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ABSTRACT

In this note, we segment and topologically classify brain
vessel data obtained from magnetic resonance angiography
(MRA). The segmentation is done adaptively and the classi-
fication by means of cubical homology, i.e. the computation
of homology groups. In this way the number of connected
components (measured byH0), the tunnels (given byH1)
and the voids (given byH2) are determined, resulting in a
topological characterization of the blood vessels.

1. INTRODUCTION

Many computer application areas involve topological ques-
tions: image processing, cartography, computer graphics,
molecular modeling to name but a few [1]. The main reason
for the application of topological methods is their significant
reduction in the amount of data. The emphasis is on shape
as opposed to metric. One approach for the computation of
topological information from image data is the theory of cu-
bical homology [2]. Cubical homology lends itself naturally
to image processing, since it deals directly with the voxels
in three-dimensional images. No additional triangulation is
necessary, facilitating efficient computer algorithms for the
computation of the cubical homology.

In this note, the cubical homology approach is used to
analyze three-dimensional magnetic resonance angiographs
of brain blood vessels. Since simple thresholding (to sep-
arate the blood vessels from the overall brain image) of a
gray-level image may not lead to satisfactory results, we use
an adaptive thresholding algorithm (described in Section 2).
The thresholding yields a binary segmentation, with the in-
terior of the blood vessels represented as solids. This binary
segmented image constitutes the input data for the homol-
ogy computation; see Section 3. Section 4 presents the re-
sult of the combined segmentation/homology algorithm for

the blood vessel image. The paper concludes with a sum-
mary (see Section 5), an outlook on future work, and work
under progress.

2. ADAPTIVE THRESHOLDING

The segmentation of the data is performed using a
knowledge-based approach [3, 4, 5]. By means of a mod-
ified Bayesian maximuma posteriori (MAP) algorithm (to
be described below), the pixels of each cross sectional im-
age are classified as either vessel or background. According
to Bayes’ Rule, the posterior probability that a given pixel
belongs to a particular classc, given its intensityv is:Pr(Ci = cjVi = v) =Pr(Vi = vjCi = c) Pr(Ci = c)P Pr(Vi = vjCi = ) Pr(Ci = ) : (1)

Note that the denominator serves simply as a normalizing
factor. This normalization is automatically enforced in our
implementation, and so its explicit calculation is unneces-
sary.

More precisely, thea priori class likelihood for each
pixel is defined as a uniform distribution over the avail-
able classes. Posterior probabilities for each class are then
calculated based on Gaussian distributions. Given initial
means and standard deviations, the likelihood of a partic-
ular pixel i having a certain valuev given that it is in classc 2 fvessel; backgroundg is:Pr(Vi = vjCi = c) = 1p2��c exp��12 (v � �c)2�2c � :

(2)

Each class’s posteriors calculated according to Bayes’ Rule
(1), are then anisotropically smoothed using the affine heat



equation filter@P c@t = ((P cy )2P cxx � 2P cxP cyP cxy + (P cx)2P cyy)1=3: (3)

(Three iterations of the filter were sufficient. After each it-
eration the two probabilites were renormalized so that their
sum would be one.) Then the maximum posterior probabil-
ity at each pixel is chosen for the final segmentation by:C�i = argmaxc 2 fvessel; backgroundgPr�(Ci = cjVi = v);

(4)

wherePr� is the smoothed version of the posteriors. As the
algorithm progresses through the set of 2D slices, posteri-
ors from one slice are used as the priors for the next slice.
In addition, a small amount of smoothing along the cross-
sectional axis is used, and the Gaussian distribution parame-
ters for each class are updated according to the results of the
last segmentation. Together, these enforce continuity and
provide for knowledge transfer between the slices. In this
way, the system effectively “learns” the appropriate class
and intensity distributions as it advances through the data
set.

One important aspect of the posterior to prior trans-
fer is the use of a lower limit. To allow for new struc-
tures to develop in the segmentation, priors are set equal
to the previous posterior probabilitiesor a given minimum
value, whichever is greater. This prevents regions of zero-
probability from arising, which would inhibit such struc-
tures from having sufficiently large posteriors to be classi-
fied via the MAP approach.

3. CUBICAL HOMOLOGY

Cubical homology is ideally suited for digital images, due
to its ability to handle voxels or pixels directly. Whereas
homology is by now a standard tool of algebraic topology
(cf. [6]), cubical homology is more recent [7, 8]. Homology
aims at counting holes in a topological space. For three-
dimensional image data (as investigated in this note) three
non-trivial homology groupsH0, H1 andH2 exist. The
number of connected components, tunnels and voids present
in the image are given by the Betti numbers�0, �1 and�2
respectively; where�i is the rank of the homology groupHi.

MRA was used to produce a 256 by 256 by 41 volu-
metric image of the brain. Thus the raw data consists of256 � 256 � 41 voxels each of which is assigned a gray
scale between 0 and 255. As was noted above our goal is to
classify the topological structure of the blood vessels. Con-
sider for the moment the following idealized version of the
problem. LetX = [0; 256] � [0; 256] � [0; 41] represent
the region being imaged and letg : X ! R be a smooth

function whose values are the gray scales of the image. Fur-
thermore, assume that there is a unique gray scale values0
which corresponds to the blood vessels. Then, the blood
vessels are given byB = g�1(s0). Observe that since one
would expectg to be a highly nonlinear function, even this
idealized implicit description ofB does not shed light on
the structure of the vessels. For this reason we turn to ho-
mology.

As was noted earlier, the ranks of homology groupsH0(B), H1(B), andH2(B) provide information on the
number of distinct pieces, tunnels, and bounded regions inX defined byB. An obvious question at this point, is how
sensitive are the homology groups to perturbations ofB.
We can ask this question in two ways: (1) letf : X ! R
be a perturbation ofg and letB0 = f�1(s0), or (2) letB0 = g�1(s1) wheres1 6= s0. Morse theory [9] guar-
antees that iff andg are sufficiently close or if there are
no critical values ofg in the interval[s0; s1], thenH�(B)
andH�(B0) are the same. In fact, in the latter case, ifB00 := g�1([s0; s1]), thenH�(B) is the same asH�(B00).

Ignoring the noise, the raw data differs from the ide-
alized version in two fundamental points. First, the gray
scales associated to the vessels are not confined to a single
value, and second, the data takes a constant value on each
voxel and changes discontinuously from voxel to voxel. The
last comment of the previous paragraph indicates that if the
range of the gray scales representing the blood vessels is not
too large, then the homology is well defined. The second
issue is overcome by the fact that homology is a combina-
torial theory, i.e. it can be computed by decomposing the
space into a finite number of units. In the traditional sim-
plicial homology, these units are simplices. In the cubical
homology these units are pixels/voxels and their respective
vertices, edges and higher-dimensional faces.

Formally, anelementary cube Q is given by the finite
product [10] Q = I1 � I2 � � � � � Id � Rd ; (5)

whereIi is either a singleton (degenerated) interval I =[l; l] = [l] or an interval of unit lengthI = [l; l + 1] for
somel 2 Z. The number of non-degenerate components inQ is called thedimension of Q (dimQ). If a setX � Rd
can be written as a finite number of elementary cubes, it
is called acubical set. The set of all elementary cubes is
denoted byK, and the set of all elementary cubesQ in Rd
with dimQ = k byKk, for k 2 N.

Definition 1
Let X � Rd be a cubical set. LetK(X) := fQ 2 K j Q � Xg andKk(X) := fQ 2 K(X) j dimQ = kg.

To pass from the combinatorial structure of the elementary
cubes, e.g. the collection of voxels, to the algebraic structure



of homology groups, one constructs the free abelian group
of k-chains,Ck(X) by declaring each element ofKk(X)
to be a distinct generator (or basis element). LetCk denoteCk(Rd).

Givenk 2 Z, the cubical boundary operator@k : Ck ! Ck�1 (6)

is the group homomorphism defined on every elementary
cube Q 2 Kk as the alternating sum of its(k � 1)-
dimensional faces. Due to linearity this boundary operator
extends to all k-chains. A k-chainz 2 Ck(X) is called a
cycle in X if @kz = 0. A k-chain z 2 Ck(X) is called
a boundary in X if there exists ac 2 Ck+1(X) such that@k+1c = z. The set of all cycles and the set of all bound-
aries inX form subgroups inCk(X) and are given byZk(X) := ker@Xk = Ck(X) \ ker@k (7)Bk(X) := image@Xk+1 = @k+1 (Ck+1(X)) (8)

respectively.

Definition 2
The k-th cubical homology groupof X is the quotient groupHk(X) := Zk(X)=Bk(X):
The Betti numbers�k are then given as�k := rank(Hk(X)): (9)

The elements ofHk(X) are called thek-generators of X .
The homology groups are computed as (for example) de-
scribed in [8]. Generators and Betti numbers facilitate the
topological characterization of the dataset (see Section 4).

4. COMPUTATIONAL RESULTS

The computation was performed on a 256 by 256 by 41
volumetric image of the brain obtained by angiography
provided by the Surgical Planning Lab of Brigham and
Women’s Hospital. Figure (1) shows two exemplatory sagit-
tal slices through the brain. The complete three-dimensional
image was segmented (see Section 2); see Figure (2) for
a rendered image of the segmentation. The Betti numbers
were then computed from the binary images, with�0 = 16
representing the number of connected components, i.e. the
number of detected vessels/vessel-parts. To compute the
generators, the hull of the binary image was generated to
yield tunnels representing the vessels. In a preliminary pro-
cessing step the cubes of the inverted binary image were
contracted, reducing the number of cubes from15;625 ini-
tially to 870. The homology was computed from the con-
tracted representation, and resulted in the Betti numbers�0 = 9, �1 = 8 and�2 = 22, corresponding to nine con-
nected components, eight tunnels (vessels that run from one

boundary of the cuboid to another and branches of these
vessels) and22 voids (the vessel parts that are unconnected
and lie entirely in the cuboid). The actual computation of
the homology of the complex took about 3 seconds on a
Sun Ultra 60 with 512 MB of RAM. Figure (3) shows the
skeleton of the cubical complex of the vessels overlaid by
the computed one-generators. They enclose the vessels, but
are neither minimal nor do they necessarily enclose just one
branch of a vessel. To ensure these two properties further
research is needed and is currently being conducted.

5. CONCLUSION

In this paper we used an adaptive thresholding algorithm to
segment vessels from an MRA image. The topology (Betti
numbers and generators) of the binary segmented three-
dimensional image was calculated and illustrated by an im-
age of the skeleton of the complex including a set of one-
generators. Future work will deal with the computation of
minimal generators and their positioning along the branches
of the vessels. The authors believe that the method has the
potential of becoming a valuable tool for many application
areas, reducing information that is difficult to grasp visually
to topological key quantities. Furthermore, since the ho-
mology computations are dimension independent, the anal-
ysis of higher dimensional data (e.g. 4D-data) will become
feasible, which would be even more demanding to assess
visually.
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Fig. 2. Rendering of the segmented blood vessels.

Fig. 3. Skeleton of the cubical complex of the blood vessels, in-
cluding one-generators.


