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The objective of this study is to establish the effectiveness of four different time-frequency
representations~TFRs!—the reassigned spectrogram, the reassigned scalogram, the smoothed
Wigner–Ville distribution, and the Hilbert spectrum—by comparing their ability to resolve the
dispersion relationships for Lamb waves generated and detected with optical techniques. This paper
illustrates the utility of using TFRs to quantitatively resolve changes in the frequency content of
these nonstationary signals, as a function of time. While each technique has certain strengths and
weaknesses, the reassigned spectrogram appears to be the best choice to characterize multimode
Lamb waves. ©2001 Acoustical Society of America.@DOI: 10.1121/1.1357813#

PACS numbers: 43.20.Mv, 43.35.Cg@DEC#
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I. INTRODUCTION

There have been significant advances in the field of
nal processing since the development of the fast Fou
transform~FFT! in the mid 1960’s. Current research is pr
marily concentrated on applications for microelectronics a
telecommunications, although most signal-processing te
niques are general enough in nature to have potential a
cations in a variety of fields. Recent work in the area
time-frequency representations~TFRs! such as the spectro
gram, the scalogram, the Wigner–Ville distribution, and t
Hilbert spectrum shows great promise for applications
nondestructive evaluation. Of particular interest~and impor-
tance! is the use of TFRs to interpret ultrasonic guid
waves. This class of ultrasonic signals can be extrem
complicated, exhibiting dispersion and containing multip
modes.

This paper compares the effectiveness of four candid
TFRs to characterize Lamb waves—guided ultrasonic wa
that propagate in plates. Lamb waves have received ex
sive attention since the study by Mindlin.1 Recent experi-
mental work has shown that it is possible to obtain a pla
dispersion relationship by using the two-dimensional Fou
transform ~2D-FT! to operate on multiple, equally space
waveforms.2,3 Unfortunately, the need for exact, spatial
sampled data restricts the practicality of the 2D-FT for so
inspection applications. In contrast, TFRs require only
single signal. Recently, Prosseret al.4 used the smoothed
Wigner–Ville distribution to determine the Lamb modes
numerically simulated waveforms in an aluminum pla
They also consider real experimental data for a compo
plate and identify thes0 and thea0 Lamb modes for frequen
cies below 500 kHz. Hayashiet al.5 determined the thicknes
and the elastic properties of thin metallic foils~thickness of
less than 40mm! by calculating the group velocity of a singl

a!Author to whom correspondence should be addressed. Electronic
laurence.jacobs@ce.gatech.edu
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mode~thea0 up to 3.5 MHz! using the wavelet transform o
laser-generated and -detected Lamb waves. Hollandet al.6

used a reassigned, smoothed Wigner–Ville distribution
examine synthetic waves in a 10-mm-thick steel plate w
excellent results. Niethammeret al.7 showed that the reas
signed spectrogram is capable of distinguishing multip
closely spaced Lamb modes in the ultrasonic freque
range.

The current study extends7 by evaluating the suitability
of the reassigned spectrogram, the reassigned scalogram
smoothed Wigner–Ville distribution, and the Hilbert spe
trum to extract the dispersion curves of a plate from a sin
time-domain signal. The objective of this paper is to est
lish the robustness of this collection of TFRs by compar
their ability to resolve the dispersion relationships for Lam
waves generated and detected with optical techniques~laser
source and interferometric detector!.

II. BRIEF REVIEW OF TFRs

A transient time-domain signal, together with its Fouri
transformed spectrum, does not provide enough informa
for applications that require an understanding of how a s
nal’s frequency changesas a function of time. Note that the
Fourier transform is essentially limited to stationa
signals—signals that have the same frequency content fo
times. In contrast, nonstationary signals require sign
processing methods that can quantitatively resolve chan
in frequency content, as a function of time. A large numb
of TFRs have been developed to analyze nonstationary
nals, many of which are subsumed in the general framew
of Cohen’s class.8

This section provides a brief review of TFRs to furnish
common foundation and assist in understanding why cer
TFRs are more effective in this application—it is not i
tended to be a comprehensive review, and references
contain technical details and mathematical derivations
provided for an interested reader.
il:
1841109(5)/1841/7/$18.00 © 2001 Acoustical Society of America
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The short-time Fourier transform~STFT! divides a time-
domain signal into a series of small overlapping pieces; e
of these pieces is windowed and then individually Four
transformed.8 The STFT of a functions(t) is defined as

S1~v,t !5
1

2p E
2`

`

e2 ivts~t!h~t2t !dt, ~1!

whereh(t) is a window function. The energy density spe
trum of an STFT is defined asE1(v,t)5uS1(v,t)u2 and
called a spectrogram.

Instead of a fixed window function, the wavelet tran
form ~WT! uses time-frequency atoms or wavelets. The W
of a functions(t) is given by9

S2~a,b!5
1

Aa
E

2`

`

s~ t !cS t2b

a Ddt, ~2!

wherea is the scale, andb the time-shift variable~a andb are
also known as the dilation and the translation paramet
respectively!. A small a corresponds to a high frequency an
vice versa@a dilates the mother waveletc(t), while b simply
shifts the wavelet with respect to time without altering t
frequency content#. The energy density function of a WT i
defined asE2(a,b)5uS2(a,b)u2 and is called a scalogram.

Wavelets are derived from a mother waveletc(t) by
dilation and translation. This study uses the Gabor wave

c~ t !5
1

A4 p
Av0

g
e21/2~v0t/g!21 iv0t, ~3!

which provides an excellent compromise between time
frequency resolution, because it is based on a Gaussian
velope ~which guarantees the best possible time-freque
resolution!.9,10Note that the variableg controls the sharpnes
of the Gaussian envelope in the time domain.

Since the WT decomposes a signal into wavelet com
nents~and not into sine components like the Fourier tra
form!, there is not a direct map from wavelet scale,a, to
frequency,v. It is possible, however, to compute the WT
a sine, and then calculate the relationship between scale
frequency by determining the valuea for which a scalogram
reaches its maximum.11 Finally, if broadband signals~such
as laser-generated Lamb waves! are analyzed with the WT
the higher frequencies tend to have lower energies. A
result, it is advantageous to amplify high-frequency com
nents by multiplying the WT with (1/Aa)12—this research
uses the 1/Aa scaled Gabor WT.

While the STFT is the Fourier transform of small, ove
lapping, windowed pieces of a time signals(t), the Wigner–
Ville distribution ~WVD! is the Fourier transform with re
spect tot of s(t1@t/2#)s* (t2@t/2#) @where s* (t) is the
complex conjugate ofs(t)#, or8

S3~v,t !5E
2`

`

sS t1
t

2D s* S t2
t

2De2 ivt dt. ~4!

As a result, the WVD is a measure of the signal’s loc
time-frequency energy. An advantage of the WVD is tha
can exactly localize sines or Dirac impulses; this is not
case for the spectrogram and the scalogram. Unfortuna
1842 J. Acoust. Soc. Am., Vol. 109, No. 5, Pt. 1, May 2001
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this property means that the WVD is real, but not necessa
positive@the only signal class that leads to a strictly positi
WVD is s(t)5(a/p)1/4e2(1/2)at21(1/2)ibt21 iv0t#, and that it
suffers from signal interference. For example, the WVD c
perfectly resolve a single chirp, but a signal consisting of t
chirps will be decomposed into the two chirps themselv
plus an additional interference term.

To avoid this interference, the WVD is often replaced
the smoothed WVD

S4~ t, f !5E E
2`

`

G~ t2t8, f 2 f 8 !S3~2p f 8,t8!dt8 df 8,

~5!

which filters the original WVD of Eq.~4! with a two-
dimensional filter,G.8 An unfortunate side effect of this
smoothing is the introduction of time-frequency smeari
which nullifies the WVD’s property of exact localization o
sines and impulses. This study uses the Gaussian filter

G~ t, f !5A 1

ab
e2~ t2/a!24p2~ f 2/b!. ~6!

The value of theab term in Eq.~6! controls both the posi-
tivity ~ab>1 guarantees positivity! and signal localization
of the resulting smoothed WVD. While the choice ofab
>1 will guarantee positivity, the resulting distribution be
comes a spectrogram and no longer possesses the W
advantages of signal localization.13 As a result, it is critical to
use a filter withab,1 in applications where superior sign
localization~compared to the spectrogram! is desired.

The final TFR considered in this study is based on
empirical mode decomposition~EMD!, that is used to gen-
erate a set of intrinsic mode functions~IMFs!. Huang
et al.14,15 propose a method with which a complicated tim
domain signal is decomposed into a finite number of IM
that admit well-behaved Hilbert transforms. By using t
Hilbert transform, the IMFs produce instantaneous frequ
cies as functions of time, that enable the identification of
signal’s embedded structure~its modes!. The resulting
energy-time-frequency distribution is called the Hilbert spe
trum, and is comparable to the spectrogram, scalogram
WVD. This decomposition~the IMFs! is based on local
properties of the signal itself, and not an artificial ‘‘externa
function, so the instantaneous frequencies are~ideally!
physically meaningful.

The decomposition of a signal,s(t), into its IMFs is
accomplished with a ‘‘sifting’’ process that uses the sign
itself as the basis for the decomposition. Sifting empirica
identifies the signal’s intrinsic oscillatory modes by the
characteristic time scales, and then decomposes the s
accordingly. The sifting process starts by first determin
the maxima and minima ofs(t), and then connecting thes
maxima and minima with cubic splines~spline envelopes!. In
order to avoid~possible! erroneous behavior, such as wid
swings of the spline envelopes at the signal’s endpoints~both
the right and left boundaries!, ‘‘artificial boundary condi-
tions’’ must be introduced. Huanget al.14,15 propose the ad-
dition of characteristic waves at both ends of the signal. T
sifting process~in brief! calculates the mean value,m(t), of
1842Niethammer et al.: Time-frequency representations
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a point on the maxima and minima spline envelopes
subtracts it from the original signal,s(t), to obtain the first
IMF candidate, orh1(t)5s(t)2m(t).10,15 If h1 is an IMF
~h1 is an IMF if the number of extrema and the number
zero crossings differs by at most 1, and if the mean value
h1 defined by its spline envelope is zero!, it is added to the
list of calculated IMFs. If it is not, this step is repeated fork
siftings—with h1 ,h12,...,h1k leading~after k siftings! to the
IMF, h1k(t)5h1(k21)(t)2m1k(t). Once it meets the IMF
definition,h1k is subtracted from the original signal, produ
ing the residuer 1(t)5s(t)2h1k(t). The complete process i
then repeated withr 1 replacing the original signal to calcu
late the next IMF. The search for IMFs is stopped when
predetermined number of IMFs are calculated, or whenr n

becomes monotonic—see the next section for a demon
tion of the sifting process.

Having decomposed the signals(t) into n IMF compo-
nents and a residuer n , take the Hilbert transform of ever
IMF component, and add the~respective! Hilbert transform
to every IMF to produce an analytic signal,sa(t). Next,
determine the phasef by

f~ t !5arctanS Isa~ t !

Rsa~ t ! D , ~7!

and phase unwrapping. The instantaneous~angular! fre-
quencyv is computed by differentiating the phasef, with
respect to time. The Hilbert spectrum is then defined as
representation of the calculated amplitudes of the anal
signals of the IMFs, as a function of time and instantane
frequency—a time-frequency representation ofs(t).

TFRs suffer from the Heisenberg uncertainty princip
making it impossible tosimultaneouslyhave perfect resolu
tion in both time and frequency. The time-frequency reso
tion of a spectrogram depends only on the window size
type and is independent of frequency.7,8 A wide window
gives better frequency resolution, but worsens the time re
lution, whereas a narrow window improves time resoluti
but worsens frequency resolution. In contrast, the scalog
tiles the time-frequency plane in an irregular fashion, res
ing in a frequency-dependent time-frequency resolutio9

The WT of small frequency values provides good frequen
resolution, but the time resolution is bad. On the other ha
the WT of large frequency values provides poor frequen
resolution, but the time resolution is good. The WVD au
matically satisfies the uncertainty principle of a signal~as
seen in the perfect localization of impulses and sines!, but
interference terms appear in multicomponent signals8,16

Smoothing the WVD with a Gaussian filter removes the
terference terms, but changes the uncertainty of the resu
TFR—its uncertainty is quantified by the standard deviatio
~time and frequency! of the Gaussian filter, noting that th
smoothed WVD becomes spectrogram-like with a Gauss
filter that guarantees positivity (ab>1). In contrast, the
time-frequency accuracy of the Hilbert spectrum is dep
dent on the accuracy of the EMD—if the decomposition in
IMFs does not capture the signal’s real behavior, the res
ing Hilbert spectrum will not give precise time-frequen
results. Since the EMD is an empirical method, it is n
1843 J. Acoust. Soc. Am., Vol. 109, No. 5, Pt. 1, May 2001
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possible to analyze an EMD’s time-frequency resolution
as rigorous a fashion as for the spectrogram, scalogram
WVD.

It is possible to improve the time-frequency resoluti
of a TFR with the reassignment method;17 the reassignmen
method improves the time-frequency resolution of a TFR
concentrating its energy at a center of gravity. Auger a
Flandrin18 provide a computationally efficient way to com
pute the reassigned values for the spectrogram and the s
gram, first proposed in Ref. 17. For example, calculating
reassigned spectrogram amounts to the calculation of the
assigned coordinates (t̂ ,v̂) for each time-frequency pair~t,
v! in the original spectrogram, where

t̂5t2RS S1Th
~x,t,v!•S1h~x,t,v!

uS1h
~x,t,v!u2 D , ~8!

and

v̂5v2IS S1Dh
~x,t,v!•S1h~x,t,v!

uS1h
~x,t,v!u2 D . ~9!

S1h
, S1Th

, and S1Dh
are the short-time Fourier transform

with window functionsh(t), t•h(t), and@dh(t)/dt#, respec-
tively. The reassigned spectrogram is then given by

E1ra
~v8,t8!5

1

2p E E E1~v,t !d~ t82 t̂~ t,v!!

•d~v82v̂~ t,v!!dt dv, ~10!

whered(t) is the Dirac impulse, and the integration is pe
formed over the range of allt andv. In summary, the reas
signed spectrogram requires the calculation of three sh
time Fourier transforms~with three different window
functions!. These transforms are then used to move e
value of the spectrogram,E1(v,t) @at (t,v)# to its reas-
signed coordinates, (t̂ ,v̂), calculated with Eqs.~8! and ~9!.
Finally, Eq. ~10! is used to sum up values assigned to t
same (t̂ ,v̂) bin. Note that the reassignment method is n
restricted to a specific TFR, but can be applied to any tim
frequency shift invariant distribution of Cohen’s class.8 The
Hilbert spectrum, however, does not meet this requireme

III. APPLICATION OF TFRs TO LASER-
GENERATEDÕDETECTED LAMB WAVES

Broad-bandwidth Lamb waves are generated with
Nd:YAG laser ~4–6-ns pulse! and measured with a high
fidelity ~resonance-free! laser interferometer over a wide fre
quency range~200 kHz to 10 MHz!.3 Figure 1 shows a~tran-
sient! time-domain signal with a propagation distance of
cm measured in a 0.93-mm aluminum plate. The Nd:YA
laser fires att50 and generates a Lamb wave at the sou
location. ~Note that the electromagnetic discharge of t
Nd:YAG’s firing causes a spurious noise spike att50.! The
signal in Fig. 1 is discretized with a sampling frequency
100 MHz, low-pass filtered at 10 MHz, and represents
average of 100 Nd:YAG shots to increase the signal-to-no
ratio ~SNR!. It is important to note that the broad bandwidt
high fidelity, and high SNR~due to signal averaging! of this
1843Niethammer et al.: Time-frequency representations
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time-domain signal are crucial properties, making it an id
signal to compare the effectiveness of the four candid
TFRs.

Assessment of the accuracy of the dispersion curves
tained with the candidate TFRs requires analytical result
the Rayleigh–Lamb frequency spectrum.1 Solution of the
Rayleigh–Lamb spectrum provides dispersion curves in
frequency-wave-number~f, k! domain, whereas a TFR map
a time-domain signal into the time-frequency domain. T
group velocities for each of the different modes are de
mined by numerically differentiatingf with respect tok to
obtain the analytical dispersion curves in the time-freque
domain.10

Since Niethammeret al.7 provide details on characteriz
ing Lamb waves with the reassigned spectrogram, this pa
briefly presents the results from this TFR, and only for co
parison purposes. Figure 2 shows a contour plot of the sq
root of the reassigned spectrogram~384-point Hanning win-
dow! of the time-domain signal in Fig. 1, together with th
analytically obtained dispersion curves as solid lines~all of
the subsequent TFR plots include these analytical curv!.
The reassigned spectrogram provides a crisp definition of
individual modes, and these experimental modes are lo
ized to the analytical curves. There is excellent definition
seven modes~s0–s2 and a0–a3! through a wide frequency
range~up to 10 MHz!. Note a general~and significant! ad-
vantage of TFRs in interpreting multimode Lamb waves
they enable the clear identification of the arrival time of t
different modes~e.g.,s0 at 21ms ora0 at 35ms!. Finally, the

FIG. 1. Time-domain signal—multimode Lamb wave.

FIG. 2. Reassigned spectrogram of multimode Lamb wave, plus analy
solution ~solid lines!.
1844 J. Acoust. Soc. Am., Vol. 109, No. 5, Pt. 1, May 2001
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broken lines above 50ms are most likely caused by reflec
tions from the plate’s boundaries.

Figure 3 shows the square root of a reassigned sc
gram of the same time-domain signal~Fig. 1! calculated with
a Gabor wavelet. Although the time resolution at high fr
quencies is very good, there is not enough frequency res
tion to separate the different modes at the high frequen
~e.g., above 2 MHz!. The reassigned scalogram is effecti
in resolving thea0 mode up to 10 MHz—an important fea
ture for some applications. The WT has proven to be eff
tive in many diverse applications~such as the detection o
radar chirps!, but a common theme in most of these applic
tions is the need for good time resolution at high frequenc
and good frequency resolution at low frequencies. Figur
clearly shows that this attribute of the WT is not advan
geous for resolving multiple, broadband Lamb modes. N
that an additional portion of this research10 examines the
Mexican-hat WT and shows its reassigned scalogram
even less resolution than the Gabor WT—the poor resolu
in Fig. 3 is not due to improper selection of a mother wav
let, but instead is an inherent property of the WT.

The WVD and the smoothed WVD of the same tim
domain signal~Fig. 1! are shown in Figs. 4 and 5, respe
tively. The results are stored in a 6013600 matrix, where
columns correspond to a specific time and rows to a spe
frequency~the frequency axis is equally spaced between
and 10 MHz, and the time axis has 0.1-ms discretization
steps!. The WVD of Fig. 4 is smoothed with a 21321
Gaussian filter~which smoothes over a domain of 350 kH
32.1ms! to create the smoothed WVD of Fig. 5. The sele
tion of this particular filter size is based on ‘‘visual’’ com
parisons, and note that it hasab,1, so the resulting distri-
bution is not positive~the negative values are set to zero
Fig. 5!, but it provides good signal localization. Figure
shows that the WVD does a fairly good job in resolving t
a0 and thes0 modes~they are both very localized! over a
large frequency range—a0 through the entire 10 MHz, and
s0 between 3 and 10 MHz. Unfortunately, all the oth
modes are obscured by interference terms and are not vis
The smoothed WVD of Fig. 5 provides a very good rep
sentation of the individual modes, with thes0 anda0 modes

al

FIG. 3. Reassigned scalogram of multimode Lamb wave, plus analy
solution ~solid lines!.
1844Niethammer et al.: Time-frequency representations
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clearly visible through the entire frequency bandwidth~to 10
MHz!, thea1 mode appears from 2 to 5 MHz, and traces
thes1 , s2 , anda2 modes are evident. There is a general la
of time-frequency resolution~clarity! in the smoothed WVD.
For example, it is difficult to positively identify the indi
vidual modes for frequencies above 5 MHz and times gre
than 50 ms. The dispersion curves developed with t
smoothed WVD~Fig. 5! render a mode resolution of abo
the same quality as the un-reassigned spectrogram.7 It is im-
portant to note that it is possible to use a reassignment a
rithm on the smoothed WVD6,17 ~the smoothed WVD of Fig.
5 hasnot been reassigned!, but unlike the reassigned spe
trogram and scalogram, the reassignment calculations fo
smoothed WVD are computationally intensive~first requir-
ing the smoothing procedure!, difficult to implement, and
time consuming~computationally!.

The first step for the Hilbert spectrum is to decompo
the time-domain signal of Fig. 1 signal into IMFs. Figure
shows the first seven IMFs, noting that the sifting proces
stopped when a monotonic IMF~the 10th! occurs. Figure 6
shows that basically only the first 5 IMFs contain ‘‘usefu
information, since IMFs above 5 are too low in frequen

FIG. 4. Wigner–Ville distribution of multimode Lamb wave, plus analytic
solution ~solid lines!.

FIG. 5. Smoothed Wigner–Ville distribution of multimode Lamb wav
plus analytical solution~solid lines!.
1845 J. Acoust. Soc. Am., Vol. 109, No. 5, Pt. 1, May 2001
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~100 KHz or less! to be of importance for this application
Figure 7 shows a contour plot of the Hilbert spectrum co
puted from these IMFs, and it is far from being a ‘‘clean
representation of the dispersion curves of this signal. O
thea0 mode is definitively present—a large number of poin
are clustered around thes0 mode between 3 and 5 MHz, bu

FIG. 6. ~a! First four intrinsic mode functions~first to fourth from top to
bottom! of multimode Lamb wave.~b! Fifth through seventh intrinsic mode
functions~from top to bottom! of multimode Lamb wave.

FIG. 7. Hilbert spectrum of multimode Lamb wave, plus analytical solut
~solid lines!.
1845Niethammer et al.: Time-frequency representations



FIG. 8. ~a! Hilbert spectra of first IMF, plus analytical solution~solid lines!. ~b! Hilbert spectra of second IMF, plus analytical solution~solid lines!. ~c! Hilbert
spectra of third IMF, plus analytical solution~solid lines!. ~d! Hilbert spectra of fourth IMF, plus analytical solution~solid lines!.
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this mode is not clearly defined. In order to interpret t
Hilbert spectrum of Fig. 7, Fig. 8 shows the instantaneo
frequencies of the first four IMFs. By analyzing the Hilbe
spectra of each IMF, it is possible to determine exac
which IMFs contribute to exactly which features in the H
bert spectrum. For example, IMF 1 contains most of thea0

and thes0 modes between 4 and 10 MHz@Fig. 8~a!#, but fails
to localize its energy exactly on either mode—the first IM
scatters its energy around botha0 ands0 . Also note the high
level of noise present in IMF 1. IMF 2 contributes to th
frequency band from 2 to 6 MHz@Fig. 8~b!#; except for a
very small part of thea0 mode at approximately 3 MHz
there is not an obvious correlation between the analyt
modes and the resulting Hilbert spectrum. IMF 3 is qu
effective in representing thea0 mode from 1 to 3 MHz@Fig.
8~c!#, but it fails to represent the other modes in the sa
frequency range. IMF 4 constitutes thea0 mode from 35 to
45 ms @Fig. 8~d!#. It appears that each IMF specializes in
certain frequency range for these laser-generated/dete
Lamb waves. This approach works fine for frequency ran
where there are only a few modes present, but it clearly f
for frequency ranges that contain multiple modes. This f
ure for multiple modes occurs because there is only one
1846 J. Acoust. Soc. Am., Vol. 109, No. 5, Pt. 1, May 2001
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stantaneous frequency for an IMF for any timet. As a result,
the EMD and Hilbert spectrum cannot resolve the multimo
dispersion curves for this plate.

An inherent problem associated with all window-bas
TFRs~and thus their respective reassigned representation! is
the ‘‘ladder-like’’ effect that occurs when the distance b
tween two mode lines is less than the uncertainty of th
representations. These mode lines will then interfere w
each other, resulting in a smeared representation—this
havior is particularly evident when mode lines intersect ea
other~e.g., the intersection of thes0 , a0 , anda1 modes at 2
MHz in Figs. 2–5!. Image-processing methodologies th
take the specific mode structure into account are a poss
remedy for this smearing. Note that the comparison betw
these TFRs is generic enough to be extended to any p
thickness and material. As an example of the general na
of these results, the reassigned spectrogram has been us
successfully resolve the dispersion relationships for mu
mode circumferential waves in a cylinder.10

IV. CONCLUSION

This paper establishes the effectiveness of four can
date TFRs to analyze broadband, multimode ultraso
1846Niethammer et al.: Time-frequency representations
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waves. All TFRs are not equally suited to represent ev
signal type, so a vital contribution of this study is the ide
tification of which TFRs are most effective for analyzin
multimode Lamb waves, and why. Overall, this paper illu
trates the effectiveness of using TFRs to quantitatively
solve changes in the frequency content of these nonsta
ary signals, as a function of time. Another strength of TF
demonstrated in this study is their ability to facilitate t
identification of the arrival times of the different modes in
multimode signal.

This research shows that the reassigned spectrogra
extremely effective in localizing multiple, closely space
Lamb modes in both time and frequency. The reassig
scalogram can only accurately resolve a single mode~thea0!
in this multimode Lamb wave; this deficiency is attributed
the method’s insufficient frequency resolution for high fr
quencies. The WVD is ineffective in this application, whi
the smoothed WVD provides a very good representation
the individual Lamb modes, while showing a general lack
time-frequency clarity~note that with more smoothing, th
WVD becomes similar to a spectrogram!. Note that the time-
frequency resolution of the smoothed WVD can be improv
with a reassignment algorithm~like the reassignment of th
spectrogram and scalogram!. Unfortunately, the reassign
ment calculations for the smoothed WVD are intensive~first
requiring the smoothing procedure!, difficult to implement,
and computationally time consuming. As a result, the re
signed spectrogram appears to be a better choice to ch
terize these multimode Lamb waves. Even though the E
combined with the Hilbert transform is based on local pro
erties of the signal itself, this study shows that this Hilb
spectrum technique is not capable of extracting
Rayleigh–Lamb frequency spectrum between 200 kHz
10 MHz, from a laser-generated/detected time-domain
nal. The Hilbert spectrum fails because of the plate’s in
cate mode structure, with multiple modes occupying
same frequency band, and intersecting each other in time
frequency.
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