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Abstract

Visual tracking using active contours is usually accom-
plished in a static framework. The active contour tracks the
object of interest in a given frame of an image sequence,
and then a subsequent prediction step ensures good initial
placement for the next frame. This approach is unnatural;
the curve evolution gets decoupled from the actual dynam-
ics of the objects to be tracked. True dynamic approaches
exist, all being marker particle based, and thus prone to
the shortcomings of such particle-based implementations.
In particular, topological changes are not handled natu-
rally in this framework. The now ”classical” level set ap-
proach is tailored for codimension one evolutions. However,
dynamic curve evolution is at least of codimension two. We
propose a natural, efficient, level set based approach for dy-
namic curve evolution which removes the artificial separa-
tion of segmentation and prediction, while retaining all the
desirable properties of level set formulations. This is based
on a new energy minimization functional which for the first
time puts dynamics into the geodesic active contour frame-
work.

1. Introduction

Typical geometric active contours [2, 8, 10, 12] are static.
However, variational formulations many times appear to be
dynamic, because the Euler-Lagrange equations are solved
by gradient descent, introducing an artificial time param-
eter. To use static active contours for visual tracking one
usually uses a two step approach. First, the curve evolves
on a static frame until convergence (or for a fixed num-
ber of evolution steps). Second, the location of the curve
in the next frame is predicted. In the simplest case this pre-
diction is the current location. Better prediction results can
be achieved by using optical flow information for exam-
ple. Here, the curve is not moving intrinsically, but instead
is placed in the solution’s vicinity by an external observer

(the prediction algorithm). The curve is completely unaware
of its state. In contrast, the approaches by Terzopoulos and
Szeliski [16] or Peterfreund [14] view curve evolution from
a dynamical systems perspective. Both methods are marker
particle based and are fast, but they might suffer from nu-
merical problems (e.g. in the case of sharp corners (see [15]
for details)). In the static case, level set methods are known
to handle sharp corners, topological changes, and to be nu-
merically robust. In their standard form, they are restricted
to codimension one problems, and thus not suitable for dy-
namic curve evolution. Extensions of level set methods to
higher codimensions exist and a level set formulation for
dynamic curve evolution is desirable [11]. We will present
a simple level set based dynamic curve evolution frame-
work in this paper. Section 2 reviews the fundamentals of
parametrized dynamic curve evolution. Section 3 introduces
geometric dynamic curve evolution. The level set formula-
tion is given in Section 4. Sections 5 and 6 deal with er-
ror injection into the evolution equations and occlusion de-
tection respectively. Section 7 presents some simulation re-
sults.

2. Parametrized Dynamic Curves

We consider the evolution of closed curves of the form
C : S1 × [0, τ) �→ R

2 in the plane. Where C = C(p, t) and
C(0, t) = C(1, t) [6], with t being the time, and p ∈ [0, 1]
the curve’s parametrization. The classical formulation for
dynamic curve evolution as proposed by Terzopoulos and
Szeliski [16] is derived by means of minimization of the ac-
tion integral

L =
∫ t1

t=t0

L(t, C, Ct) dt, (1)

where the subscripts denote partial derivatives. The La-
grangian L = T − U is the difference between the kinetic
and the potential energy. The potential energy of the curve
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is given by

U =
∫ 1

0

Uel + Urig + Upf dp

=
∫ 1

0

1
2
w1‖Cp‖2 +

1
2
w2‖Cpp‖2 + g(C) dp,

where g is some potential function (with the desired lo-
cation of the curve forming a potential well); Uel, Urig ,
and Upf are the elasticity, rigidity and potential field con-
tributions, with their (possibly position-dependent) scalar
weights w1, and w2. A common choice for the potential
function is

g(x) =
1

1 + ‖G ∗ ∇I(x)‖r
,

where x = [x, y]T are the image coordinates, I is the im-
age, r is a positive integer, and G is a Gaussian of variance
σ2. The kinetic energy is

T =
∫ 1

0

1
2
µ‖Ct‖2 dp,

where µ corresponds to mass per unit length. The La-
grangian used is then

L =
∫ 1

0

1
2
µ‖Ct‖2 − 1

2
w1‖Cp‖2 − 1

2
w2‖Cpp‖2 − g(C) dp.

Computing the first variation δL of the action integral (1)
and setting it to zero yields the Euler-Lagrange equations
for the candidate minimizer [17] in force balance form:

µCtt =
∂

∂p
(w1Cp) −

∂2

∂p2
(w2Cpp) −∇g.

This formulation is not intrinsic with respect to the geome-
try of the curve, since it is dependent upon its parametriza-
tion, p (see Xu et al. [18] for a discussion on the relation-
ship between parametric and geometric active contours).

3. Geometric Dynamic Curves

Minimizing equation (1) using the Lagrangian

L =
∫ 1

0

(
1
2
µ‖Ct‖2 − g

)
‖Cp‖ dp,

instead, results in

µCtt = −µ(T · Cts)Ct − µ(Ct · Cts)T −
− (

1
2
µ‖Ct‖2 − g)κN − (∇g · N )N , (2)

which is intrinsic and a natural extension of the geodesic
active contour approach [2, 8]. Here N is the unit inward

normal, and T = ∂C
∂s the unit tangent vector to the curve.

κ = Css · N denotes curvature and s is arclength [3].
Equation (2) describes a curve evolution that is only in-

fluenced by inertia terms and information on the curve it-
self. To increase robustness, region-based terms (see for ex-
ample [13, 20, 19]) could be included in the formulation.

Normal Geometric Dynamic Curve Evolution

To be able to interpret the behavior of the curve evolu-
tion equation (2) it is instructive to derive the correspond-
ing evolution equations for the tangential and normal veloc-
ity components of the curve.

We can write

Ct = α(p, t)T + β(p, t)N , (3)

where the parametrization p is independent of time and trav-
els with its particle, and α and β correspond to the tangen-
tial and the normal speed functions respectively. By sub-
stituting Equation (3) into Equation (2) and using results
from [9] we obtain the two coupled partial differential equa-
tions:

αt = −(α2)s + 2καβ, (4)

βt = −(αβ)s +
[
(
1
2
β2 − 3

2
α2) +

1
µ

g

]
κ − 1

µ
∇g · N .

Clearly, −(α2)s and −(αβ)s are the transport terms for
the tangential and the normal velocity along the contour.
gκ−∇g·N is the well known geodesic active contour image
influence term. Note, that in contrast to the static geodesic
active contour, this term does not directly influence the
curve’s position, but the curve’s normal velocity. It resem-
bles a force. Finally, the terms 2καβ and ( 1

2β2 − 3
2α2)κ

incorporate the dynamic elasticity effects of the curve. If
we envision a rotating circle we can interpret the term
( 1
2β2 − 3

2α2)κ as a rubberband (i.e. if we rotate the cir-
cle faster it will try to expand, but at the same time it will
try to contract due to its then increasing normal velocity;
oscillations can occur). If we restrict the movement of the
curve to its normal direction (i.e. if we set α = 0) we ob-
tain

βt =
1
2
β2κ +

1
µ

gκ − 1
µ
∇g · N . (5)

This is a much simpler evolution equation. In our case it is
identical to the full evolution equation (4) if the initial tan-
gential velocity is zero. The image term g only influences
the normal velocity evolution β. It does not create any ad-
ditional tangential velocity.

If there is an initial tangential velocity, and/or if the im-
age influence g contributes to the normal velocity β and
to the tangential velocity α, the normal evolution equation
will not necessarily be equivalent to the full evolution equa-
tion (4). We can always parametrize a curve such that the
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tangential velocity term vanishes. Specifically, if we con-
sider a reparametrization

C(q, t) = C(φ(q, t), t),

where φ : R × [0, T ) �→ R, p = φ(q, t), φq > 0 then

∂C
∂t

=
∂C
∂t

+
∂C
∂p

∂φ

∂t
.

The time evolution for C can then be decomposed into

Ct = αT +βN = (α(φ(q, t), t)+‖Cp(φ(q, t), t)‖φt)T +βN ,

where

α = α(φ(q, t), t) + ‖Cp(φ(q, t), t)‖φt

β = β(φ(q, t), t).

If we choose φ as

φ(q, t)t = − α(φ(q, t), t)
‖Cp(φ(q, t), t)‖

we obtain
Ct = βN ,

which is a curve evolution equation without a tangential
component. For all times, t, the curve C will move along
its normal direction. However, the tangential velocity is still
present in the update equation for β. After some algebraic
manipulations, we arrive at

µ(βpφt + βt) =
(

1
2
µβ2 + g

)
κ − (∇g · N )N , (6)

which depends on the time derivative of the reparametriza-
tion function φ, which in turn depends on the tangential
component α. The left hand side of Equation (6) represents
a transport term along the curve, the speed of which de-
pends on the time derivative of the reparametrization func-
tion φ.

4. Level Set Formulation

There are different ways to implement the derived curve
evolution equations (see for example [11]). We distinguish
full and partial level set implementations. In the full case,
curves evolve in a space consistent with the dimensionality
of the problem. Geometric dynamic curve evolution would
thus be performed in R

4 in the simplest case. Normal ge-
ometric dynamic curve evolution would be at least a prob-
lem in R

3. If n is the dimensionality of the problem the
curve will be implicitly described by the zero level set of
an n-dimensional vector distance function or the intersec-
tion of n − 1 hypersurfaces [5]. Full level set approaches

of this form are computationally expensive, since the evo-
lutions are performed in high dimensional spaces. Further-
more, it is not obvious how to devise a methodology com-
parable to a narrow band scheme [4] in the case of a repre-
sentation based on intersecting hypersurfaces.

A partial level set approach uses a level set formulation
for the propagation of an implicit description of the curve
itself (thus allowing for topological changes), but explicitly
propagates the velocity information associated with every
point on the contour by means of possibly multiple trans-
port equations. It sacrifices computational efficiency (a nar-
row band implementation is possible in this case, and the
evolution is performed in a low dimensional space) for ob-
ject separation: tracked objects that collide will be merged.

In what follows we will restrict ourselves to a partial
level set implementation of the normal geometric dynamic
curve evolution.

Partial Level Set Approach for the Normal Geo-
metric Curve Evolution

The curve C is represented as the zero level set of the
function

Φ(x(t), t) : R
2 × R

+ �→ R,

where x(t) = (x(t), y(t))T is a point in the image plane.
We assume Φ > 0 outside the curve C and Φ < 0 inside
the curve C. Since the evolution of the curve’s shape is in-
dependent of the tangential velocity we can write the level
set evolution equation for an arbitrary velocity xt as

Φt + ‖∇Φ‖N · xt = 0, (7)

where

N = − ∇Φ
‖∇Φ‖ .

In our case xt = β̃N , where

β̃(x, t) = β(p, t) (8)

is the spatial normal velocity at the point x. This simplifies
Equation (7) to

Φt − β̃‖∇Φ‖ = 0. (9)

Substituting Equation (8) into Equation (5) and using the re-
lation

κ = ∇ ·
( ∇Φ
‖∇Φ‖

)
yields

β̃t − β̃∇β̃
∇Φ
‖∇Φ‖ = (

1
2
β̃2 +

1
µ

g)κ +
1
µ
∇g · ∇Φ

‖∇Φ‖ . (10)

The left hand side of Equation (10) is the material deriva-
tive for the normal velocity. If we choose to use extension

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04) 

1063-6919/04 $20.00 © 2004 IEEE 



velocities, Equation (10) simplifies to

β̃t = (
1
2
β̃2 +

1
µ

g)κ +
1
µ
∇g · ∇Φ

‖∇Φ‖ .

Since the extensions are normal to the contours, normal
propagation of the level set function will guarantee a con-
stant velocity value along the propagation direction (up to
numerical errors). Specifically ∇β̃⊥∇Φ in this case and
thus

∇Φ · ∇β̃ = 0.

For an alternative derivation, we can change our La-
grangian, and extend it over a range of level sets. For each
time t, and 0 ≤ r ≤ 1 let

C(r)(t) := {(x, y) ∈ R
2 : Φ(x, y, t) = r}.

Using the Lagrangian

L =
∫ 1

0

∫
C(r)(t)

(
1
2
µβ2 − g

)
ds dr

we obtain the action integral

L =
∫

t

∫ 1

0

∫
C(r)(t)

(
1
2
µβ2 − g

)
ds dr dt,

which is

L =
∫ 1

0

∫ T

0

∫
C(r)(t)

(
1
2
µβ2 − g) ds dt dr

=
∫ T

0

(∫ 1

0

∫
C(r)(t)

(
1
2
µβ2 − g) dH1	C(r)(t) dr

)
dt

=
∫ T

0

∫
Ω

(
1
2
µβ̃2 − g)‖∇Φ‖ dx dy dt, (11)

where H1 is the one-dimensional Hausdorff measure and
we applied the coarea formula (see [1]). This casts the mini-
mization problem into minimization over an interval of level
sets in a fixed coordinate frame (x and y are time indepen-
dent coordinates in the image plane). Using Equation (9) we
can express β̃ as

β̃ =
Φt

‖∇Φ‖ . (12)

Substituting (12) into Equation (11) yields

L =
∫ T

0

∫
Ω

(µ
Φ2

t

2‖∇Φ‖ − g‖∇Φ‖) dx dy dt := S[Φ],

which is the new Φ-dependent action integral to be mini-
mized. Then, δS = 0 if and only if

∂

∂t

(
Φt

‖∇Φ‖

)
= ∇ ·

((
g

µ
+

Φ2
t

‖∇Φ‖2

) ∇Φ
‖∇Φ‖

)
.

The curve evolution is thus governed by the equation sys-
tem:

β̃t = ∇ ·
( ∇Φ
‖∇Φ‖ (

g

µ
+

1
2
β̃2)

)
, (13)

Φt = β̃‖∇Φ‖.
Expanding Equation (13) yields again

β̃t = (
1
2
β̃2 +

1
µ

g)κ +
1
µ
∇g · ∇Φ

‖∇Φ‖ + β̃∇β̃ · ∇Φ
‖∇Φ‖ .

Note, that the equation system (13) constitutes a conserva-
tion law for the normal velocity β̃. The propagation of the
level set function Φ is described (as usual) by an equation
of Hamilton-Jacobi type.

5. Error Injection

We know that a system governed by a time-independent
Lagrangian (i.e. Lt ≡ 0) will preserve energy [17]. This
is not necessarily desirable. Envision a curve evolving on a
static image with an initial condition of zero normal velocity
everywhere and with an initial position of nonminimal po-
tential energy. The curve will oscillate in its potential well
indefinitely. A solution to this problem is to dissipate en-
ergy (see [16]). This can be accomplished by simply adding
a friction term to Equation (13). However, to increase ro-
bustness it is desirable to be able to dissipate and to add en-
ergy to the system in a directed way. A principled way to do
this would be to use an observer to drive the system state of
the evolving curve to the object(s) to be tracked. In our case
this is not straightforward, since we are dealing with an in-
finite dimensional nonlinear system. In order for the curve
to approximate the dynamic behavior of the tracked objects
we use error injection. This will guarantee convergence of
the curve to the desired object(s) if the curve is initially in
the appropriate basin of attraction.

We need an estimated position and velocity vector for ev-
ery point on the curve C. Define the line through the point
x(s) on the current curve as

l(s, p) := x(s) − pN
and the set of points in an interval (a, b) on the line as

L(a, b, s) := {x : x ∈ l(s, p), p ∈ (a, b)}.
Define

f(s) := inf{p : p < 0, Φ(x) ≤ 0 ∀x ∈ L(p, 0, s)},
t(s) := sup{p : p > 0, Φ(x) ≥ 0 ∀x ∈ L(0, p, s)}.

Our set of estimated contour point candidates Z is the set of
potential edge points in L(f, t, s)

Z(L(f, t, s)) := {x : x ∈ L(f, t, s),
∃ε > 0 : ‖∇(G ∗ I(x))‖ > ‖∇(G ∗ I(y))‖

∀y ∈ L(f, t, s) ∩ Bε(x), y �= x},
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where G is a Gaussian, Bε(x) is the disk around x with ra-
dius ε, and I is the current image. Given some likelihood
function m(z)1 the selected contour point is the likelihood
maximum

xc(s) = arg max
z∈Z(L(f,t,s))

m(z),

at position

pc = d(x, s) = (x(s) − xc(s))TN .

It is sufficient to estimate normal velocity, since the curve
evolution equation does not take tangential velocity compo-
nents into account. The estimation then can be performed
(assuming we have brightness constancy from image frame
to image frame for a moving image point) by means of the
optical flow constraint without the need for regularization2.
The optical flow constraint is given as

It + uIx + vIy = 0,

where u = xt and v = yt are the velocities in the x and the
y direction respectively, and I denotes image intensity. We
restrict the velocities to the normal direction by setting(

u
v

)
= γ

∇I

‖∇I‖ .

This yields

γ = − It

‖∇I‖
and thus the desired velocity estimate(

u
v

)
= −It

∇I

‖∇I‖2
.

We define

β := −γ
∇I

‖∇I‖ · ∇Φ̂
‖∇Φ̂‖

,

Φ := −‖xc − x‖sign
(
Φ̂(xc)

)
.

We propose using the following observer-like dynamical
system

Φ̂t =
(
m(xc)KΦ(Φ − Φ̂) + β̂ + γκ

)
‖∇Φ̂‖

β̂t = m(xc)Kβ(β − β̂) +
(

1
2
β̂2 +

g

µ

)
κ +

+
1
µ
∇g · ∇Φ̂

‖∇Φ̂‖
+ δβ̂ss, (14)

to dynamically blend the current curve Ĉ into the desired
curve C. Here, KΦ and Kβ are the error injection gains for Φ̂

1 This will be problem specific.
2 Note, that we compute this estimate only on few chosen points in Z.

and β̂ respectively. Any terms related to image features are
computed at the current location x of the contour. The er-
ror injection gains are weighted by the likelihood m(xc) of
the correspondence points as a measure of prediction qual-
ity. The additional terms κγ and δβ̂ss with tunable weight-
ing factors γ and δ are introduced to allow for curve and ve-
locity regularization if necessary.

κ = ∇ ·
(

∇Φ̂
‖∇Φ̂‖

)

and

β̂ss = N T

(
β̂yy −β̂xy

−β̂xy β̂xx

)
N + κ∇β̂ · N .

In case no correspondence point for a point on the zero level
set of Φ̂ is found, the evolution equation system (14) is re-
placed by

Φ̂t = (β̂ + γκ)‖∇Φ̂‖
β̂t = δβ̂ss (15)

for this point.

6. Occlusion Detection

To assess the curve’s prediction capability we imple-
mented the following simple occlusion detection algorithm3

based on ideas in [7]. The inside and the outside correspon-
dence points are defined as (see Figure (1))

xi(s) = arg max
z∈Z(L(f,pc,s))

m(z),

xo(s) = arg max
z∈Z(L(pc,t,s))

m(z).

The occlusion detection strategy is split into the follow-
ing six subcases for every point on the contour

(0) There is no correspondence point.

(1) Only the correspondence point is present.

(2) The point is moving outward, the correspondence
point is present, but not its outside correspon-
dence point.

(3) The point is moving inward, the correspondence point
is present, but not its inside correspondence point.

(4) The point is moving outward, both the correspondence
point and its outside correspondence point are present.

3 More sophisticated, and less parametric, occlusion detection algo-
rithms are conceivable; however, this is not the main focus of our
work, and the one proposed is sufficient to show that the dynamic
geodesic snake can handle occlusions when combined with a suitable
occlusion detection algorithm.
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Figure 1. Correspondence point xc, inside
correspondence point xi, and outside corre-
spondence point xo of the curve Ĉ. C repre-
sents the contour of the object to be tracked.

(5) The point is moving inward, both the correspondence
point and its inside correspondence point are present.

We define the following Gaussian conditional probabili-
ties

Pr(tocc|occ) =
2√

2πσt

e
− (tocc−µt)

2

2σ2
t

Pr(va|occ) =
1√

2πσv

e
− (va−µv)2

2σ2
v

Pr(tocc|occ) =
2√

2πσt

e
− (tocc−µ

t
)2

2σ2
t

Pr(va|occ) =
1√

2πσv

e
− (va−µv)2

2σ2
v ,

where tocc is the estimated time to occlusion, va is the ve-
locity of the point ahead, overlined symbols denote
negated values (i.e. occ means not occluded), Pr(tocc|occ),
Pr(va|occ) are the probabilities of tocc and va given an oc-
clusion, and Pr(tocc|occ) and Pr(va|occ) given there is no
occlusion respectively. The corresponding standard devia-
tions are σt, σv , σt, and σv; the means are µt, µv , µt, µv . To
compute the values of tocc and va we make use of the cur-
rently detected correspondence point xc, and its interior xi

and exterior xo correspondence points.
The probability for an occlusion is given by Bayes’ for-

mula as

Pr(occ|va, tocc) =
Pr(va, tocc|occ)Pr(occ)

Pr(va, tocc|occ)Pr(occ) + Pr(va, tocc|occ)Pr(occ)
.

We initialize with a uniform probability distribution of
Pr(occ) = 0. The priors at time step n+1 are the smoothed
posteriors of time step n. In case (0) Pr(occ|va, tocc) =

Pr(occ) (i.e. the probability is left unchanged), in all other
cases

Pr(occ|va, tocc) =
Pri

occPr(occ)
Pri

occPr(occ) + Pri
occPr(occ)

,

where

Pr1
occ = Pr(va = vc|occ),

P r1
occ = Pr(va = vc|occ),

P r2
occ =

{
Pr(va = vc|occ) if xc outside of C,

0 otherwise,

P r2
occ =

{
Pr(va = vc|occ) if xc outside of C,

0 otherwise,

P r3
occ =

{
Pr(va = vc|occ) if xc inside of C,

0 otherwise,

P r3
occ =

{
Pr(va = vc|occ) if xc inside of C,

0 otherwise,

P r4
occ = Pr(va = vo|occ)Pr(tocc = toocc|occ),

P r4
occ = Pr(va = vo|occ)Pr(tocc = toocc|occ),

P r5
occ = Pr(va = vi|occ)Pr(tocc = tiocc|occ),

P r5
occ = Pr(va = vi|occ)Pr(tocc = tiocc|occ),

and

vc = β(xc) vo = β(xo)
vi = β(xi) v = β(x)

tiocc =
‖x − xi‖
|v − vi|

toocc =
‖x − xo‖
|v − vo|

.

To estimate the current rigid body motion, the equation sys-
tem

(ur , vr)T

∫
C

n1N ds = −
∫
C

n1β ds

(ur , vr)T

∫
C

n2N ds = −
∫
C

n2β ds,

is solved, where N = (n1, n2)T . We set µv =
−(ur , vr)TN and µv = 0.

The evolution equation is changed to

Φ̂t =
(
Pr(occ)

(
m(xc)KΦ(Φ − Φ̂)

)
+ β̂ + γκ

)
‖∇Φ̂‖

β̂t = Pr(occ)
(

m(xc)Kβ(β − β̂) +
(

1
2
β̂2 +

g

µ

)
κ

)
+

Pr(occ)
1
µ
∇gκ + δβ̂ss.

This is an interpolation between the systems (14) and (15)
based on the occlusion probability.
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7. Simulation Results

The algorithm is tested on two real video sequences. Fig-
ure (2) shows three frames of a fish sequence and Figure (3)
shows three frames of a car sequence respectively. In both
cases occlusions occur. For the fish sequence no occlusion
detection is performed. Define4

q(x) :=
1

1 + e−(p1+x)
, r := q(0) +

e−p1

q(0)2
p2,

w(x) :=




q(d(x)) if d(x) ≤ 0
q(0) + e−p1

q(0)2 d(x) if 0 < d(x) ≤ p2

r − r
p3−p2

(d(x) − p2) if p2 < d(x) ≤ p3

0 otherwise.

The used likelihood function for the fish sequence is

m(z) = e
−

(
(g(z)−µg)2

2σ2
g

+
(I(z)−µI )2

2σ2
I

)
w(z).

It depends on the image intensity I , the potential function g
and the distance d to the contour. For the car sequence we
define

a(x) := arccos
( ∇(G ∗ I)
‖∇(G ∗ I)‖ · N

)
an(x) := min (|a(x)|, π − |a(x)|) .

This is a measure of angle difference between edge orienta-
tion at correspondence points and the normal of the curve.
Ideally both should be aligned. The likelihood for a con-
tour point candidate z ∈ Z is then computed as

m(z) = e
−

(
(|d(z)|−µd)2

2σ2
d

+
(g(z)−µg)2

2σ2
g

+ (an(z)−µa)2

2σ2
a

)
,

and the occlusion detection of Section (6) is performed.
In both cases occlusions are handled. For the fish se-

quence the occlusion is dealt with implicitly. The occluding
fish moves over the tracked fish quickly, so that the iner-
tia effects keep the fish at a reasonable location. For the car
example the occlusion (the lamp post) is treated explicitly
by means of the proposed occlusion detection algorithm.
In both cases the likelihood functions do not incorporate
any type of prior movement information. Doing so would
increase robustness, but limit flexibility. Finally, since this
active contour model is edge-based, the snake captures the
sharp edge of the shadow in the car sequence. Presumably
this could be handled by including more global area-based
terms or shape information in the model.

4 This is simply a monotonic function that increases like a sigmoid up
to x = p1, linearly increases for x ∈ (p1, p2], linearly decreases to
zero for x ∈ (p2, p3] and is zero everywhere else.

(a) Frame 0

(b) Frame 80

(c) Frame 90

Figure 2. Three frames of a fish sequence.

8. Summary and Conclusions

In this paper we proposed a new approach for visual
tracking based on dynamic geodesic snakes. This method-
ology incorporates state information (here, normal velocity,
but any other kind of state information can be treated in a
similar way) with every particle on a contour described by
means of a level set function. It facilitates a natural frame-
work to combine velocity and position estimation within a
level set framework. It has the potential to deal with par-
tial occlusions.
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(a) Frame 0

(b) Frame 14

(c) Frame 55

Figure 3. Three frames of a car sequence.
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