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The objective of this study is to establish the effectiveness of four different time-frequency
representation§ TFR9—the reassigned spectrogram, the reassigned scalogram, the smoothed
Wigner—Ville distribution, and the Hilbert spectrum—by comparing their ability to resolve the
dispersion relationships for Lamb waves generated and detected with optical techniques. This paper
illustrates the utility of using TFRs to quantitatively resolve changes in the frequency content of
these nonstationary signals, as a function of time. While each technique has certain strengths and
weaknesses, the reassigned spectrogram appears to be the best choice to characterize multimode
Lamb waves. ©2001 Acoustical Society of AmericdDOI: 10.1121/1.1357813

PACS numbers: 43.20.Mv, 43.35.CDEC]

I. INTRODUCTION mode(thea, up to 3.5 MH2 using the wavelet transform of
laser-generated and -detected Lamb waves. Holktral ®

There have been significant advances in the field of sig- . . . T
nal processing since the development of the fast Fourie'i’S(ad a reassigned, smoothed Wigner—Ville distribution to

transform(FFT) in the mid 1960’s. Current research is pri- examine synthetic waves in a 107-mm—thick steel plate with
marily concentrated on applications for microelectronics anae_xcellent results. Nlethamm@t al. shqvv_ed that_ the reas-
telecommunications, although most signal-processing techs—'gned spectrogram s capable_ of d|st|ngu|sh|.ng multiple,
nigues are general enough in nature to have potential appl?—IOSer spaced Lamb modes in the ultrasonic frequency
cations in a variety of fields. Recent work in the area of 2Nge- 4 . o
time-frequency representatiofi§FR9 such as the spectro- The cur_rent study extendsy evaluatlr_lg the suitability
gram, the scalogram, the Wigner—Ville distribution, and theof the reassigned spectrogram, the reassigned scalogram, the

Hilbert spectrum shows great promise for applications insmoothed Wigner—Ville distribution, and the Hilbert spec-

nondestructive evaluation. Of particular interémtd impor- :ir;rg_;%;)girscsti t?]ildliﬁirzgg;lij\:;/eosf (t);iz pl:i?g?;;?g&
tance is the use of TFRs to interpret ultrasonic guidedl.sh the robustr?ess.of this cJoIIection of TF??SI,)b comparin
waves. This class of ultrasonic signals can be extremel y paring

complicated, exhibiting dispersion and containing multiple heir ability to resolve the d|sper3|pn relgt|onsh|ps_for Lamb
modes. waves generated and detected with optical techniglaser

This paper compares the effectiveness of four candidatgd®""® and interferometric deteqtor
TFRs to characterize Lamb waves—qguided ultrasonic waves
that propagate in plates. Lamb waves have received extefl: BRIEF REVIEW OF TFRs
sive attention since the study by MindfinRecent experi- A transient time-domain signal, together with its Fourier
mental work has shown that it is possible to obtain a plate’sransformed spectrum, does not provide enough information
dispersion relationship by using the two-dimensional Fouriefor applications that require an understanding of how a sig-
transform (2D-FT) to operate on multiple, equally spaced nal’s frequency changess a function of timeNote that the
waveforms’® Unfortunately, the need for exact, spatially Fourier transform is essentially limited to stationary
sampled data restricts the practicality of the 2D-FT for somesignals—signals that have the same frequency content for all
inspection applications. In contrast, TFRs require only aimes. In contrast, nonstationary signals require signal-
single signal. Recently, Prosset al* used the smoothed processing methods that can quantitatively resolve changes
Wigner—Ville distribution to determine the Lamb modes of in frequency content, as a function of time. A large number
numerically simulated waveforms in an aluminum plate.of TFRs have been developed to analyze nonstationary sig-
They also consider real experimental data for a composit@als, many of which are subsumed in the general framework
plate and identify the, and thea, Lamb modes for frequen- of Cohen'’s clas§.
cies below 500 kHz. Hayasht al® determined the thickness This section provides a brief review of TFRs to furnish a
and the elastic properties of thin metallic foithickness of ~ common foundation and assist in understanding why certain
less than 4Qum) by calculating the group velocity of a single TFRs are more effective in this application—it is not in-
tended to be a comprehensive review, and references that
Author to whom correspondence should be addressed. Electronic maifONtain technical details and mathematical derivations are
laurence.jacobs@ce.gatech.edu provided for an interested reader.
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The short-time Fourier transfort8TFT) divides a time-  this property means that the WVD is real, but not necessarily
domain signal into a series of small overlapping pieces; eachositive[the only signal class that leads to a strictly positive
of these pieces is windowed and then individually FourienyvD is S(t):(a/w)1/4e*(1/2)at2+(1/2)i,6t2+iwot], and that it

transformed. The STFT of a functiors(t) is defined as suffers from signal interference. For example, the WVD can
1 = perfectly resolve a single chirp, but a signal consisting of two
Si(w,t)= z—f e '’s(r)h(7—t)dr, (1) chirps will be decomposed into the two chirps themselves
mJ e plus an additional interference term
whereh(t) is a window function. The energy density spec- To avoid this interference, the WVD is often replaced by

trum of an STFT is defined a&;(w,t)=|S;(w,t)|? and the smoothed WVD
called a spectrogram. -

Instead of a fixed window function, the wavelet trans- Sy(t,f )=f j G(t—t',f—f")Sy(2=f’,t")dt’ df’,
form (WT) uses time-frequency atoms or wavelets. The WT -

of a functions(t) is given by 5
1 (e t—b which filters the original WVD of Eq.(4) with a two-
Sz(a,b)z—f s(t):j;(—) dt, (2)  dimensional filter, G2 An unfortunate side effect of this
Va)-= a smoothing is the introduction of time-frequency smearing

wherea is the scale, ant the time-shift variabléa andb are Wh'Ch null|f|es the WVD. S property of exact Ioca_\llzat_mn of
sines and impulses. This study uses the Gaussian filter

also known as the dilation and the translation parameters,
respectively. A smalla corresponds to a high frequency and
vice versda dilates the mother wavelgt(t), while b simply G(t,f)=\/— e (e -4n(i%p)
shifts the wavelet with respect to time without altering the
frequency contert The energy density function of a WT is The value of thex term in Eq.(6) controls both the posi-
defined asE,(a,b) =[S,(a,b)|? and is called a scalogram. ivity («3=1 guarantees positivityand signal localization

~ Wavelets are derived from a mother wavelgt) by  of the resulting smoothed WVD. While the choice ef8
dilation and translation. This study uses the Gabor wavelet= 1 ;|| guarantee positivity, the resulting distribution be-

(6)

1 comes a spectrogram and no longer possesses the WVD’s
P(t)= 7=\ /@e— 1/2(w0t/“/)2+iwot7 (3)  advantages of signal localizatiohAs a result, it is critical to
Var Y use a filter witha <1 in applications where superior signal

which provides an excellent compromise between time an(l)ocallzatlon(compared (0 the spectrograuis desired.

. o . The final TFR considered in this study is based on the
frequency resolution, because it is based on a Gaussian en-_ . . I ;
velope (which guarantees the best possible time-frequencempmcaI mode decompositiofEMD), that is used to gen-
%rate a set of intrinsic mode functiondMFs). Huang

resolution.®'°Note that the variable controls the sharpness : . : :
r) v P et al*®propose a method with which a complicated time-

of the Gaussian envelope in the time domain. L . : -
. . . domain signal is decomposed into a finite number of IMFs
Since the WT decomposes a signal into wavelet compo-,

nents(and not into sine components like the Fourier trans—that admit well-behaved Hilbert transforms. By using the

. . Hilbert transform, the IMFs produce instantaneous frequen-
form), there is not a direct map from wavelet scade,to . . . . L
. : ciesas functions of timethat enable the identification of a
frequency,w. It is possible, however, to compute the WT of ~. ; . .
! . : signal’'s embedded structuréts mode$. The resulting
a sine, and then calculate the relationship between scale an : ST )
- . energy-time-frequency distribution is called the Hilbert spec-
frequency by determining the val@efor which a scalogram .
) . ; . . trum, and is comparable to the spectrogram, scalogram, or
reaches its maximurm. Finally, if broadband signalésuch . L .
; WVD. This decomposition(the IMF9 is based on local
as laser-generated Lamb wayese analyzed with the WT, . . . e .
. . . roperties of the signal itself, and not an artificial “external
the higher frequencies tend to have lower energies. As : - : !
L I unction, so the instantaneous frequencies &deally)
result, it is advantageous to amplify high-frequency compo-

L . . hysically meaningful.
nents by multiplying the WT with (1/a)'2—this research " L . o _
uses the 1/a scaled Gabor WT. The decomposition of a signa$(t), into its IMFs is

While the STFT is the Fourier transform of small, over- gccompllshed W.'th a "sifting Process that_u_ses the .s_lgnal
. : . . . . itself as the basis for the decomposition. Sifting empirically
lapping, windowed pieces of a time sigrst), the Wigner—

Ville distribution (WVD) is the Fourier transform with re- fheaﬂtz:\fcl:?:rigt‘ii jlr?]ga\lc,za:gtsrm;cd c;ﬁcélrllla;c;ré/orr:ogse;s t;%etr:ialrnal
spect tor of s(t+[7/2])s* (t—[7/2]) [wheres*(t) is the : P 9

. accordingly. The sifting process starts by first determining
complex conjugate o(t)], o’ the maxima and minima dd(t), and then connecting these
o maxima and minima with cubic splinéspline envelopesin
S*(t— 5) e '“Tdr. (4)  order to avoid(possibl¢ erroneous behavior, such as wide
swings of the spline envelopes at the signal’s endpdbtgh
As a result, the WVD is a measure of the signal’'s localthe right and left boundarigs “artificial boundary condi-
time-frequency energy. An advantage of the WVD is that ittions” must be introduced. Huanet al**° propose the ad-
can exactly localize sines or Dirac impulses; this is not thelition of characteristic waves at both ends of the signal. The
case for the spectrogram and the scalogram. Unfortunatelgijfting procesgin brief) calculates the mean value(t), of

sg(w,t)sz s(t+%

—o0
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a point on the maxima and minima spline envelopes angbossible to analyze an EMD’s time-frequency resolution in
subtracts it from the original signad(t), to obtain the first as rigorous a fashion as for the spectrogram, scalogram or
IMF candidate, oth;(t)=s(t)—m(t).1%*®If h, is an IMF  WVD.

(hq is an IMF if the number of extrema and the number of It is possible to improve the time-frequency resolution
zero crossings differs by at most 1, and if the mean value 0bf a TFR with the reassignment methbldthe reassignment

h; defined by its spline envelope is zgrdt is added to the method improves the time-frequency resolution of a TFR by
list of calculated IMFs. If it is not, this step is repeated kor concentrating its energy at a center of gravity. Auger and
siftings—with h;,hy,,...,h;, leading(afterk siftings) to the  Flandrin® provide a computationally efficient way to com-
IMF, hy(t) =hy g 1)(t) —my(t). Once it meets the IMF pute the reassigned values for the spectrogram and the scalo-
definition, hy is subtracted from the original signal, produc- gram, first proposed in Ref. 17. For example, calculating the
ing the residue 1(t) =s(t) —hq,(t). The complete process is reassigned spectrogram amounts to the calculation of the re-
then repeated with, replacing the original signal to calcu- assigned coordinates,@) for each time-frequency pait,

late the next IMF. The search for IMFs is stopped when a) in the original spectrogram, where
predetermined number of IMFs are calculated, or whgn [
becomes monotonic—see the next section for a demonstra- . (Slm(x*t-w)‘slh(x,t,m)

tion of the sifting process. - IS, (x,t,0)|? ®
Having decomposed the signg(t) into n IMF compo- "

nents and a residue,, take the Hilbert transform of every and

IMF component, and add th@espective Hilbert transform P —

t - : Sl (X,t,(,())'Sl (x,t,w)

o every IMF to produce an analytic signal,(t). Next, o= Dh h2 )

determine the phase by Sy, (X,t,0)]

Si,v S1pp and Sy, are the short-time Fourier transforms
(7)  with window functionsh(t), t-h(t), and[dh(t)/dt], respec-

Zsa(t))
' tively. The reassigned spectrogram is then given by

q&(t):arctar( Rsa(D)

and phase unwrapping. The instantanedasgulaj fre- rogry— ij J r_3
quencyw is computed by differentiating the phage with Ei (0" t)=52 Byl )t~ t(t,0)
respect to time. The Hilbert spectrum is then defined as the ;oA
representation of the calculated amplitudes of the analytic +Ole"~6(tw))dt do, (10
signals of the IMFs, as a function of time and instantaneousvhere §(t) is the Dirac impulse, and the integration is per-
frequency—a time-frequency representatiors(). formed over the range of alland w. In summary, the reas-

TFRs suffer from the Heisenberg uncertainty principle,signed spectrogram requires the calculation of three short-
making it impossible tsimultaneoushhave perfect resolu- time Fourier transforms(with three different window
tion in both time and frequency. The time-frequency resolufunctiong. These transforms are then used to move each
tion of a spectrogram depends only on the window size andtalue of the spectrogrant(w,t) [at (t,w)] to its reas-
type and is independent of frequendyA wide window  signed coordinatesf (@), calculated with Eqs(8) and (9).
gives better frequency resolution, but worsens the time rescsinally, Eq. (10) is used to sum up values assigned to the
lution, whereas a narrow window improves time resolutionggme {,&) bin. Note that the reassignment method is not
but worsens frequency resolution. In contrast, the scalografsstricted to a specific TFR, but can be applied to any time-
tiles the time-frequency plane in an irregular fashion, resultfrequency shift invariant distribution of Cohen’s cldsghe

ing in a frequency-dependent time-frequency resolution. pyjpert spectrum, however, does not meet this requirement.
The WT of small frequency values provides good frequency

resolution, but the time resolution is bad. On the other hand,
the WT of large frequency values provides poor frequenc
resolution, but the time resolution is good. The WVD auto-
matically satisfies the uncertainty principle of a sigas Broad-bandwidth Lamb waves are generated with a
seen in the perfect localization of impulses and sinbat  Nd:YAG laser (4—6-ns pulsg and measured with a high-
interference terms appear in multicomponent sighdls. fidelity (resonance-fredaser interferometer over a wide fre-
Smoothing the WVD with a Gaussian filter removes the in-quency rang€200 kHz to 10 MH2.2 Figure 1 shows #ran-
terference terms, but changes the uncertainty of the resultingieny time-domain signal with a propagation distance of 11
TFR—its uncertainty is quantified by the standard deviationgm measured in a 0.93-mm aluminum plate. The Nd:YAG
(time and frequengyof the Gaussian filter, noting that the laser fires at=0 and generates a Lamb wave at the source
smoothed WVD becomes spectrogram-like with a Gaussiatocation. (Note that the electromagnetic discharge of the
filter that guarantees positivityaef8=1). In contrast, the Nd:YAG's firing causes a spurious noise spikeg&t0.) The
time-frequency accuracy of the Hilbert spectrum is depensignal in Fig. 1 is discretized with a sampling frequency of
dent on the accuracy of the EMD—if the decomposition into100 MHz, low-pass filtered at 10 MHz, and represents an
IMFs does not capture the signal’s real behavior, the resultaverage of 100 Nd:YAG shots to increase the signal-to-noise
ing Hilbert spectrum will not give precise time-frequency ratio (SNR). It is important to note that the broad bandwidth,
results. Since the EMD is an empirical method, it is nothigh fidelity, and high SNRdue to signal averagingf this

Il. APPLICATION OF TFRs TO LASER-
GENERATED/DETECTED LAMB WAVES
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FIG. 1. Time-domain signal—multimode Lamb wave.

time-domain signal are crucial properties, making it an ideal
signal to compare the effectiveness of the four candidate By 1 2 3 4 5 6 7 8 9 10
TFRs. frequency [MHz]

Assessment of the accuracy of the dispersion curves ob- ' ' _
tained with the candidate TFRs requires analytical results Oiﬁtiih (E;?cﬁiﬁgged scalogram of multimode Lamb wave, plus analytical
the Rayleigh—Lamb frequency spectrdnSolution of the ’

Rayleigh—Lamb spectrum provides dispersion curves in th ) i
frequency-wave-numbéf, k) domain, whereas a TEFR maps f)roken lines above 5@s are most likely caused by reflec-
a time-domain signal into the time-frequency domain. Thellons from the Elates rt])oundarles. ¢ ianed |
group velocities for each of the different modes are deter- Flgfurrt]a 3s OWS t 3 squgre'rootl ora rTas|S|grée .shca 0
mined by numerically differentiatindg with respect tok to gram of the same time-domain sigri&lg. 1) calculated wit

obtain the analytical dispersion curves in the time-frequency? Gab_or \{vavelet. Although the time resolution at high fre-
domaint® guencies is very good, there is not enough frequency resolu-

Since Niethammeet al” provide details on characteriz- tion to separate the different modes at the high frequencies

ing Lamb waves with the reassigned spectrogram, this pap £ ab9ve 2 MHg The reassigned scalogr_am Is effective
briefly presents the results from this TFR, and only for com-" re?olvmg theay Imod_e up toh 10 MI—:]z—an |mportatr)1t fef?-
parison purposes. Figure 2 shows a contour plot of the squafd'® for some applications. The WT has proven to be effec-

root of the reassigned spectrogréB84-point Hanning win- tive in many diverse applicatior‘(su.ch as the detection pf
dow) of the time-domain signal in Fig. 1, together with the radar chirpg but a common theme in most of these applica-

analytically obtained dispersion curves as solid lifelb of tions is the need for good time resolution at high.frequ.encies,
the subsequent TFR plots include these analytical ciurves?"d 900d frequency resolution at low frequencies. Figure 3
The reassigned spectrogram provides a crisp definition of th(élearly shows th_at this a_\ttnbute of the WT is not advanta-
individual modes, and these experimental modes are locafi®oUs for resolving multiple, broadband Lamb modes. Note

ized to the analytical curves. There is excellent definition of "t an additional portion of this reseattexamines the
seven modess,—s, andao—as) through a wide frequency Mexican-hat WT and shows its reassigned scalogram has

range(up to 10 MH2. Note a generaland significantad- ~ €Ve" less resolution than the Gabor WT—the poor resolution
vantage of TFRs in interpreting multimode Lamb Waves—in Fig. 3 is not QUe to_improper selection of a mother wave-
they enable the clear identification of the arrival time of thel®l: Put instead is an inherent property of the WT.

different modesge.g.,sy at 21 us oray at 35us). Finally, the The WVD apd the smoothed. W\_/D of the same time-
domain signal(Fig. 1) are shown in Figs. 4 and 5, respec-

tively. The results are stored in a 60800 matrix, where

60 e columns correspond to a specific time and rows to a specific
55 frequency(the frequency axis is equally spaced between 0
LS and 10 MHz, and the time axis has Qu&- discretization
50 steps. The WVD of Fig. 4 is smoothed with a X121
45k Gaussian filtewhich smoothes over a domain of 350 kHz
e ' X 2.1u9) to create the smoothed WVD of Fig. 5. The selec-
= tion of this particular filter size is based on “visual” com-
sy parisons, and note that it hag3<1, so the resulting distri-
30+ bution is not positivethe negative values are set to zero in
- Fig. 5, but it provides good signal localization. Figure 4
N shows that the WVD does a fairly good job in resolving the
207 1 ao and thes, modes(they are both very localizedver a
15 I SN S SR SN R large frequency rangeag through the entire 10 MHz, and
o 1 2 3 4 5 6 7 8 9 10 sy between 3 and 10 MHz. Unfortunately, all the other

fi MH : L
requency [MFz] modes are obscured by interference terms and are not visible.

FIG. 2. Reassigned spectrogram of multimode Lamb wave, plus analytical € smoothed V'VVP.Of Fig. 5 prOViqes a very good repre-
solution (solid lines. sentation of the individual modes, with tlsg anday modes
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FIG. 4. Wigner—Ville distribution of multimode Lamb wave, plus analytical « 107
solution (solid lines. 4 T T T
o ) ) 3.5
clearly visible through the entire frequency bandwitth10
MHz), thea; mode appears from 2 to 5 MHz, and traces of 3

thes;, s,, anda, modes are evident. There is a general lack
of time-frequency resolutioftlarity) in the smoothed WVD.
For example, it is difficult to positively identify the indi-
vidual modes for frequencies above 5 MHz and times greater

I
[
T

amplitude
(a3

than 50 us. The dispersion curves developed with the 15

smoothed WVD(Fig. 5) render a mode resolution of about

the same quality as the un-reassigned spectrodais.im- 1

portant to note that it is possible to use a reassignment algo-

rithm on the smoothed WVD' (the smoothed WVD of Fig. 08 ™ e 30 35 40 45 50 55 60
5 hasnot been reassignedbut unlike the reassigned spec- (b) t [us]

trogram and scalogram, the reassignment calculations for ”]SG. 6. (a) First four intrinsic mode functionsfirst to fourth from top to

;moothed WVQ are computatigqally intgnsi()fé;st requir- bottom) of multimode Lamb wave(b) Fifth through seventh intrinsic mode
ing the smoothing proceduredifficult to implement, and functions(from top to botton of multimode Lamb wave.

time consumingcomputationally.

The first step for the Hilbert spectrum is to decompose(l00 KHz or less to be of importance for this application.

the time-domain signal of Fig. 1 signal into IMFs. Figure 6 giq, re 7 shows a contour plot of the Hilbert spectrum com-
shows the first seven IMFs, noting that the sifting process '?)Uted from these IMFs, and it is far from being a “clean”

stopped when a monotonic IMfthe 10th occurs._Figure 6” representation of the dispersion curves of this signal. Only
shows that basically only the first 5 IMFs contain “useful” yhe 5 “mode is definitively present—a large number of points
information, since IMFs above 5 are too low in frequencyare clustered around tsg mode between 3 and 5 MHz, but

60

0}' \,l-\j Vo
‘ 2y ﬁ)‘)‘ r

=7y IS

0 2 -+ 6 8 10 0 1 2 3 4 5 6 7 8 9 10
frequency [MHz] frequency [MHz]

FIG. 5. Smoothed Wigner—Ville distribution of multimode Lamb wave, FIG. 7. Hilbert spectrum of multimode Lamb wave, plus analytical solution
plus analytical solutiorgsolid lines. (solid lineg.
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FIG. 8. (a) Hilbert spectra of first IMF, plus analytical solutigsolid line9. (b) Hilbert spectra of second IMF, plus analytical solutigolid lines. (c) Hilbert
spectra of third IMF, plus analytical solutidsolid lines. (d) Hilbert spectra of fourth IMF, plus analytical solutigsolid lines.

this mode is not clearly defined. In order to interpret thestantaneous frequency for an IMF for any titnés a result,
Hilbert spectrum of Fig. 7, Fig. 8 shows the instantaneoughe EMD and Hilbert spectrum cannot resolve the multimode
frequencies of the first four IMFs. By analyzing the Hilbert dispersion curves for this plate.

spectra of each IMF, it is possible to determine exactly  An inherent problem associated with all window-based
which IMFs contribute to exactly which features in the Hil- TFRs(and thus their respective reassigned representaii®ns
bert spectrum. For example, IMF 1 contains most ofdhe the “ladder-like” effect that occurs when the distance be-
and thesy modes between 4 and 10 MZig. 8a)], but fails  tween two mode lines is less than the uncertainty of their
to localize its energy exactly on either mode—the first IMFrepresentations. These mode lines will then interfere with
scatters its energy around bah andsy. Also note the high each other, resulting in a smeared representation—this be-
level of noise present in IMF 1. IMF 2 contributes to the havior is particularly evident when mode lines intersect each
frequency band from 2 to 6 MHEFig. 8b)]; except for a  other(e.g., the intersection of th®, ay, anda; modes at 2
very small part of thea;, mode at approximately 3 MHz, MHz in Figs. 2—5. Image-processing methodologies that
there is not an obvious correlation between the analyticalake the specific mode structure into account are a possible
modes and the resulting Hilbert spectrum. IMF 3 is quiteremedy for this smearing. Note that the comparison between
effective in representing tha, mode from 1 to 3 MH4Fig.  these TFRs is generic enough to be extended to any plate
8(c)], but it fails to represent the other modes in the samehickness and material. As an example of the general nature
frequency range. IMF 4 constitutes thg mode from 35 to  of these results, the reassigned spectrogram has been used to
45 us [Fig. 8(d)]. It appears that each IMF specializes in asuccessfully resolve the dispersion relationships for multi-
certain frequency range for these laser-generated/detecteabde circumferential waves in a cylind€r.

Lamb waves. This approach works fine for frequency ranges

where there are only a few modes present, but it clearly faildV- CONCLUSION

for frequency ranges that contain multiple modes. This fail-  This paper establishes the effectiveness of four candi-
ure for multiple modes occurs because there is only one indate TFRs to analyze broadband, multimode ultrasonic
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