 52.40 1.72 T2
where the clinical T-stage describes the size and exterteof t Ff’;}fnqtfo 192 gé;g ;:gg %
primary tumor [43]. The definitions of T-stages are shown i

Table Ill. We focus on the T-stage because of its relevance



Table IlI: Definition of clinical T-stages for prostate canc

Stage  Definition

TX Primary tumor cannot be assessed

TO No evidence of primary tumor

T1 Clinically inapparent tumor neither palpable nor visibleimaging
T2 Tumor confined within prostate

T3 Tumor extends through the prostate capsule

T4 Tumor is fixed or invades structures other than seminal hessic

Recovered Elasticity vs. Cancer Stage

70
1

Figure 11: A sliced view of the tetrahedral mesh with a tumor
(yellow) embedded in the prostate (red); the mesh is used to
generate the synthetic target surface, while the prossadslii

: considered homogeneous in the optimization process.

65

Table IV: The recovered elasticity values for the prostate a
e a homogeneous material, when the organ contains a synthetic
tumor of different sizes and a normal tissue; elasticityugal

are set to 100 kPa for the tumor and 50 kPa for normal prostate
tissue.

50
Il

Average Young's Modulus (kPa)
55

45

40
|

tumor size / prostate size (%)

10% [ 25% [ 50% [ 75%
1 2 3 Scene 1| 51.24 | 54.98 | 62.15 | 63.44
Scene 2| 53.55 | 56.90 | 69.62 70

Cancer T Stage

Figure 10: Box plot of average recovered elasticity valug an

cancer T stage for each patient data set shown in Table I1.higher recovered elasticity indicates either a stiffer ¢aror
a larger tumor. Since the clinical T-stage for prostate eanc

depends on the extent of the tumor, we conducted a study to

patients are shown in the last column of Table II. In order f®'€d elasticity value. Based on the settings in the symtheti
analyze the data statistically, we treat the average reedvemulti-organ experiments in Section Ill-A, we embedded an
elasticities and tumor stages as two random variables amd @gditional tumor inside the prostate for generating sytithe
numbers 1, 2, and 3 to represent T-stages T1, T2, and fa@get surfaces, as shown in Fig. 11. The elasticity valoes f
respectively (TO and T4 are not present in our data setﬁ),e tumor and the normal prostate tissues are set to 100 and 50
and we test if the recovered elasticity values and the P&, respectively. Notice that in the elasticity recovenycess,
stages are positively correlated. The resulting Pearsosaf) We do not know the extent of the tumor due to the imaging
correlation coefficient is 0.662, and the p-value for the-twdimitation, and we only recover one value for the prostate.
sided correlation test is 0.037, which indicates a signiticaTable IV shows the recovered elasticity values with diffeere
positive correlation between the recovered elasticityesland tumor sizes relative to the entire prostate. The resultsvsho
the T-stages, based on a p-value threshold of 0.05. Since figeasing elasticity values with increasing tumor sizekath
tumor stage values are discrete and might be nonlinear wi¢enes. Even though we assume homogeneous materials, the
respect to the elasticity, a rank correlation coefficienthsas recovered values can still be used as an indicator of thenexte
the Spearman’s rank correlatipnmay be more suited for the of the tumor and are therefore correlated to cancer stages.
test. From the samples we have Spearman’s(0.701 and an
estimated p-value of 0.024, which shows again a significagt

positive correlation. The box plot of the elasticity valwsesd ) ) ] )
cancer stages is shown in Fig. 10. Since the distance between the fixed and moving surfaces

is minimized during the optimization process, we also have
] an image registration as a result of optimizing for forced an
C. Study: Inhomogeneous Materials elasticities. In our experiments, the final average valuthef
We assume a constant material property within an organ doigiective function is0.09, corresponding to an RMS error of
to the limitation of the image modality, where the intensgty 0.01 cm, and a maximum 06.22 cm, which are within the
almost constant within the prostate, so that it is impossibimage resolution(.1 x 0.1 x 0.3 cm. The deformed images of
to segment the tumor. The elasticity values recovered by atypical image pair before and after registration are shiown
method are therefore “average” values in some sense, anHig 13, with the segmentations of the reference image (red)

Application: Registration of Segmented CT Images
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(b)

Figure 13: Registration results for a pair of test imagesakial and sagittal views of the moving image, and a 4x4 cadmbard

comparison with the planning image, before registratib;tiie two views of the registered image, along with a chdwmbad

comparison with the planning image; superimposed by setatiens of the reference image, shown in red, and the seguiamt
of the prostate in the daily image, shown in blue; notice thatimage deforms towards the red contours.

image-based approach, the Demons method [44], by looking at
some landmarks inside the prostate. In most cases, the image
intensity is almost constant inside an organ, but five of the
patient data sets (a total of 32 image pairs) we experimented
on have three “seeds” implanted in the prostate for location
tracking during each treatment fraction, resulting in btig
spots that can be observed in the CT image. The distance
between the target and the deformed landmark positions from
the two methods are shown in Table V, and the two-tail t-
i i tests for paired samples (distances) show that our method
Figure 12: Close-up view of the surfaces before (left) aneraf .o ,ces statistically significantly better results inetrout
(right) deformation; the transparent white surface shawie o fiye patient data sets (with a p-value threshold of 0.05).
target surface of the prostate. Notice how the prostataserf £, regions with nearly uniform intensity, the deformation
move towards the white surface. Bladder and rectum S”rfa‘i%?nputed by the Demons method is entirely governed by
are those with external forces applied. the registration regularization terms, which do not need to
be physically meaningful for the image-based method. Our
method enforces physically-based constraints and results
and the prostate in the moving image (blue) superimposed emors within the diameter of the spot. Notice that for the
the image. Notice how the prostate in the images moves fradbemons method, we replaced the voxel values inside the
the blue contour to the red contour. Fig. 12 shows a 3D cloggrostate with the average intensity within the organ, sihee
up view of the deforming surfaces from another image paintensity and gradient information from the landmarks doul
where the surfaces of the bladder and the rectum are tholse vailso be utilized in the image-based registration, givingrit
external forces applied, and the target surface of the gie@stadditional advantage, while our method is based purely en th
is shown in white. physics-based simulation and does not take advantage of the

We also compared our registration results with a popullndmarks.
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Table V: Average error in landmark positions (distance ir) amide the prostate, computed with the Demons method and ou
method; t-tests show that our method performs statisyicaginificantly better in three of the five data sets.

# Target Demons Our Method Paired t-test

Images | Avg. (cm) Std. dev.| Avg. (cm) Std. dev. p-value
Patient 1 8 0.27 0.17 0.26 0.18 0.07
Patient 2 6 0.21 0.11 0.16 0.11 0.03
Patient 3 7 0.18 0.06 0.10 0.04 1.5e-4
Patient 4 6 0.17 0.07 0.13 0.03 0.02
Patient 5 5 0.21 0.15 0.20 0.08 0.86

Table VI: Error in recovered nonlinear modulus of elasyicitTable VII: Error in recovered nonlinear modulus of elagici
in two synthetic multi-organ scenes. in two synthetic multi-organ scenes where the elasticity of
surrounding tissue is doubled (20 kPa) when generating the

[ True Elasticity (kPa) [ 50 [ 100 [ 150 [ 200 | . . . Lo .
Scene | Recovered Value 5018 | 10564 159 172 synthetic d_ata. The _su_rrm_mdmg tissue elasticity is stit
1 Relative Error | +0.35% | +5.6% | +6% | -13% to 10 kPa in the optimization process, and we expect to see
Scene| Recovered Valug] 45 105 1415 | 197 recovered values for the prostate to be half of the true galue
2 Relative Error -10% +5% -5.67% | -1.5%
Elasticity for Surroundings 20 kPa
o . Elasticity for Prostate (kPa 50 100 150 200
E. Extension: Nonlinear FEM Expected Value for Prostaté 25 50 75 100
To demonstrate that our optimization framework can algoScene| Recovered Value 28.0% 50.1Z 72.?)8 106.107
be applicable to nonlinear models, we incorporated a geoél RRe'a“VedEUolr +1§'52A’ +Of54ﬁ’ '726'75/; 1%81712’
H . . cene ecovere alue . .
metrically nonlinear FEM and the neo-Hookean model quh 5 Relative Error 0% 0% [ $2.0206 | +8.16%

the elasticity optimization scheme. The linearized eftiilim
formulation of the nonlinear FEM is

K(u") - Au = o4 _ fint, ) kPa _in the optimization. Table VI s_hc_awg the. results using th
nonlinear FEM where the true elasticity is twice the valuedus
wheref®t andfi®t are the external and internal force vectorsn the optimization process. The recovered elasticitiestie
K(u") is the stiffness matrix that depends on the curreptostate are very close to what we expect, with relativersrro
displacement vecton™, and Au is used to update the vectorbelow 13%.
u” in a Newton iteration§”*! = u™ + Au). The Jacobian 2) Assessment of prostate cancer staijée repeated the
matrix J,, = g}i (derivative of displacementa with re- experiments in Section IlI-B using the nonlinear FEM. The

spect to the elasticity paramet&) for the elasticity optimizer recovered elasticity values for the 10 patient data sets are
is approximated using the finite difference method due to t§80wn in Table VIII, and the box plot of average recovered
complexity of differentiating the internal forces with pest elasticity and clinical T-stage is shown in Fig. 14. The Bear

to the elasticity. Notice that we have not implemented fordénear) correlation coefficient for recovered elasticiglues
optimization for the nonlinear model, and boundary coodsi and T-stages is 0.704 with a p-value of 0.023, and the
given by a surface matching is always used in the simulatiopPearman’s rank correlatignis 0.636 with a p-value of 0.048,

1) Synthetic scene with multiple organéle used the same which again shows a significant positive correlation betwee
multi-organ scenes in Section III-A and deformed them usirtfe stiffness value and the cancer stage for this group of
the nonlinear FEM to generate the synthetic target surfacatients. However, the recovered values are less contsiktm
That is, the nonlinear FEM is used in both generating Sthe{hose from the linear FEM implementation. We conjecture tha
cases and in the optimization scheme. The resulting reedvethe implementation using nonlinear FEM is more sensitive to
elasticity values are shown in Table VI. The errors are withthe material properties and boundary conditions, and there
13% for the range we tested (50-200 kPa). the recovered values vary more than those using the linear

Effect of inaccurate elasticity values for surroundind EM.
tissues: The elasticity value for tissue surrounding the prostate
is fixed to 10 kPa in our experiments. While only the ratio IV. CONCLUSION AND FUTURE WORK
between two elasticity values can be recovered with a linearWe have presented a novel physically-based method for
model without knowing true force values (as discussed #imultaneously estimating the 3D deformation of soft bedie
Section 11-A), the surrounding tissue elasticity could éav and determining the unknown material properties and bound-
different effect on nonlinear models. However, with the Bmaary conditions. Previous elastography methods are lintited
amount of displacement we have observed, we expect ih@aging modalities and force measurement schemes, and we
surrounding tissue elasticity to have a similar effect athin overcome these limitations by utilizing the surface infation
linear model. For example, if the true elasticity values faextracted from 3D images. Although the resolution of the
the prostate and surrounding tissue are 100 kPa and 20 kRaplting elastogram is limited to the object boundaries, w
respectively, we expect to recover the value 50 kPa for tBbowed that the recovered value reflects the distribution of
prostate since the surrounding tissue elasticity is fixed@o materials within the object, and the recovered elasticityi®s
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Table VIII: Average and standard deviation of elasticityues current implementation. As an image registration techgiqu
for the prostate recovered from the patient data sets USEG method is reliable in terms of the registration erroraas

nonlinear FEM; the last cqlumn is the clinical cancer Stgg"]oarameter estimation method, our system can save an enor-
for the tumor for each patient. mous amount of efforts adjusting the simulation parameters

Average Young's|  Std. Clinical manually by automatically extracting patient-specificsiis

Modulus (kPa) | Deviation | T-Stage properties. Furthermore, since only the 3D surfaces are inse
ﬁa:!enté gg-gg g-gg % our algorithm, applications other than medical image ssialy
atien . .
Pafient 3 7891 781 T3 could also adopt the methoql. _ ,
Patient 4 63.62 2.02 ™ Our current implementation assumes that the Poisson’s
Patient 5 47.45 16.62 T1 ratio can be treated as known, which is also the case in
Patient 6 9.85 18.37 Tl most elastography studies, since the Young's modulus has
Patient 7 62.73 18.34 T2 inical sianif . detection. H )
Patient 8 5023 1193 T more clinical significance in cancer detection. owev_eln,als;
Patient 9 60.74 11.46 T1 been reported that the Poisson’s ratio plays a more importan
Patient 10 69.25 17.64 T2 role than the elasticity in modeling deformation of breasts

[38], where the optimal Poisson’s ratio also depends on the
boundary conditions — lower values could improve the result
when volume changes need to be modeled. Therefore, a study
of how different Poisson’s ratios affect elastography itssu
could be a topic for future investigation.

s In the near future, we plan to accelerate performance of
the iterative scheme by many-core computing and model
reduction. The resulting implementation can then be agplie

‘ ‘ to more complicated physical and geometric models, such
- 3 as situations with complex material property distribusipn
surface sliding, and large deformations. We would also like
. — to explore the possibility of clinical trials of our method t
noninvasive cancer staging based on the stiffness valugaV/i

| surgery and material engineering are some example applicat
domains that would benefit from an automatic estimation of
material properties and they can also directly benefit froim t
framework, worthy of further exploration.
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