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Abstract. Low-rank image decomposition has the potential to address
a broad range of challenges that routinely occur in clinical practice. Its
novelty and utility in the context of atlas-based analysis stems from its
ability to handle images containing large pathologies and large deforma-
tions. Potential applications include atlas-based tissue segmentation and
unbiased atlas building from data containing pathologies. In this paper
we present atlas-based tissue segmentation of MRI from patients with
large pathologies. Specifically, a healthy brain atlas is registered with
the low-rank components from the input MRIs, the low-rank compo-
nents are then re-computed based on those registrations, and the process
is then iteratively repeated. Preliminary evaluations are conducted using
the brain tumor segmentation challenge data (BRATS ’12).

1 Introduction

Image-based lesion detection and segmentation are needed to assess and plan
the treatment of patients suffering from traumatic brain injuries (TBI), brain
tumors, or stroke [2]. One popular method for such image analysis involves reg-
istering an atlas to the patient’s images to estimate tissue priors. However, if
the patient’s images contain large pathologies, then lesion-induced deformations
may inhibit atlas registration and confound the tissue priors. Furthermore, even
forming an appropriate, unbiased atlas for segmentation may be problematic.

In unbiased atlas building [3], when images with lesions are used to form
the atlas, the lesions propagate into and corrupt the atlas. However, particularly
for research projects with limited time and financial resources or involving a
new imaging protocol or children, it can be problematic to obtain a sufficient
number of protocol-matched scans from healthy subjects for atlas formation.
Hence, registration methods tolerant to such image corruptions are desirable.

The iterative, low-rank image registration framework presented in this pa-
per tolerates the presence of large lesions during image registration, and it can
thereby aid in atlas-based segmentation and unbiased atlas formation by mitigat-
ing the effects described above. While our approach is general, in this paper we
focus on registration in the presence of pathologies for the purpose of atlas-based
tissue segmentation for illustration.
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The most straightforward method to eliminate a lesion’s influence during
registration is to “mask” it so that the lesion’s voxels are not considered dur-
ing the computation of the image similarity metric. Other methods attempt
to address this problem by joint registration and segmentation which tolerates
missing correspondences [1], geometric metamorphosis that separates estimating
healthy tissue deformation from modeling tumor change [5], or personalized at-
las construction that accounts for diffeomorphic and non-diffeomorphic changes
[9]. While effective, these methods require explicit lesion segmentations or initial
lesion localizations, which, in this case, is actually the goal of the process.

Contribution. We propose to exploit population information to assess which
parts of an image are likely lesions (they are inconsistent with the population)
and which parts of an image should be considered normal. We adopt a recent
machine learning technique, i.e., the decomposition of matrices into a low-rank
and sparse components [6], in an iterative registration process to achieve this
objective.

2 Low-rank plus sparse decomposition

In [6], Peng et al. propose to decompose a matrix of vectorized images into
the sum of a low-rank and a sparse component (containing residuals) in the
context of simultaneous image alignment. The intuition is that the portion of
each image that cannot be explained by the low-rank model is allocated to the
sparse part. Hence, the low-rank component could be interpreted as a blending of
recorded values and values inferred from the population; the sparse component
then contains each subject’s anomalous values. Technically, the allocation of
image intensities to each of those components is driven by the amount of linear-
correlation across the images. Given a collection of n images having m voxels,
we have:

D a m× n matrix in which each image Ii is a column vector that contains the
m spatially-ordered voxel intensities in Ii.

L a m× n matrix that contains the low-rank representations Li for each of the
images in the collection D.

S a m× n matrix that is the sparse component, s.t. Si = Di − Li.

The low-rank representation of D is then defined as

{L∗, S∗} = arg min
L,S

(‖L‖∗ + λ‖S‖1) s.t. D = L+ S , (1)

where ‖L‖∗ is the nuclear norm of L and ‖S‖1 is the 1-norm of S. Since the
problem is convex, a globally optimal solution {L∗, S∗} can be obtained using,
e.g., an augmented Lagrangian approach [4].
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3 Integrate low-rank decomposition into an iterative
registration framework

We have integrated the low-rank plus sparse decomposition into an iterative
registration framework in which a group of input images, potentially containing
large pathologies and deformations, are registered to a normal-control atlas. Our
premise is that by identifying the low-rank and sparse components of each input
image, its low-rank component, which contains reduced or eliminated patholo-
gies, can be more accurately registered with a normal-control atlas, compared
to the direct registration of an image containing a pathology to an atlas.

The low-rank plus sparse decomposition exploits the fact that lesions gen-
erally do not manifest in consistent locations or with consistent appearance in
populations. These inconsistencies result in lesions being reduced in the low-
rank component and allocated to the sparse component. Thereby, the sparse
component can be used to inform spatial and intensity priors for localizing and
segmenting lesions.

Our method also supports unbiased atlas formation using data containing
pathologies. Specifically, in the above framework the normal-control atlas IA
can be replaced by the mean low-rank image, at each iteration. In unbiased
atlas-building the goal is to estimate an atlas image such that it is central with
respect to the data population. This is achieved by minimizing

E({Φ−1
i }, IA) =

∑
i=1,...,N

Reg[Φ−1
i ] + σ−2Sim[Ii ◦ Φ−1

i , IA], (2)

with respect to the unknown atlas image IA and the unknown transformations
{Φ−1}. Here, Reg[Φ] denotes a regularity measure for the transformation Φ,
typically penalizing spatially non-smooth transformations and Sim[I, J ] is a
chosen similarity measure between the images I and J . This could simply be the
sum-of-squared intensity differences (SSD).

To optimize this energy using alternating optimization, we first keep IA fixed
while solving for {Φ−1

i } and subsequently keep the transformations {Φ−1
i } fixed

while solving for IA. The first part performs independent pairwise registrations
between {Ii} and the fixed image IA. The second part requires, for SSD, mini-
mizing

E(IA) =
∑

i=1,...,N

‖Ii − IA‖2 (3)

which is achieved by the mean image IA = 1/N
∑

i Ii. However, when lesions are
present in {Ii}, the mean image is degraded by the undesired involvement of the
lesions in the average. We can instead minimize Eq. (1) to obtain the low-rank
approximations {Li} of the warped images {Di = Ii ◦Φ−1}, and then minimize

E(IA) =
∑

i=1,...,N

Sim[Li, IA] (4)
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Fig. 1. An illustration of the proposed low-rank iterative image registration framework,
where Ii refers to the i-th input image, Di is the i-th vector of the input matrix D,
Li is low-rank component of the i-th input image and φi refers to the i-th registration
map generated from BSpline image registration at each iteration.

with respect to the unknown atlas IA. Again, for SSD, the solution will be the
mean over {Li}4. Other similarity measures, such as normalized cross corre-
lation, could be used for registration, but they may require more challenging
optimizations and may not be meaningful for atlas construction as they may
make the atlas-image non-unique. Also note that when fixing the atlas, IA, un-
biased atlas construction simplifies to group-wise registration. The group-wise
approach is essential because it allows for the population-based decomposition
of the images into low-rank/sparse components (cf. §2). A general framework for
our method is shown in Fig. 1. The algorithm proceeds as follows:

(1) Solve for affine transform (φ0i )−1 registering each Ii to the atlas image IA.

(2) For each iteration j, compute the low-rank image Lj
i by solving Eq. (1).

(3) Solve for deformable transform (φji )
−1 registering low-rank images Lj

i to IA.

(4) Compose and apply transforms to Ii, s.t. Ij+1
i = Ii ◦ (φ0i )−1 · · · ◦ (φji )

−1 .
(5) Set j ← j + 1 and continue with step (2) until convergence.

Given a low-rank plus sparse decomposition, the registration step can be
based on any standard deformable registration algorithm and its associated con-
vergence characteristics apply. In our experiments, BSpline transforms and the
Mattes mutual information (MMI) metric are used to register the low-rank im-
ages with the atlas, cf. step (3). The number of BSpline control points is increased
gradually over the iterations to effect a coarse-to-fine optimization strategy. At
each iteration we are maximizing the mutual information between the atlas im-
age and each individual low-rank image, cf. Eq. (4). As our algorithm alternates
between low-rank decomposition and registration, it can be considered a greedy
strategy. Convergence is reached when the total change in deformation is small.
In our experiments with the BRATS ’12 dataset (8 inputs), results converge
within 10 iterations. For the TumorSim data [7] (20 simulated T1 images), λ in
Eq. (1) is set to 0.5 and for the patient data (8 FLAIR images), λ is set to 0.8.

4 In case of SSD it is advisable to initially histogram-normalize each Ii.
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4 Experimental study

We have conducted initial assessments of our method for atlas-to-image regis-
tration using two evaluation metrics with simulated and patient data.
Quantitative assessment of atlas-to-image registration: The premise of
atlas-based segmentation is that by registering an atlas with a target image,
the tissue labels in the atlas provide spatial priors for the tissues in the target
image. When atlas-to-image registration is successful, the atlas’ tissue labels
should align with the corresponding tissues in the target image. Therefore we
compute the standard deviation of the target image intensities under each tissue
label in the atlas. Smaller tissue-class standard deviation (TCSD) values indicate
more accurate atlas-to-image registrations.

We calculate TCDS at each iteration to evaluate the convergence of the
iterative framework. We also use it to compare our method with traditional
BSpline atlas-to-image registration.
Qualitative assessment for lesion segmentation: The iterative atlas-to-
image registration process can be examined by inspecting the parts of each image
allocated to its sparse component in each iteration. This sparse image at the
final iteration (after reaching convergence) should be sensitive and specific to
the lesion. By reviewing the sparse image’s evolution over the iterations, we can
qualitatively assess the effectiveness of our method in matching each patient’s
image to the healthy atlas, while not burdened by lesions.

Note that only a qualitative assessment of lesions is made. Sparse images will
contain some normal anatomic variation as well as the lesions. Over the itera-
tions, the variations between the individual patients and the healthy atlas are
minimized via the deformable registrations between the low-rank images and the
healthy atlas. The sparse images after convergence could then serve as a strong
prior for subsequent tumor segmentation algorithms, but lesion’s heterogene-
ity as well as ”normal” small-scale anatomic variations must be appropriately
handled by subsequent lesion segmentation algorithms.

4.1 Case studies and results

For the following case studies we used the SRI24 atlas [8] as the healthy at-
las for registration and to provide gray-matter (GM), white-matter (WM), and
cerebrospinal fluid (CSF) tissue labels after registration to compute the TCSD
metric.
Case 1 (simulation data): The training data in the BRATS ’12 challenge in-
cluded MRI scans into which simulated high-grade and low-grade glioma tumors
were injected using TumorSim [7]. We selected 20 cases containing large tumors
and large deformations to form a set of challenging image-to-atlas registration
tasks. Fig. 2(a) shows the first 4 subjects and their corresponding low-rank and
sparse components during the 1st iteration. Fig. 2(b) shows the TCSD values
for the GM and WM classes after each iteration. The tightening of the statistics
in Fig. 2(b) illustrates the convergence of the registration between each subject
and the healthy atlas over time.
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(a) 4/20 simulated T1 brain volumes with the corresponding low-rank and
sparse components (during the 1st iteration).
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(b) Change in TCSD for WM and GM labels transcribed from the atlas.

Fig. 2. Results on TumorSim dataset from BRATS ’12.

Case 2 (clinical data): A subset of 8 FLAIR images from BRATS ’12 challenge
are tested using the same experimental setup as the simulated data. Fig. 3(a)
illustrates the input data and the results. We show the low-rank and sparse
components of the first three input FLAIR images at the initial iteration in
Fig. 3(a) (left). The low-rank plus sparse decomposition results at the 2nd and
the 10th (final) iteration of the first input patient are shown in Fig. 3(a) (middle).
On the right-hand side of Fig. 3(a), the top image is the normal-control SRI24
atlas T1 image that we used as the fixed normal-control image during each
registration. As we can see from the box plots in Fig. 3(b) , the overall TCSD
for the GM class improves over the iterations ( each box contains the TCDS
values of all 8 patients at each iteration).

To compare with a direct BSpline registration, we used the same BSpline
parameters, e.g., number of control points, that are used in the final iteration
of our method. We exclude the tumor region when calculating TCDS for each
tissue class. The middle image of Fig. 3(a) is the atlas CSF label contour overlaid
on the direct BSpline-registered (i.e., deform the original input FLAIR image to
match the healthy atlas) image; the bottom image is the atlas CSF label contour
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(a) Left : first three FLAIR images and their initial low-rank and sparse compo-
nents. Middle: low-rank and sparse components at the 2nd and 10th iteration of
the first input. Right : SRI24 T1 atlas (top), atlas CSF label contour overlaid on
the direct BSpline registered image (middle), atlas CSF label contour overlaid
on the deformed input image at final iteration using our approach (bottom).
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(b) Left : Change in the TCSD for GM labels transcribed from the atlas after
each iteration of our method. Right : TCSD comparison to traditional BSpline
atlas-to-image registration for the GM class.

Fig. 3. Results on TBI patient dataset from BRATS ’12.

overlaid on top of the converged deformed input image. Much better alignments
are seen on the edges of the ventricles than it is the case for the middle image.
The direct BSpline registration produces larger TCSD values for the GM class
in most cases in this study, as shown in the table of Fig. 3(b). Our method
performs worse on two cases (patient 5 and 8). Different from others they both
have much narrower and distorted ventricles, which are high-contrast landmarks
for guiding the registration optimization. Due to their distinctive appearance,
the decomposed low-rank images contains very little truth geometries (mostly
assigned to the sparse images), therefore the registration based on the low-rank
component is not reliable. If more similar type datasets are included, the de-
composition would be more effective and registration would have been resolved.
Furthermore, only eight cases is not sufficient to represent a population, further
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work is needed to determine if and how many additional cases would be needed
to represent a healthy population given subjects with pathologies.

5 Discussion and future work

The novel contributions of this paper are 1) the integrated formulation of low-
rank image decomposition into atlas formation, 2) the use of low-rank image
decomposition in atlas-to-image registration, and 3) the use of low-rank image
decomposition as a prior for lesion identification and segmentation. These con-
tributions are significant, because they allow images containing pathologies to
drive atlas formation and they allow images containing pathologies (large lesions
and deformations) to nevertheless be well registered with normal-control atlases.
However, our current iterative registration framework needs to be better evalu-
ated on TBI data sets with ground truth tissue labels. A near-term extension of
this work is to form an unbiased atlas without a reference healthy atlas image,
which is useful when only data containing pathologies is available. Future work
will also focus on the development of a lesion segmentation pipeline using the
sparse image as a spatial and intensity prior and a non-greedy implementation.
Acknowledgements. This work was supported, in-part, by the NIBIB
(R41EB015775), the NINDS (R41NS081792) and the NSF (EECS-1148870).
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