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Abstract. A new definition of affine invariant medial axis of planar closed curves is introduced. A point belongs
to the affine medial axis if and only if it is equidistant from at least two points of the curve, with the distance being
a minimum and given by the areas between the curve and its corresponding chords. The medial axis is robust,
eliminating the need for curve denoising. In a dynamical interpretation of this affine medial axis, the medial axis
points are the affine shock positions of the affine erosion of the curve. We propose a simple method to compute the
medial axis and give examples. We also demonstrate how to use this method to detect affine skew symmetry in real
images.
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1. Introduction

Object recognition is an essential task in image process-
ing, and the skeleton or medial axis is a shape descriptor
that is often used for this task.

Thus, the computation of skeletons and symme-
try sets of planar shapes is a subject that received
a great deal of attention from the mathematical (see
Bruce et al., 1985; Bruce and Giblin, 1992 and refer-

ences therein), computational geometry (Preparata and
Shamos, 1990), biological vision (Kovács and Julesz,
1994; Lee et al., 1995; Leyton, 1992), and computer vi-
sion communities (see for example Ogniewicz, 1993;
Serra, 1982 and references therein) since the original
work by Blum (1967, 1973).

In the classical Euclidean case, the symmetry set of
a planar curve (or of the boundary of a planar shape)
is defined as the set of points equidistant from at least
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Figure 1. Sketch of a Euclidean symmetry set. The distance from X
to the curve is equal at points s1 and s2, and a point of the symmetry
set X is contained in the direction of the normals.

two different points on the given curve, providing the
distances are local extrema (see Fig. 1). The fact that
the distances are local extrema means that the symme-
try set point lies on the intersection of the (Euclidean)
normals at the corresponding curve points. This leads
to an equivalent definition of the symmetry set, as the
closure of centers of bitangent circles.

The importance of points which are the centers
of bitangent circles was realized by Motzkin (1983a,
1983b), who used this concept to characterize the con-
vexity and the non-convexity of a closed set S in the
Euclidean plane. Particularly, he showed that if there
is no point p ∈ SC (the complement of the set S),
which is the center of a bitangent circle to S, S has
to be convex. Klee (1949) and Phelps (1957) extended
Motzkin’s ideas to non Euclidean metrics.

Blum defined the symmetry set in a different, but
equivalent way (the grassfire transform): If a fire is
started at the boundary of the shape, and it propa-
gates with uniform speed, the symmetry set is given
by the set of points where two or more fire fronts col-
lide (shocks) (Giblin and Kimia, 1999; Smoller, 1983).
In other words, the symmetry set is composed of the
shock points of the curve, which evolve according to
Huygens’ principle. The trace of this symmetry set is
called the medial axis. Augmenting the medial axis
by arrival time information leads to the medial axis

function, which allows for perfect reconstruction of the
boundary. Based on Blum’s work, Calabi and Hartnett
(1968) studied the extrinsic skeleton mathematically.

Medial axes describe the shapes of objects. To extract
these shape descriptions automatically, computer algo-
rithms have to be devised. This is not a trivial task. The
transition from the continuous to the discrete (sampled)
domain is problematic (Mott-Smith, 1970): The com-
putations are sensitive to object orientation, and object
topology is not necessarily preserved. Furthermore,
most algorithms require the object’s boundary as an
input, and thus a segmentation step, which is in itself de-
manding. A segmentation does generally not represent
the exact shape of the object to be segmented. Instead,
the obtained boundary might be slightly off and/or
noisy. Medial axis transforms can be very sensitive to
boundary details (Katz and Pizer, 2002). Smoothing of
the boundary can change the structure of a medial axis
and can even create new structures (Shaked, 1996;
August et al., 1999). Algorithms that compute a
medial axis based on a segmentation of an object’s
boundary need thus to be robust with respect to
boundary uncertainties. Many algorithms have been
devised to tackle these problems. Following Kimia and
Leymarie (2001) they can be classified into methods
using thinning, the distance transform, boundary
modeling, the Voronoi diagram, bisector computations
and trimming, and surface evolution based approaches
(see Kimia and Leymarie, 2001 for references for each
class). The lines between these methods are not sharp,
combinations exist.

For distance function based medial axis transforms,
perfect reconstructability is usually given, i.e., given
the medial axis function, the original shape of the ob-
ject can be reconstructed. This is a crucial property
for data compression applications. However, for cer-
tain purposes (e.g., in pattern recognition) it is enough
to have a rough idea of the shape, and the recon-
structability requirement can be relaxed. In case of
noisy boundaries, relaxing this requirement yields the
flexibility to remove spurious branches that are most
likely noise induced. Rotational invariance is a desir-
able property for a medial axis transform. If the distance
function is chosen to be Euclidean, this can be achieved.
However, a good (and efficiently computable) approx-
imation for the Euclidean distance function is then
needed on the discrete grid. Meyer (1990) introduces
digital Euclidean skeletons. The skeleton is given by
connecting crest points (the set of points that only
have neighboring points with lower distance transform
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values and so-called multiple points or pairs). Whereas
in the continuous case the crest points are identical to
points which are the centers of maximal disks, this is
not the case for the Euclidean distance transform on a
discrete grid. Connectivity is not automatically guaran-
teed by translating continuous concepts to the discrete
domain. An algorithm similar to Meyer’s, that prov-
ably maintains connectivity, is suggested by Niblack
et al. (1990).

Lam et al. (1992) and Lee et al. (1993) give com-
prehensive surveys on methods for thinning and skele-
tonization respectively. They discuss iterative and non-
iterative thinning algorithms. Iterative methods can be
subdivided into sequential and parallel methods. For
sequential algorithms, the pixels of an image are vis-
ited in a prespecified order, e.g., by raster scanning or
contour following. Pixels that are determined not to
be part of the medial axis are deleted. This is not al-
ways natural and results can depend on the order the
deletion is performed in. Most algorithms use arbitrary
ordering. The resulting medial axis might not be truly
medial. Ranwez and Soille (2002) thus proposes a thin-
ning scheme that is order independent. In the sequential
framework it is easy to ensure homotopy (i.e., ensuring
that the connectedness of an objects is preserved). This
is generally not the case for parallel algorithms, which
on the other hand bear the promise of extremely fast
implementations.

Many medial axis algorithms, e.g., algorithms based
on ridge following, do not easily extend to higher di-
mensions (which would for example be crucial for
countless medical imaging applications) or are rela-
tively prone to boundary noise. One possible remedy
is the use of anchor point based homotopic thinning.
The idea is to perform iterative thinning, but not to re-
move a point whenever it is an anchor point or it would
break the topology. A possible choice for the anchor
points are the centers of maximal balls (or disks in 2D)
obtained from a distance transform (here thresholding
can be performed based on the level of desired detail).
Pudney (1998) performs distance-ordered homotopic
thinning using the centers of maximal balls. Svensson
et al. (1999) propose a rotationally invariant algorithm
based on similar ideas, which can be extended to any di-
mension, with any metric and connectivity. Ranwez and
Soille (2002) propose an order independent scheme.

Anchor points have previously been used, for exam-
ple by Leymarie and Levine (1992). They use an active
contour based approach to determine the medial axis
of an object. The active contour moves on a Euclidean

distance function. Curvature extrema on the boundary
are used as anchor points for the active contour. How-
ever, while the method guarantees the connectedness of
the resulting medial axis, it relies on a well segmented
boundary to compute the curvature maxima; for noisy
boundaries pruning might be required.

Ogniewicz and Ilg (1992) compute the medial axis
of an object by means of the the Voronoi diagram of
its boundary elements. This approach guarantees the
preservation of connectivity and uses a truly Euclidean
metric, but any vertex introduces an additional branch
in the medial axis. Pruning is thus necessary, but can
nicely be incorporated into this framework by means
of the “residual function”, which measures how “deep”
a medial axis part is inside the object. Pruning is then
performed by thresholding based on the residual value
of an edge of the medial axis. Hierarchical clustering
leads to a multi-resolution representation of the medial
axis and allows for the extraction of its main axis.

Most of the work on medial axes deals with bi-
nary images (i.e. objects with known boundaries). Fur-
thermore, rotational invariance is desired (Lee et al.,
1993). Extensions exist for gray valued/intensity im-
ages (see for example the survey by Serra (1982, 1988)
or Ranwez and Soille (2002), Pizer et al. (1998), Wang
et al. (1982), and Verwer et al. (1993)). More recently,
affine invariant medial axis algorithms have been for-
mulated (Giblin and Sapiro, 1998a, 1998b).

Inspired by Giblin and Sapiro (1998a, 1998b) and es-
pecially by the groundbreaking work of Moisan (1998),
we define in this paper an analogous, affine invariant,
symmetry set, the affine area symmetry set (AASS).
Instead of using Euclidean distances to the curve, we
define a new distance based on the areas enclosed be-
tween the curve and its chords. We define the symme-
try set as the closure of the locus of points equidistant
from at least two different points on the given curve,
provided that the distances are local minima.

Further, we obtain a dynamical interpretation of the
AASS, where, instead of using the classical Huygens’
principle, we use a notion of affine erosion and show
that the affine shocks of the corresponding evolution
occur at the AASS.

As we will demonstrate, this definition based on ar-
eas makes the symmetry set remarkably noise-resistant,
because the area between the curve and a chord “aver-
ages out” the noise. This property makes the method
very useful to compute symmetry sets of real images
without the need of denoising. In addition, as this is an
area-based computation, the result is affine invariant.
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That implies, that if we process the image of a planar
object, the skeleton will be independent of the angle
between the camera that captures the image and the
scene, provided the camera is far enough from the ob-
ject. For these reasons, we believe that this symmetry
set, in addition to having theoretical interest, has the
strong potential of becoming a useful tool in invariant
object recognition.

The proposed algorithm can be extended to the three
dimensional case (Betelu et al., 2001a). Then, instead
of areas enclosed by the curve and its chords, the vol-
ume enclosed between the surface of the object and its
chords is used to define the distance measure.

We now summarize the contents of this paper. In
Section 2, we define our key concepts of affine dis-
tance, affine area symmetry set, and the affine skeleton.
In Section 3, we give our dynamical interpretation of
the affine skeleton as the set of affine shock points de-
rived via an affine notion of erosion. In Section 4, we
give a robust algorithm for the computation of the affine
skeleton. This algorithm is applied to some examples,
both synthetic and real, in Section 5, where we also in-
dicate its robustness in the presence of noise. Section 6
draws conclusions and proposes some directions for
future research.

2. Affine Area Symmetry Set and Affine
Invariant Skeletons

In this section, we formally introduce the key concepts
of affine distance, affine medial axis, and affine area
symmetry set. We begin with the following definition:

Definition 2.1. A special affine transformation in the
plane (R2) is defined as

X̃ = AX + B, (1)

where X ∈ R2 is a vector, A ∈ SL2(R2) (the group of
invertible real 2 × 2 matrices with determinant equal
to 1) is the affine matrix, and B ∈ R2 is a translation
vector.

Transformations of the type (1) form a real algebraic
group A, called the group of special affine motions or
the group of area preserving motions. The key property
of the affine group is that the area enclosed by a curve
is invariant to the group action.

In this work we deal with symmetry sets, which
are affine invariant in the sense that if a curve C is

affine transformed with Eq. (1), then its symmetry set is
also transformed according to Eq. (1). Affine invariant
symmetry sets are not new. In 1998 Giblin and Sapiro
(1998a, 1998b) introduced them and proposed the def-
inition of the affine distance symmetry set (ADSS) for
a planar curve C(s). In their definition, they used affine
geometry and defined distances in terms of the affine in-
variant tangent of C(s), which involves second deriva-
tives of the curve with respect to an arbitrary parameter.
Later, they defined the ADSS analogously to the Eu-
clidean case (see Fig. 1). In Betelu et al. (2001b) an
efficient implementation for the computation of these
sets was discussed. However, there is a fundamental
technical problem with this definition: in curves ex-
tracted from real images, noise is always present; the
higher order derivatives needed to compute the ADSS
oscillate in a very wild fashion, unless considerable
smoothing is performed. Giblin and Sapiro proposed
a second definition, the affine envelope symmetry set
(Giblin and Sapiro, 1998a, 1998b), which still requires
derivatives and thus suffers from the same computa-
tional problem.1

As we will show with the new definition presented
below, we do not compute derivatives at all. Conse-
quently, the robustness of the computation is consider-
ably higher, and smoothing is not required.

For simplicity, we shall always deal with simple
closed curves C(s) : [0, 1] → R2 with a countable
number of discontinuities on the derivative C ′(s). Even
though classical affine geometry is only defined for
convex curves, our framework extends this to the non-
convex case. We start by defining the building block
of our affine area symmetry set (AASS), the affine dis-
tance (inspired by Moisan, 1998):

Definition 2.2. The affine distance between a generic
point X and a point of the curve C(s) is defined by the
area between the curve and the chord that joins C(s)
and X :

d(X, s) = 1

2

∫ C(s ′)

C(s)
(C − X ) × dC, (2)

where s is the curve parameter, × yields the z com-
ponent of the cross product of two vectors,2 and the
points C(s) and C(s ′) define the chord that contains X
and that has exactly two contact points with the curve,
as shown in Fig. 2.

This distance is invariant under the special affine
transformation Eq. (1), and it is independent of the
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Figure 2. We define the affine distance from X to the curve as the
area between the curve C and the chord (C(s), C(s′)). The chord
touches the curve exactly twice. For example, there is no “legal”
chord which contains the pair of points (C(s′′), X ). As a consequence,
the function d(X, s) may have discontinuities as shown in the last
sketch.

parameterization of the curve. For a simple convex
curve, the function d(X, s) is always defined for interior
points, but for concave curves the function d(X, s) may
be undefined for some values of s in [0, 1], as sketched
in Fig. 2. When the point is exterior to the curve (as
the point Y in Fig. 1), the distance may not be defined.
For example, if the curve is a circle, the distance from
an exterior point X is not defined, because we cannot
find a chord that intersects the curve exactly twice and
contains the point X .

We can now define our affine symmetry set:

Definition 2.3. X ∈ R2 is a point in the affine area
symmetry set of C(s) (AASS) if and only if there exist
two different points s1, s2, which define two different
chords that contain X and have equal area,

d(X, s1) = d(X, s2), (3)

provided that d(X, s1) and d(X, s2) are defined and that
they are local minima with respect to s (see Fig. 4). The
AASS is then the closure of the locus of these points
X .

This definition is analogous to the Euclidean case and
the ADSS in Giblin and Sapiro (1998a, 1998b).

Commonly in shape analysis, a subset of the Eu-
clidean symmetry set is used, and it is denoted as skele-
ton or medial axis. For example, the symmetry set of
an ellipse contains segments on both symmetry axes
of the ellipse, while the skeleton or medial axis cor-
responds only to the segment on the principal axis.
In the Euclidean case, one possible way to simplify
the symmetry set into a skeleton, inspired by original
work of Giblin and colleagues (Bruce and Giblin, 1992;
Wright et al., 1995), is to require that the distance to
the curve is a global minimum. The affine definition is
analogous:

Definition 2.4. The affine skeleton or affine medial
axis is the subset of the AASS where d(X, s1) and
d(X, s2) are global (not just local) minima with respect
to s.

This means, that X belongs to the affine medial axis
if there are two different chords which contain X and
that have the same minimum area. The medial axis is
invariant with respect to Eq. (1), because of the invari-
ance of the areas. However, as the definition is based on
the comparison of areas, it is also invariant with respect
to more general transformations up to change of scale
det(A) > 0.

There are curves for which the medial axis may be
computed exactly. For example, it is easy to verify that
the medial axis of a circle is its center. We can make
an affine transformation to the circle and transform it
into an ellipse. By virtue of the affine invariance of
our definitions, we conclude that the medial axis of
an ellipse is its center (the midpoint of the line that
connects the two foci of the ellipse), too.

Another important example is the triangle. In affine
geometry, all triangles may be generated by affine-
transforming an equilateral triangle. The medial axis
of an equilateral triangle are the segments connect-
ing the middle of the bases and the center of the fig-
ure (as can be verified by simple area computations).
As a consequence, the medial axis of an arbitrary tri-
angle are the segments connecting the middle of the
sides with the center of gravity (where all medians
cross).

An important property concerns curves with straight
sections. If the curve contains two equal straight paral-
lel non-collinear segments, the AASS will contain an
identical segment parallel and equidistant to the former
two. For instance, the AASS of a rhombus will contain
its medians.
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3. Dynamical Interpretation: Affine Erosion
of a Planar Curve

We now define a notion of affine erosion of a curve
and show its connection with the AASS. Our defini-
tion is analogous (but different) to that used by Moisan
(1998). Let C(s) : [0, 1] → R2 be a simple closed
curve. Let (C(s), C(s ′)) be a chord of C(s), as shown in
Fig. 3. As before, this chord intersects the curve exactly
twice.

The difference of this definition, with respect to the
definition given in Moisan (1998), is that in the Moisan
set-up the chord is allowed to cross the curve out-
side the interval (s, s ′). For our purposes, we opted
for a definition which gives a unique chord for a
given parameter s, when this chord exists, and which
also separates the curve into two disjoint parts. The
connected closed set enclosed by the chord and the
curve is the chord set. Its area is denoted by A, so
that

A = 1

2

∫ C(s ′)

C(s)
(C − X ) × dC, (4)

where X is any point of the chord. This area may have
any sign, depending on the orientation of the curve. If
the area is positive, we call the corresponding chord a
positive chord and the corresponding chord set a posi-
tive chord set.

Figure 3. Affine area based erosion of a curve. After a time t = A,
the eroded curve is the envelope of all the chords that have the same
area.

Definition 3.1. The minimum distance from a point
X to the curve C is defined by

f (X ) = inf (d(X, s), s ∈ D), (5)

where D is the domain of d(X, s) for a fixed value of
X .

For interior points X , the minimum distance f (X ) is
always defined, because in a simple closed curve, we
can always draw at least one chord that contains X . For
exterior points it may be undefined, as for instance, in
a circle.

Moisan defines the affine erosion of the curve C by
A as the set of the points of the interior of C , which do
not belong to any positive chord set with area less than
A. Here, we define the affine erosion in terms of our
affine distance:

Definition 3.2. The affine erosion E(C, A) of the
shape enclosed by a curve C , by the area A, is the
set of the points X of the interior of C that satisfy

E(C, A) = {X ∈ R2 : f (X ) ≥ A ≥ 0}. (6)

Roughly speaking, it is the area bounded by the en-
velope of all the possible chords of area A ≥ 0 (see
Fig. 3). We also define the eroded curve C(A) as the
“boundary” of the affine erosion

C(A) = {X ∈ R2 : f (X ) = A}. (7)

If we consider the area to be a time parameter, t = A,
the distance f (X ) represents the time that the eroded
curve C(A) takes to reach the point X , when traveling
with constant affine velocity. Initially, when A = 0, we
have the initial curve. At later times (A > 0), the curve
C(A) will be contained inside the original curve.

This statement is a particular case of a more general
property analogous to the maximum principle, that is, if
0 < A1 < A2, the affine erosion defined by A2 will be
included in the affine erosion defined by A1. To prove
that, we just have to see that if a point X ∈ E(C, A2)
by the definition Eq. (6), f (X ) ≥ A2 > A1 and X ∈
E(C, A1). Then, E(C, A2) ⊂ E(C, A1).

However, because of our “two-point contact” chord
definition, if we take two different initial curves, C2(s)
bounded by C1(s), we cannot guarantee that C2(A) will
be bounded by C1(A) for A > 0.

Remark. Our chord definition has an interesting
hydrostatic analogy: if we make a cylindrical container
of length L , whose walls have the shape of a closed



Area-Based Medial Axis of Planar Curves 209

curve C(s), we introduce a volume AL of an incom-
pressible liquid inside it, and we put the container
with its longitudinal axis at 90 degrees with respect
to the gravity, then the liquid surface of the liquid will
coincide with a chord of the curve C(s). By setting the
container in different positions and requiring that the
liquid fills a connected region, the liquid surface will
take the shape of different chords of the same area,
in virtue of the conservation of the mass of the liquid.
The envelope of these liquid surfaces will be the

Figure 4. For X being a point on the AASS, X is the midpoint of its defining chords. These chords enclose equal areas and form a parallelogram.
The tangent to the AASS at X is parallel to two sides of this parallelogram.

eroded curve. For more details and examples we refer
the reader to Betelu et al. (2001a).

There is a fundamental relationship between the
affine erosion of a curve and the skeleton, namely, an
affine shock point X is a skeleton point. This allows to
define the medial axis as Blum did for the Euclidean
case.

Definition 3.3. An affine shock point X is a point
of the eroded curve C(A) where two different chords
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(C(s1), C(s ′
1)) and (C(s2), C(s ′

2)) of equal area A
intersect.

Clearly, the distance from X to these two points are
equal, d(X, s1) = d(X, s2). On the other hand, the dis-
tance is a global minimum at s1, because as X belongs to
C(A) (see Eq. (7)), f (X ) = inf(d(X, s), s ∈ D) = A.
Thus, an affine shock point X is a point of the medial
axis (see Fig. 3).

3.1. Basic Properties of the Affine Area Distance
and Symmetry Set

In this section, we shall present some theoretical re-
sults concerning the AASS, mostly without proof. Fur-
ther results and details will appear elsewhere.3 We
shall show that the AASS has connections with our
previously defined affine envelope symmetry set or
AESS (Giblin and Sapiro, 1998b),4 as well as with
the affine distance symmetry set (ADSS) mentioned
before. We will see that a point that is an element
of the AASS will lie at the midpoint of its associated
chords.

As mentioned above, it is not clear to us how far
the area definition can be extended. That is, it is not
yet clear whether we can define a smooth family of
functions

d : C × U → R,

associating to (s, X ) the ‘area d(s, X ) of the sector of C
determined by C(s) and X ’, for all points X inside some
reasonably large set U in the plane R2. We have seen
that when C is convex, the function is well-defined and
smooth for all X inside the curve C . We shall assume
this below.

Figure 5. X is an anomalous point of the AASS.

We have

2d(s, X ) =
∫ t(s)

s
[C(s) − X, C ′(s)] ds

=
∫ t(s)

s
F(s, X ) ds,

Figure 6. Discretization of the curve and the domain.

Figure 7. We consider two points p, q “indistinguishable” if the
area of the triangle A(C p, X, Cq ) (dashed) is smaller than the
area defined by the discretization of the curve A(C p, X, C p+1) +
A(C ′

p, X, C ′
p+1), and the discretization of the domain (shaded

regions).
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for any regular parameterization of C , where [,] means
the determinant of the two vectors inside the square
brackets, ′ means d

ds and t(s) is the parameter value of
the other point of intersection of the chord through X
and C(s) with the curve. Using standard formulae for
differentiation of integrals,

2ds := 2
∂d

∂s
= F(t(s), X )t ′(s) − F(s).

Figure 8. Medial axis of a triangle. When noise corrupts the curve,
the main branches of the skeleton remain almost unaltered.

We evaluate t ′(s) by using the fact that C(s), X and
C(t(s)) are collinear:

C(t(s)) − X = λ(C(s) − X ) for a scalar λ,

i.e. [C(s) − X, C(t(s)) − X ] = 0.

Differentiating the last equation with respect to s we
obtain

t ′(s) = [C(t(s)) − X, C ′(s)]/[C(s) − X, C ′(t(s))],

and from this it follows quickly that, provided the chord
is not tangent to C at C(s) or C(t(s)), ds = 0 if and only
if λ = ±1. But λ = 1 means C(s) and C(t(s)) coincide,
so for us the interesting solution is λ = −1. This means

Figure 9. Small boundary perturbations can have large effects.
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that X is the mid-point of the segment (this result has
also been obtained in Moisan (1998) and Brady and
Asada (1984)): The area function d has a stationary
point at (s, X ), i.e., ∂d/∂s = 0, if and only if X is the
midpoint of the segment from C(s) to C(t(s)).

One immediate consequence of this is: The envelope
of the chords cutting off a fixed area from C (the affine
eroded set) is also the locus of the midpoints of these
chords.

Further calculations along the same lines show that:
The first two derivatives of d with respect to s vanish at
(s, X ) if and only if X is the midpoint of the chord, and
also the tangents to C at the endpoints of the chord are
parallel.

In mathematical language this means that the ‘bifur-
cation set’ of the family d is the set of points X , which
are the midpoints of chords of C at the ends of which
the tangents to C are parallel. This set is also the enve-
lope of lines parallel to such parallel tangent pairs and
halfway between them. It has been called the midpoint
parallel tangent locus (MPTL) by Holtom (2000). Var-

Figure 10. The perturbed boundary of the triangle does not affect the affine medial axis.

ious facts are known about the MPTL, for example, it
has an odd number of cusps. These cusps coincide in
position with certain cusps of the AESS (Giblin and
Sapiro, 2000). The cusps in question occur precisely
when the point X is the center of a conic having 3-
point contact with C at two points where the tangents
to C are parallel: The first three derivatives of d with
respect to s vanish at (s, X ) if and only if X is the mid-
point of the chord, the tangents to C at the endpoints
are parallel, and there exists a conic with center X
having 3-point contact with C at these points.

The full bifurcation set of the family d consists of
those points X for which (i) d has a degenerate station-
ary point (ds = dss = 0) for some s, or else (ii) there
are two distinct s1, s2, and d has an ordinary stationary
point (ds = 0) at each one and the same value there:
d(s1, X ) = d(s2, X ). The latter is precisely the AASS
as defined above. Mathematically, the AASS and the
MPTL ‘go together’ in the same way that the classical
symmetry set and evolute, or the ADSS and the affine
evolute go together: in each case the pair makes up a
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single mathematical entity called a full bifurcation set.
A good deal is known about the structure of such sets,
including the structure of full bifurcation sets arising
from families of curves (see Bruce and Giblin, 1986).
For instance, the symmetry set has endpoints in the
cusps of the evolute, and in the same way the AASS
has endpoints in cusps of the MPTL.5

When X lies on the AASS, there are two chords
through X , with X the midpoint of each chord. The
corresponding areas defined by d are equal. From the
midpoint conditions alone, it follows that the four end-
points of the chords form a parallelogram (see Fig. 4).
The tangent to the AASS at X is in fact parallel to two
sides of this parallelogram.

Consider the AASS of a triangle, as in Section 2,
where it was noted that the affine medial axis comes
from the center of a side and stops at the centroid of the
triangle. The ‘full’ AASS, allowing for non-absolute
minima of d, stops at the point halfway up the median,
as can be verified by an elementary calculation with
areas. Presumably this is a highly degenerate version of

Figure 11. Exemplary skewed symmetries for the triangle.

a cusp on the AASS. With the triangle, the two branches
of the cusp are overlaid on each other.

We mention finally one curious phenomenon con-
nected with the AASS. Given a point C(s1), there will
generally be an area-bisecting chord through this point.
That is, the two areas on either side of the chord and
within C are equal. In that case, let X be the midpoint of
the chord and let C(t(s1)) be the other end of the chord.
Let s2 = t(s1): then t(s2) = s1 by construction, and X
satisfies the conditions to be a point of the AASS. That
is, the midpoints of all area-bisecting chords automati-
cally appear in the AASS (see Fig. 5). These points are
in some sense anomalous: the ‘genuine’ AASS consists
of the other points satisfying the defining condition.

4. Robust Numerical Implementation
for Discrete Curves

Inspired by Betelu et al. (2001b), we propose the fol-
lowing algorithm to compute the affine medial axis.
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1. Discretization of the curve. Discretize C(s) =
(x(s), y(s)) with two vectors for the points Ck =
(xk, yk), with 1 ≤ k ≤ M (see Fig. 6).

2. Discretization of the rectangular domain. Discretize
the domain that contains the curve, of dimensions
Lx ×L y , with a uniform grid of Nx ×Ny points. Each
point Xi j of the grid will have coordinates Xi j =
(i�x , j�y), where �x = Lx/Nx , �y = L y/Ny

(see Fig. 6) and 0 ≤ i ≤ Nx , 0 ≤ j ≤ Ny .

Figure 12. If the perturbation contributes to the symmetry of the object, it will contribute to the medial axis.

Now, for each point Xi j of the grid we perform the
following steps:

(a) Compute the chord areas. With Eq. (2), compute
the areas between Xi j and each point in the curve
Ck :

d(Ck, Xi j ) = 1

2

∫ C∗
k

Ck

(C − Xi j ) × dC (8)
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for k = 1, . . . , M . The integral is computed by
approximating the curve with a polygon that inter-
polates the points Ck and by computing the point
C∗

k as the intersection between the curve and the
line joining Ck and Xi j . As mentioned before, the
distance is not defined if the chord does not touch
exactly two points on the curve. The points have

Figure 13. Medial axis of a concave curve.

to be labeled with a logical vector Ek , indicating
whether or not the distance is defined at Ck . Here,
we detect these singular points just by scanning
around the curve and counting the crossings be-
tween the line that contains Ck and Xi j . Then, we
store the areas in a vector dk = d(Ck, Xi j ), with
k = 1, . . . , M .
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(b) Search for local minima of the chord areas, ap-
proximated by the local minima of the set dk , with
k = 1, . . . , M . When dk−1, dk and dk+1 are defined,
the local minimum condition is

dk−1 ≥ dk ≤ dk+1. (9)

When dk and dk∓1 are defined, but dk±1 is not
defined, the condition is simply dk ≤ dk∓1.
Now, for each point of the grid Xi j we shall
have after this step the set of l local minima
distances (d∗

1 , d∗
2 , . . . , d∗

l ), corresponding to the
points (C∗

1 , C∗
2 , . . . , C∗

l ). All these quantities are
functions of Xi j .

(c) Approximate AASS computation. Compute the dif-
ferences

D(Xi j ) = d∗
p − d∗

q

p = 1, . . . , l, q = 1, . . . , l, r 	= q, (10)

p and q represent the indices of the local minimum
distances of different chords. If this difference is
smaller in magnitude than a given tolerance ε, we
can consider Xi j to be an approximate point of
the area symmetry set (see Fig. 6). Then, as a first
approximation, add to the AASS all the points Xi j

that satisfy

|d∗
p − d∗

q | < ε. (11)

The tolerance ε has to be of the order of the vari-
ation of the distance difference along a cell in the
discretized domain, i.e.,

ε ≈ max

(∣∣∣∣∂ D

∂x

∣∣∣∣�x,

∣∣∣∣∂ D

∂y

∣∣∣∣�y

)
. (12)

The partial derivatives are taken with respect to the
components of Xi j .

There is not a simple general formula for this
expression. However, by using the distance defini-
tion Eq. (2) and by restricting ourselves to regular
local minima, which satisfy ds(s∗) = 0, we can
demonstrate that

∇d∗
p(Xi j ) = 1

2
(−�y∗

p, �x∗
p) (13)

where (�x∗
p, �y∗

p) are the components of the
chords C∗′

p − C∗
p corresponding to local minimum

area. This formula is not general, since we may
have non-regular minima, as for example, points

where d(X, s) has a discontinuity with respect to
s. However, we still use this expression, because we
only need an order of magnitude for the tolerance.
Then, we define

ε = max (|�y∗
p − �y∗

q |�x, |�x∗
p − �x∗

q |�y).

(14)

Figure 14. Without requiring the distances to be global positive
minima, we obtain the AASS.

Figure 15. Affine erosion of a truncated circle. Each line represents
a curve of constant chord area. The affine shocks on the evolution
are the skeleton points (dots).
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(d) Focusing of the AASS. At this point, the medial
axis is quite crude, and the branches have a spa-
tial error of the order of the discretization of the
domain (�x, �y). We can compute, with negligi-
ble computational cost, the (small) correction vec-
tor �Xi j = (u, v) to the position Xi j that makes
the difference of distances exactly equal to zero at
Xi j + �Xi j (see Fig. 6):

d(Xi j + �Xi j , C∗
p) = d(Xi j + �Xi j , C∗

q )

Figure 16. Thresholded affine medial axis of the tool shapes.

Figure 17. Gray level affine medial axis of the tool shapes.

At first order, we must solve

D(Xi j ) + �Xi j · ∇ D(Xi j ) = 0 (15)

with �Xi j parallel to the gradient of D. We get

u = (�y∗
p − �y∗

q )D

2G2
, (16)

v = −(�x∗
p − �x∗

q )D

2G2
, (17)

4G2 = (�y∗
p − �y∗

q )2 + (�x∗
p − �x∗

q )2. (18)
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After this step, the AASS for a discrete image is
computed.

(e) Pruning. If one of the distances d∗
p or d∗

q is not a
positive global minimum: discard the correspond-
ing point. In this way we obtain the affine medial
axis. We also have to discard points which origi-
nated very close to each other on the curve, in such
a way that they are effectively indistinguishable.
Here, we discard points for which the areas of the
triangles A(C p, Xi j , Cq ) are smaller than the ar-
eas of the triangles defined by the discretization
of the curve A(C p, Xi j , C p+1)+ A(C ′

p, Xi j , C ′
p+1)

and the area defined by the discretization of the
domain �x L y + �yLx , as indicated in Fig. 7.

5. Examples

Let us start with the simplest nontrivial example: the
triangle. In Fig. 8(a) we show a triangle and its me-
dial axis. The exact medial axis should reach the bor-
der. The gap is due to the discretization errors of the
numerical scheme. Better discretizations reduce this
gap. In Fig. 8(b) we corrupted the shape by adding

Figure 18. Thresholded affine medial axis of the tool shapes, overlaid with lines detected by a Hough transform of the thresholded affine
medial axis.

to each one of the 170 points of the curve a uniform
random perturbation of absolute amplitude 0.01. The
medial axis is barely perturbed by the noise (this has
been obtained without denoising). This is not a self-
evident property for medial axis algorithms. See for
example Fig. 9, which shows a Euclidean medial axis
obtained by topological thinning. The slight perturba-
tion shown in Fig. 9(b) results in a completely new
branch of the medial axis compared to the unperturbed
case in Fig. 9(a). This is in direct contrast to the ef-
fect the slight boundary perturbation has on the affine
medial axis. Figure 10 shows the medial axis com-
putations of the unperturbed triangle in its left col-
umn and of the perturbed triangle in the right column.
Specifically, Fig. 10(a) shows the gray level medial axis
of the unperturbed triangle, Fig. 10(c) its thresholded
version. Figure 10(b) and (d) show the correspond-
ing figures for the perturbed triangle. The gray level
medial axis shows all calculated medial axis points
corresponding to global maxima. The gray value of
a point corresponds to how close the point is to its dis-
cretization level. Specifically, the gray level is chosen
based on the ratio of the dashed triangle in Fig. 7 to the
area defined by the discretization of the curve. Darker
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values correspond to larger ratios. The thresholded re-
sults correspond to a thresholding of this ratio at 1 (this
is exactly the described “pruning” strategy). Strikingly,
the boundary perturbation of the triangle does not in-
fluence its affine medial axis. No additional branches
are created. The medial axis is robust with respect to
this perturbation.

Naturally the question arises, if this is always a de-
sirable property. Is information grossly neglected as
a trade-off for robustness? This is not the case as is
exemplified by the example of a discretized circle, as
shown in Fig. 12. Clearly, in the unperturbed and the
perturbed cases, the center of the circle is the most sig-
nificant point of the medial axis (as indicated by its
darkness in Fig. 12(a) and (b)). Due to the boundary
discretization, we cannot expect to get isolated points
at the centers of the circles after thresholding (unless
we adapt our thresholding scheme). This is sensible,

Figure 19. Thresholded affine medial axis of the heart.

since the boundary discretization might as well repre-
sent the correct shape of the object, i.e., the algorithm
does not try to introduce any additional assumptions
regarding boundary smoothness. However, in the case
of the discretized unperturbed circle, the detected me-
dial axis (after thresholding) is confined to the center
of the circle, whereas it shows the additional symme-
try introduced by the perturbation in the perturbed case.
We see, that the same perturbation that did not cause
any changes to the medial axis for the triangle example
might very well change the medial axis if the pertur-
bation adds new symmetries. Noise will generally be
random. For a very regular object, like a circle, this
can pose a problem. Figure 12(e) and (f) show the gray
level affine medial axis and the thresholded affine me-
dial axis of a circle with noisy boundary respectively.
Clearly, the center of the circle is identifiable as the
main symmetry point in Fig. 12(e). However, since the
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circle is such a regular object, it is very likely that a per-
turbed boundary element will form a symmetry with
another perturbed boundary element, thus introducing
weak, but in this case spurious, symmetry points.

The medial axis may be used to detect symmetries,
a topic that has been the subject of extensive research
in the computer vision community (e.g., Brady and
Asada, 1984; Brooks, 1981; Cham and Cipolla, 1995;
Ponce, 1989; van Gool et al., 1985; van Gool et al.,
1996). In particular, affine skeletons may be used to

Figure 20. Gray level affine medial axes and Euclidean skeletons of the heart.

detect skew symmetries: numerical experiments show
that if the skeleton contains a straight branch, a portion
of the curve has skew symmetry with respect to this
line.6 This is illustrated now. In Fig. 13(a) we show the
original figure with its corresponding skeleton, while
in Fig. 13(b) we show the figure affine transformed by
the matrix

A =
(

1 −1

0 1

)
.
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In Fig. 13(c) we corrupted the shape by adding to each
point of the discrete curve a random number of am-
plitude 0.025. The corresponding skeleton remains al-
most unchanged. In particular (as expected since our
medial axis is affine invariant) the linear medial axis
branch stays linear under this transformation. If we se-
lect a local minimum instead of a global minimum of
the distance, we obtain the AASS, shown in Fig. 14.
Figure 11 shows the skewed symmetry axes for the
triangular example and a couple of skewed symmetry
points. As in Fig. 13(a) we see that the skewed symme-
try is represented by a straight line in the affine medial
axis.

Figure 15 demonstrates the dynamic interpretation
of the affine skeleton: the successive curves of the affine
erosion C(A) (thin lines) form affine shocks at skeleton
points (thick line). Here we plotted the contour lines of
f (X ) (see Eq. (5)).

Figure 21. Thresholded affine medial axis of the tennis racket.

Now, we show how to compute skeletons from real
data: For an image showing two tools (Fig. 16), an im-
age showing a tennis racket (Fig. 21), and an image
showing a slice through a human heart (Fig. 19). First
we need to obtain the points of the curve C which de-
fine the shape. If the points are to be extracted from
a digital image with a good contrast, they may be ex-
tracted by thresholding the image in binary values and
then getting the boundary with a boundary-following
algorithm (Jain et al., 1995). This procedure was per-
formed with the shape on the right in Fig. 16 and with
the tennis racket of Fig. 21. When the border of the
shape is more complex or fuzzier, as for the shapes
on the left in Fig. 16 and in Fig. 19, more sophisti-
cated techniques can be used. Here, we extracted the
contour with the active contour algorithm as formu-
lated in Caselles et al. (1997), Kichenassamy et al.
(1996).7
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The resulting medial axes are shown in Figs. 17–21.
Figure 18 shows the four strongest lines of the com-
puted medial axis of the tools image, as determined by
means of a Hough transform. The main parts of the
medial axes are highlighted nicely (i.e. they are repre-
sented by dark pixels in the gray value Figs. 17, 20(a),
and 22) and are connected. Figure 20(c) shows the Eu-
clidean skeleton for the heart image 19. Figure 20(b)
and (d) show the gray level affine medial axis and the
Euclidean skeleton for the same heart image with a
slightly perturbed boundary respectively. While both,
the gray level medial axis and the Euclidean skeleton,
change under the boundary perturbation, the gray level
medial axis seems to change less than the Euclidean
skeleton in this case.

The medial axes decompose into several large con-
nected pieces for the sample images 16 and 21 after
thresholding. However, some isolated pixels and some
short connected pieces remain in all three examples.
Since small segments or even individual pixels might
very well indicate a significant symmetry of the image
(just think about the circle example), it is not advisable
to simply suppress these objects. Our current strategy

Figure 22. Gray level affine medial axis of the tennis racket.

is to do pruning based on thresholding a discretization
measure (see the algorithm in Section 4). In this case
the significance of every point on the gray level medial
axis is evaluated individually. It is not clear at this point
if this is the optimal pruning strategy—most likely it is
not. Thus, further research should try to develop alter-
native criteria for point significance testing to facilitate
pruning, possibly including more global information.

6. Conclusions

In this paper, we introduced a new definition of affine
medial axis and a robust method to compute it. The defi-
nition based on areas makes the medial axis remarkably
insensitive to noise, and thus, useful for processing real
images.

There are still theoretical problems that have to be
solved in order to build a consistent theory to support
our definition:

(a) The medial axis in the Euclidean case may be
found by detecting the shocks in the solutions of
the Hamilton-Jacobi equation (this is equivalent to
the Huygens principle in Blum’s method). We do
not know at this point, whether there is a differen-
tial equation which would allow us to compute our
affine medial axis in an analogous way.

(b) The properties of the area-distances d(X, s) in re-
lation with geometric characteristic of the curves,
such as normals, curvatures, etc., are yet unknown.

(c) The extension of the definition to multiply con-
nected curves would be of paramount importance
in practical applications.

(d) The assessment of the importance of individual
parts of the medial axis to describe the object shape
would be useful to further refine the obtained me-
dial axis.

These are some of the open questions that occupy
us and others in the area of symmetry sets. Neverthe-
less, at this point, we believe that we have presented a
reliable method for affine invariant medial axis compu-
tations, which hopefully will lead to some interesting
practical results in studying affine invariant symmetries
of objects in computer vision.
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Notes

1. Even though many definitions for Euclidean skeletons are based
on derivatives, it is not always necessary to use derivatives for the
actual computations—sometimes algorithms can be devised that
circumvent the use of derivatives, while only slightly changing
the definition of the skeleton. If and how this is possible in the
affine case is not clear at present.

2. Our distance is the integral of the distance used in Giblin and
Sapiro (1998a, 1998b). This is not the standard definition of affine
distance.

3. Some of the results below have also been obtained by Holtom
(2000).

4. This set is basically defined as the closure of the center of conics
having three-point contact with at least two points on the curve.

5. The ADSS as defined in Giblin and Sapiro (1998b) also has end-
points, and these are in the cusps of the affine evolute. The end-
points of the AASS are, by contrast, in the cusps of the midpoint
parallel tangent locus.

6. Although the Euclidean skeleton of a symmetric shape contains
a straight line, this is not necessarily true anymore after the shape
is affine transformed, obtaining skew symmetry.

7. Specifically, we minimize the cost functional
L = ∫ 1

0 g(‖∇ I‖)‖C p‖ dp, where C describes the curve,
p ∈ [0, 1] is the curve’s parameterization, and g is some
potential function on the image I . Compared to the classical
“snake” approach (Kass et al., 1988), this formulation results in a
curve evolution equation based on intrinsic geometric properties
of the curve being evolved.
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Kovács, I. and Julesz, B. 1994. Perceptual sensitivity maps within
globally defined visual shapes. Nature, 370:644–646.



224 Niethammer et al.

Lam, L., Lee, S.-W., and Suen, C.Y. 1992. Thinning methodologies—
a comprehensive survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 14(9):869–885.

Lee, S.-W., Lam, L., and Suen, C.Y. 1993. A systematic evalua-
tion of skeletonization algorithms. International Journal of Pat-
tern Recognition and Artificial Intelligence, 7(5):1203–1225.

Lee, T.S., Mumford, D., Zipser, K., and Schiller, P. 1995. Neural
correlates of boundary and medial axis representation in primate
striate cortex. Investigative Opthalmology and Visual Science Sup-
plement (ARVO Abstract).

Leymarie, F. and Levine, M.D. 1992. Simulating the grassfire trans-
form using an active contour model. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 14(1):56–75.

Leyton, M. 1992. Symmetry, Causality, Mind. MIT Press.
Meyer, F. 1990. Digital Euclidean skeletons. In Visual Communi-

cations and Image Processing ’90, vol. SPIE-1360, Society of
Photo-Instrumentation Engineers, pp. 251–262.

Moisan, L. 1998. Affine plane curve evolution: A fully consis-
tent scheme. IEEE Transactions on Image Processing, 7:411–
420.

Mott-Smith, J.C. 1970. Picture Processing and Psychopictorics,
chapter Medial Axis Transformations. Academic Press, pp. 267–
278.

Motzkin, T.S. 1983a. Sur quelques propriétés charactéristiques des
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