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Abstract. Inspired by the work by Gomes et al., we describe and analyze a vector distance function approach
for the implicit evolution of closed curves of codimension larger than one. The approach is set up in complete
generality, and then applied to the evolution of dynamic geometric active contours in R

4 (codimension three case).
In order to carry this out one needs an explicit expression for the zero level set for which we propose a discrete
connectivity method. This leads us to make connections with the new theory of cubical homology. We provide
some explicit simulation results in order to illustrate the methodology.
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1. Introduction

Recently there has been an increased interest in
evolving objects of codimension larger than one, with
applications ranging from geometric optics (Burchard
et al., 2001; Min, 2004; Osher et al., 2002), to image
processing (Lorigo et al., 1999), and to geometric
optimization (Pottman and Hofer, 2003). Theoretical
aspects of these evolutions have been investigated
in Ambrosio and Soner (1996), Evans and Spruck
(1991, 1992a,b, 1995), Gomes et al. (2001) and Slepcev
(2003).

This paper describes an approach based on Gomes
and Faugeras (2001a, 2000b) and Gomes et al. (2001),
for the implicit evolution of (possibly multiple) closed
curves with codimension greater than one. The usual
level set approach (Osher and Fedkiw, 2001; Sethian,
1999), valid for the evolution of hypersurfaces, is dif-
ficult to apply in higher codimensions. Indeed, in the
codimension one case, there is a clearly defined inte-
rior and a clearly defined exterior of the given object of

interest (if the surface is closed). In this case, a signed
distance function can be used for a level set implemen-
tation of the evolution equation.

On the other hand, for objects of larger codimension,
this is no longer the case. A possible remedy to this
problem is to evolve an unsigned distance function.
However, this is numerically challenging since numer-
ical dissipation causes the zero level set to drift away
from zero requiring the detection of points of minimal
distance to extract an approximation to the zero level
set. Closely related to the evolution of an unsigned
distance function, Ambrosio and Soner (1996) analyze
mean curvature motion in arbitrary codimension.
Here, the evolving surface of codimension k in R

d is
surrounded by a family of hypersurfaces, where the
normal velocity is given by the sum of the geometri-
cally relevant (the d −k smallest) principal curvatures.
Existence and uniqueness of a weak solution is
established.

Lorigo et al. (1999) use the ideas of Ambrosio
and Soner for vessel segmentation based on magnetic
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resonance angiography images, a codimension two
problem. Classical numerical schemes for level set
evolutions can be used since a tube (an ε-level set)
is evolved, thus generating an “artificial” inside
and outside. A disadvantage of this method is the
occurrence of “fattening,” which does not allow
for straightforward topological changes (Osher and
Fedkiw, 2001) since curves can develop interiors.
(See Burchard et al., 2001 for an example of fattening
and (Bellettini et al., 1998) for an analysis of the
phenomenon.)

Another possibility for the evolution of manifolds
of arbitrary codimension is to represent a manifold of
codimension k by the intersection of k scalar func-
tions with non-vanishing gradient on the surface of the
manifold (e.g., k signed distance functions with the
intersection of their respective zero level sets repre-
senting the desired manifold). This approach was also
proposed by Ambrosio and Soner, but not further pur-
sued since the resulting system of evolution equations
is not straightforward to analyze (the theory of vis-
cosity solutions is not available for such systems of
equations). Nevertheless, this approach has been very
successfully applied, in particular to problems in geo-
metric optics (Burchard et al., 2001; Min, 2004; Osher
et al., 2002), where the handling of topological changes
is of no importance (as they do not occur in this set-
ting Osher et al., 2002). However, if one is interested
in topological changes these approaches may require
global initializations, and it is not be clear how to au-
tomatically initialize the scalar functions to guarantee
proper topological behavior. This is of special impor-
tance when numerical efficiency is crucial (e.g., when
it would be beneficial to employ a narrow-band ap-
proach) (Burchard et al., 2001).

An alternative approach, closely related to the evolu-
tion of an unsigned distance function, is the evolution
of a vector distance function, which is the topic of the
present work. In this scheme not only the distance to
an object is known at any space point, but also the
normal direction. For a vector distance function, there
will always be a clearly defined zero level set (where
vectors flow away from each other), there are no ini-
tialization problems and narrow-band approaches are
possible. A vector distance function can easily be cal-
culated from a distance function and vice versa. Unfor-
tunately, the theory underlying the numerical methods
for vector distance functions is still in its infancy, since
one is dealing with discontinuous vector fields. Also, as
for the level set intersection methods discussed above,

there is no analog to the theory of viscosity solutions
available for these systems of partial differential equa-
tions (Gomes and Faugeras, 2001a). In this paper, we
restrict ourselves to the representation of closed curves.
This will simplify the numerical implementation and
facilitate a reinitialization procedure compensating for
fattening artifacts occurring throughout the evolution
process (due to numerical inaccuracies).

We now summarize the contents of this paper. In
Section 2 we describe the main level set approaches,
focusing on the vector distance function based ap-
proach. Section 3 discusses the vector distance function
based level set method. Next in Section 4, we apply the
methodology developed in Section 3 to the evolution
of a normal geometric dynamic active contour. Simu-
lation results are presented in Section 5, and finally we
make some conclusions in Section 6.

2. Level Set Approaches

In this section, we outline some of the main methods
for the evolution of manifolds of codimension greater
than one via various level set approaches. We will then
describe in some detail the vector distance function
method which we will subsequently apply to the prob-
lem of dynamic active contours which are represented
as curves evolving in R

4.
Level set approaches to date are extremely versa-

tile and based on solid mathematical foundations for
codimension one problems (Osher and Fedkiw, 2001).
Ambrosio and Soner extended the theory of level set
evolutions to mean curvature flows in arbitrary codi-
mensions in their seminal paper (Ambrosio and Soner,
1996). Specifically, they prove existence and unique-
ness of weak solutions for the curvature evolution of
surfaces of arbitrary codimension represented by a sur-
rounding family of hypersurfaces. They also hint at the
possibility of representing smooth surfaces by the in-
tersection of the level sets of multiple scalar functions,
but do not follow this path due to theoretical compli-
cations (it is not clear how to theoretically analyze the
resulting system of equations).

The first approach (as employed by Lorigo
et al. (1999) for the evolution of a smooth manifold
M of codimension k > 1 in R

d makes use of the
nonnegative scalar auxiliary function v : R

d �→ R
+,

M = {x ∈ R
d : v(x) = 0},

which vanishes on M and fulfills ∇v(x) �= 0 for x ∈
R

d \M. For x /∈ M, but ε-close to M, we can define
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the matrix

J (x) := 1

‖∇v(x)‖ P∇v(x)∇2v(x)P∇v(x),

where

Pp = I − p pT

‖ p‖2
, p �= 0,

is the orthogonal projection operator along the direc-
tion of the vector p and ∇2 denotes the Hessian. Ac-
cording to Ambrosio and Soner (1996), the evolution
described by the differential equation

ut = F(∇u,∇2u),

with

F( p, A) =
d−k∑

i=1

λi (Pp APp)

such that

λ1(Pp APp) ≤ λ2(Pp APp) ≤ . . . ≤ λd−1(Pp APp)

are the eigenvalues of Pp APp orthogonal to p, repre-
sents the mean curvature evolution of M where

Mt = {x ∈ R
d : u(x, t) = 0}.

Only the d − k smallest eigenvalues of J (x) orthog-
onal to ∇v(x) are related to the geometry of M. The
uniqueness and existence results obtained in Ambrosio
and Soner (1996) can be extended to a general normal
velocity

V = H + �N
Mg(x, t),

where H is the mean curvature vector, g(x, t) ∈ R
d is

a given vector field and �N
M is the projection operator

onto the normal space of M. The evolution equation
then becomes

ut = F(∇u,∇2u) − ∇u · g.

This approach is mathematically well founded, how-
ever, fattening of the evolving manifold can occur
(Bellettini et al., 1998; Burchard et al., 2001) and so the
handling of topological merging is problematic. Fur-
thermore, numerical extraction of the zero level set is

not straightforward. This can be circumvented (at the
cost of less theoretical insight) by evolving the inter-
section of isocontours of k scalar functions in a way
consistent with the desired movement of the codimen-
sion k object, which is the second method proposed
by Ambrosio and Soner (1996) (see Burchard et al.,
2001; Osher and Fedkiw, 2003; Bertalmio et al., 1999)
for codimension two, (Osher et al., 2002) for codi-
mension three, and (Gomes and Faugeras, 2002b) for
arbitrary codimensions). Given the k scalar functions
αi : R

d �→ R, 0 < i ≤ k, the evolving object is
implicitly described by the simultaneous evolution of

αi
t + xt · ∇αi = 0, 0 < i ≤ k,

where xt is the velocity vector. The object is repre-
sented (for example) by the intersection of the respec-
tive zero level sets of the k scalar functions αi .

Two major questions arise from this formulation:

(1) How are the scalar functions initialized? This has
to be performed globally (over the whole com-
putational domain) if well-behaved handling of
topological changes is required. Narrow-banding
approaches (Adalsteinsson and Sethian, 1995)
cannot be used per se for this problem. Further,
the representation of an object by intersection of
multiple hypersurfaces is not unique.

(2) How should the speed functions in the complete
computational domain be determined for the scalar
functions αi if the desired velocities are only
known at the intersection of the hypersurfaces?
Based on these velocities, extension velocities
have to be constructed (on the zero level sets, and
in the interior of the domain).

To resolve these questions, a novel approach based
on vector distance functions is introduced in (Gomes
and Faugeras 2001a, and Gomes et al. 2001). Given a
manifold M,

δ(x) := dist(x,M)

is defined as the distance from point x ∈ R
d to the

manifold M. The vector distance function u(x) is then
given as the derivative of the squared distance function
(see Ambrosio and Soner, 1996; Pottman and Hofer,
2003) for details on the squared distance function)

η(x) := 1

2
δ2(x).
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Thus

u(x) = ∇η(x) = δ(x)∇δ(x). (1)

The vector distance function is an implicit representa-
tion of the manifold M with

M = u−1(0),

the intersection of the d hypersurfaces

ui = 0, 1 ≤ i ≤ d.

The description is redundant, but unique.
The evolution equation for the manifold M(p, t),

parameterized by p, becomes (using the notation
of Gomes and Faugeras (2001a))

Mt (p, t) = �N
M(p,t)(D(M(p, t), t)) = V (M(p, t), t),

where D(x, t) = xt is a vector field defined on R
d ×

R
+, determining the evolution speed at x. Note that we

do not need the tangential component of the evolution
equation since the evolution is performed in R

d .
To evolve the manifold M, a speed function must

be constructed on the subspace of R
d that contains the

evolution of the manifold. This speed function should

(1) maintain the vector distance function throughout
the evolution, and

(2) move the manifold M appropriately.

It can be shown (see Gomes et al. (2001) that the
characteristic equation for the vector distance function
u(x) is

(Du)T u = u, (2)

where Du denotes the Jacobian of u. Taking the time
derivative of Equation (2) and using the fact that
(Du)T = Du (Gomes et al., 2001)

Dbu = (I − Du)b, (3)

where b is the appropriate velocity for the vector dis-
tance function evolution with initial condition

b(M, t) = −V (M, t).

The overall evolution is then given by

ut + (Du)T b = 0,

which completes the vector distance function based
approach.

The vector distance function to a given manifold M
is unique, and its initialization is straightforward. Sig-
nificant reductions in computational cost are possible
through narrow-banding techniques. A fattening phe-
nomenon (similar to that found in Ambrosio and Soner
(1996)) can be observed for vector distance function
based level set approaches.

In what follows we restrict ourselves to the repre-
sentation of closed one-dimensional curves in R

d , i.e.,
we will be considering a codimension d − 1 problem.
This restriction is beneficial since it allows for the con-
struction of an explicit reinitialization method, which
in turn alleviates the fattening problem, and will pro-
vides a good representation for the evolutions based
on the equations of dynamic active contours. Dynamic
active contours will be presented in Section 4.

3. Level Set Approach by Means of a Vector
Distance Function Evolution

An implicit description of an object by a vector distance
function is extremely versatile; there is no restriction
regarding an object’s shape. Specifically, objects with
varying dimensions can be represented (Gomes and
Faugeras, 2001a). Objects can also change dimension
throughout the vector distance function evolution, in
contrast to level set approaches using a signed distance
function, where objects necessarily need to be closed
(unless we are working within a bounded domain). The
representational flexibility of vector distance functions
is clearly a desirable property. However, it is not clear
at this point how to devise numerical methods for this
general case. To facilitate the numerical implemen-
tation, we restrict ourselves to the representation of
possibly multiple closed curves.

We perform the following steps for our vector dis-
tance function based curve evolution. To evolve a curve
according to the vector distance function approach,

(0) Initialize the vector distance function.
(1) Detect (a band around) the zero contour (i.e.,

u−1(0) = M).
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Table 1. List of symbols.

Symbol Description

∇ gradient

D Jacobian

∇2 Hessian

� Laplacian

b vector distance function velocity function

V velocity of the zero level set b = −V

v planar curve velocity

β normal curve velocity

δ(x) (scalar) distance function

u vector distance function


 computational domain

V vertex set of a graph

E edge set of a graph

Hk (X ) k-th homology group of X

βk Betti numbers

M manifold

H mean curvature vector

C planar closed curve

N unit inward normal to C
T unit tangent vector to C
κ signed curvature to C
s arclength

p curve parameterization

g potential function

(2) Redistance the vector distance function outside of
the zero band or (if necessary) explicitly on the
whole computational domain.

(3) Compute the vector field b on the band determined
in (1).

(4) Extend the b vector field to the whole domain,
keeping the values of step (3) fixed.

(5) Do an evolution step.
(6) Go to step (1).

Steps (0)–(5) are described in the following subsec-
tions.

3.1. Initializing the Vector Distance Function

Assume the existence of a piecewise linear approxi-
mation of the closed curve to be represented. Let this
approximation be

A =
⋃

li ∈L
li ,

where L is the set of line segments constituting the
piecewise linear approximation. Working on a discrete
grid, we explicitly initialize1 the vector distance func-
tion u on a set, B, γ -close to the piecewise linear ap-
proximation A:

B := {x ∈ 
 : dist(x,A) < γ } .

In the remainder of the computational domain 
,
i.e., 
\B, we can reinitialize by first computing the
distance function δ to A and then converting the dis-
tance function to the vector distance function. One
way to compute this distance function δ on 
 \ B is to
use the reinitialization approach proposed by Sussman
et al. (1994). There is no inside and outside when rep-
resenting objects of codimension larger than one. This
precludes the application of the scheme by Sussman
et al. to initialize over the whole domain 
 (see Sec-
tion 3.3 for more details).

3.2. Simple Zero Band Detection

As will be shown later, redistancing the vector
distance function over the whole computational
domain 
 is not straightforward. Since redistancing
is not straightforward, neither is the extension of
quantities (like the velocities). However, frequently
it is sufficient to perform these operations away from
the zero level set (Dupont and Liu, 2004), where
standard methods known from the evolution of closed
curves or surfaces of codimension one can be applied.
This is the approach followed here. We simply do not
redistance on the set B̂ which is γ -close to the zero
level set (in analogy to Section 3.1). The current vector
distance function u can be used to find the set B̂,

B̂ := {x ∈ 
 : ‖u(x)‖ < γ } .

We will see in Section 3.7 that a more precise approx-
imation for the zero level set is needed for the explicit
reinitialization of the vector distance function field on
B̂. The value for γ needs to be chosen conservatively to
make sure that the actual zero level set is contained in B̂.

3.3. Redistancing the Vector Distance Field Away
from the Zero Band

Inspired by Dupont and Liu (2003), the vector dis-
tance function is reinitialized only outside the zero
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band obtained as described in Section 3.2. Gomes and
Faugeras (2001a) propose to minimize the functional

1

2

∫




‖DuT u − u‖2 dx. (4)

By means of calculus of variations they derive the cor-
responding gradient descent flow. This is a flow that
directly works with the vectors u. Unfortunately, the
numerical implementation is not straightforward (ex-
cept in the case of simple geometries, e.g. lines).

Alternatively, redistancing is performed via the in-
termediate computation of a scalar distance function.
Based on this reinitialized scalar distance field, we
can then compute the vector distance field. This two-
step approach has the advantage that standard algo-
rithms can be used and iteration free solutions (e.g., fast
marching) are possible2. The current distance function
δ(x) relates to the vector distance function by

δ(x) = ‖u(x)‖. (5)

The distance function can be reinitialized on 
 \ B̂ for
example by a fast marching approach (Sethian, 1999)
or by a partial differential equation approach along the
lines of Sussman et al. (1994). However, since we are
not dealing with a signed distance function here, the
approach by Sussman et al. (1994) will simplify to
solving the equation

δt = 1 − ‖∇δ‖. (6)

Given the reinitialized distance function δ, the reini-
tialized vector distance function can be determined by
solving3 for u in Eq. (1).

3.4. Computing the Velocity Field on the Zero Band

It is sufficient to compute a velocity vector for ev-
ery point in B̂. From Gomes and Faugeras(2000a) the
identity Du(x)t = 0 holds for every element t of the
tangent space to the curve. The symmetry of (Du) in
the evolution equation

ut + (Du)T b = 0

means that the velocity vector b need not be projected
onto the normal space of the curve. For example, for
a mean curvature evolution, the velocity vector b is
given by the mean curvature vector which can be

computed (Gomes and Faugeras, 2001a) (for a one-
dimensional curve) as

H(x) = − (�u(x)) ,

the component-wise Laplacian of u. Section 4 contains
the corresponding expressions for the normal dynamic
active contour.

3.5. Extending the Velocity Field

We now show that the velocity field b satisfies Equa-
tion (18), if it is normal to M and extended in the
normal direction to M. Assume b is extended in the
normal direction to M, i.e., given any point x ∈ 
, b
will be constant in the u direction. Then,

Dbu = 0

and Eq. (3) reduces to

b = Dub. (7)

We know that

Du(x) = D(δ(x)Dδ(x)) = Dδ(x)Dδ(x)

+ δ(x)D(Dδ(x)). (8)

But

δ(x)D(Dδ(x))b = 0, (9)

since the gradient of δ(x) is constant along the normal
direction, and b and the normal direction are linearly
dependent by assumption. Combining (7–9) yields

b = (∇δ(x)T b
)∇δ(x),

which holds because b is assumed normal to M.
By Section 3.4, only the normal direction of b mat-

ters for the evolution of u. Thus, instead of solving
Eq. (3) directly, it is sufficient to extend the compo-
nents of b along the normal direction to M. Since only
the normal component of b to M matters for the evolu-
tion, b need not be projected onto the normal space of
M before extending it in the normal direction of M.
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3.6. Evolving the Vector Distance Function

There are numerical advantages to evolving vector dis-
tance functions over evolving distance functions di-
rectly. Whereas the vector distance function clearly
defines the zero level set at every point in time (vectors
are emanating from the zero level set), the zero level set
of the distance function is not so easy to find. In case
of the distance function it is unreasonable to expect to
find a level set that is exactly zero. Instead, locating
the zero level set would require searching for distance
minima or locations of diverging gradients of the dis-
tance function. The latter essentially goes back to the
idea of the vector distance function. Also, numerical
algorithms usually cause dissipation. For the distance
function this means, in the extreme case, that the “zero
level set” drifts away from zero over time. This drift is
not desirable.

We assume a velocity field b in 
 as discussed in
Section 3.5. We evolve the vector distance function
as4

ut + (Du)T b = 0 (10)

Increased numerical accuracy can for example be
achieved through back and forth error compensation
and correction (Dupont and Liu, 2003). If Lh is the
numerical solution operator of Eq. (10) the backward
error compensation method is given by the following
three steps:

(1) Solve forward: ũn+1 = Lh un .
(2) Solve backward: un

1 = L−1
h ũn+1.

(3) Solve with error compensation: un+1 = Lh(un +
1
2 (un − un

1)).

We show an example of backward error compen-
sation in Section 5, but refrain from its use for the
remainder to save on computational complexity (this
scheme increases the numerical complexity roughly by
a factor of three).

3.7. Redistancing the Vector Distance Function
Field

Due to numerical errors, the evolving vector field u will
drift away from the class of vector distance functions
over time. Close to the zero level set, the vectors will
fail to be perpendicular to the curve being evolved and
the approach of Subsection 3.3 will no longer suffice.

In this case, the vector field has to be reinitialized
on the zero band (or alternatively, we could constantly
reinitialize as we go). Instead of using the flow based
on the energy functional (4), we could directly solve
the characteristic equation

(Du)T u − u = 0

numerically. Inspired by (6) it seems reasonable to
evolve

ut + (Du)T u = u

to steady state. Since Du is symmetric this is equivalent
to

ut + (Du)u = u. (11)

Equation (11) has a particularly simple structure. It
is a multi-dimensional transport equation with a right
hand source term. Unfortunately, solving Eq. (11) nu-
merically is not straightforward. Only in the most triv-
ial cases, i.e., when representing one single line, will
there be no solution shocks. Generically, the solution
will have discontinuous shocks.

To get a feel for this equation and its associated
problems, consider the one-dimensional case. Equation
(11) becomes

ut = u(1 − ux ), (12)

a one-dimensional Burgers’ equation with source term.
The steady state for this equation is either ux = 1 or
u = 0. However, this is only true if we are implicitly
representing one single point. Otherwise, we expect a
discontinuous solution that should be interpreted in the
weak sense. If the equation is discretized using a con-
servative scheme (e.g., volume of fluids) the singled-
out solution is not necessarily the desired solution.
This can easily be seen in the one-dimensional case
by looking at the shock-speed given by the Rankine-
Hugoniot condition. Due to the additional source term
on the right hand side of the Burgers’-like equation, a
derivation of the shock speed is instructive. To derive
the shock speed, we consider a small time interval �t
for which the shock speed s is approximately constant
(Leveque, 2002). During that time period the shock
travels the distance �x = s�t . Assuming the discon-
tinuous states across the shock are ul and ur , we derive
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Figure 1. Shock propagation over an infinitesimal time interval �t .

the shock speed based on the conservation form of

ut + f (u)x = u,

which yields Eq. (12) when f (u) = 1
2 u2. We obtain

(see Fig. (1))

∫ x1+�x

x1

u(x, t1 + �t)dx −
∫ x1+�x

x1

u(x, t1) dx

=
∫ t1+�t

t1

f (u(x1, t))dt −
∫ t1+�t

t1

f (u(x1 + �x, t)) dt

+
∫

t1

t1 + �t
∫

x1

x1 + �xu(x, t) dx dt.

(13)

Since the value for u is constant in each of the triangles
of Fig. 1, Equation (13) simplifies to

�x(ul − ur ) = �t( f (ul) − f (ur ))

+ 1

2
�x�t(ul + ur ) + O(�t2).

With �x = s�t ,

s(ul − ur ) = f (ul ) − f (ur ) + 1

2
s�t(ul + ur ) + O(�t)

= f (ul ) − f (ur ) + O(�t),

resulting in an expression for the shock speed s:

s = f (ur ) − f (ul)

ur − ul
. (14)

The latter expression is independent of the right
hand-side source term (it is negligible for this in-
finitesimal time interval). This is the classical Rankine-
Hugoniot condition for scalar conservation laws. Sub-
stituting f (u) = 1

2 u2 into Eq. (14) yields

s = 1

2
(ul + ur ),

the shock speed for Burgers’ equation. For the
one-dimensional case, discontinuities will only arise
in between the represented points (the zero level set).
For the representation to be a true vector distance
function the left-hand and the right-hand side limits
of the vector distance function magnitude at the
discontinuity have to be equal. Since the numerics will
introduce errors, this exact balance will not be stable.
Redistancing performed by solving Eq. (12) will favor
high magnitudes of the vector distance function. The
vector distance function will converge to a vector
distance function of a single point (whichever one
was the most dominating). Figure 2 shows the shock
speeds for two vector based level set representations
of a two-point scenario. In both cases the shock does
not move in the desired direction.

To get a feeling for the fundamental difference be-
tween the signed distance function based and the vector
distance function based approaches, it is instructive to
briefly review the rationale behind the numerics for the
level set evolution based on a signed distance function.
Here, the slope of the signed distance function is con-
served (Sethian, 1999). In one dimension, the evolution
equation is given as

t + F
√

2
x = t + F‖x‖ = 0, (15)

Figure 2. Shock propagation.
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where F is the speed function. Differentiation of
Eq. (15) gives

(t )x + (F‖x‖)x = (x )t + (F‖x‖)x = 0.

Substituting w = x we get

wt + (F‖w‖)x = wt + H (w)x = 0,

which is in conservation form for w, the slope. Here,
H (·) is the flux function. However, a numerical solution
to  instead of w is sought. Thus, the Hamilton-Jacobi
equation

t + H (x ) = 0 (16)

needs to be solved using a numerical approximation of
H (·). Equation (16) evolves a continuous function 

as opposed to a discontinuous vector field u.

3.7.0.1. Explicit Redistancing of the Vector Distance
Function. Since it is not immediately obvious how
to devise a partial differential equation based reini-
tialization strategy, reinitialization is done by con-
struction. Doing so requires an explicit expression for
the zero level set, which is also useful for visual-
ization purposes. The remainder of this section pro-
poses a particle based method and a method based
on discrete connectivity. Both methods are computa-
tionally expensive; more efficient methods would be
desirable. Fortunately, it is not necessary to reinitial-
ize the vector distance function after every iteration
step.

3.7.1. Particle Based Explicit Redistancing of the Vec-
tor Distance Function. Given a sampling set S of a
(discrete) domain containing the zero level set (e.g.,
S = S(B̂)), move each particle in the sampling set
along the vector distance field:

xt = −u(x), x(0) = x0,∀x0 ∈ S.

The particles will converge to the zero level set (pos-
sibly suffering from fattening). A sufficiently dense
sampling will guarantee a good representation of the
zero level set. Denoting the set of points to which
the particles converge by Sc, the vector distance func-
tion on B̂ can be reinitialized by explicitly computing
dist(x,Sc),∀x ∈ B̂.

3.7.2. Discrete Connectivity Based Redistancing of
the Vector Distance Function. The discrete connec-
tivity based approach hinges on a discrete approxi-
mation of the zero level set and a piecewise linear
approximation thereof.

3.7.2.1. Thinning. To construct the discrete approxi-
mation of the zero level set, begin with a discrete repre-
sentation of the zero band (as proposed in Section 3.2).
This discrete approximation is then thinned. Ideally, we
would obtain a (3d −1)-connected (where d is the space
dimension) approximation of the zero level set where
this approximation is composed of a union of sets
representing discrete simple closed curves (Thürmer,
2003)5 whose union does not violate the property of
every d-xel having exactly two neighbors. If the repre-
sented curves are sufficiently distant from each other,
this two-neighbor-property will not be violated. How-
ever, if the represented curves are sufficiently close it
may be, as illustrated in Fig. 3.

Topology preserving thinning is frequently used to
determine discrete skeletons of discretely represented
objects. A key issue is the notion of a simple point: sim-
ple points are points of discrete sets that do not alter
the topology of the represented object upon removal.
Testing for simple points gets increasingly complex
for higher dimensions. The two-dimensional case is
straightforward. The three-dimensional case is well
studied. Higher-dimensional cases have not received
much attention (Gau and Kong, 2002; Kong, 1997).
However, this is the case relevant to our application.
For now, assume the existence of a test for the simple
point property in higher dimensions (Section 3.7.3 will
explain the method used).

Figure 3. Example of a thinning of the zero band that does not yield two clearly separable discrete closed simple curves.
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Figure 4. Undesired topological connection remaining after topological thinning.

To decide if a point is simple, it suffices to check
if its removal changes the topology within its (3d −
1) neighborhood. To utilize the additional directional
information encoded in the vector distance function
for the thinning algorithm, define the local (3d − 1)
neighborhood N (3d−1) of a point p as

N (3d−1)( p)

=
{

x ∈ N(3d−1)( p) :
(x− p)T

‖x− p‖ (u(x)−u( p))<ν

}
,

and base the decision for a simple point on this neigh-
borhood. As a consequence, the modified thinning al-
gorithm will no longer be topology preserving. Instead
it will be allowed to break undesired connectivities
(see Fig. 4 for a two-dimensional example) based on
the projection of the vector distance function vectors
on connecting line segments between two points.

The thinning is performed by successive removal of
simple points until there are no simple points left. The
simple points with maximal vector distance norm are
removed first.

3.7.2.2. Constructing a Piecewise Linear Approxima-
tion. Given the discrete approximation of the zero
level set, we want to construct a piecewise linear ap-
proximation by means of the discrete connectivity in-
formation, i.e., each line in the piecewise linear approx-
imation will correspond to a (3d −1) connected pair of
d-xels. The discrete connectivity induces a graph (V, E)
over the discrete approximation Z of the zero level set,
where the vertex set V is the set of points in Z and the
edge set E is given by the discrete connectivity infor-

Figure 5. All possible edges and vertices based on the discrete
connectivity.

mation. (See Fig. 5 for an illustration.) We are inter-
ested in simple cycles of this graph that are consistent
with the definition for discrete, simple closed curves.
Fig. 6 shows some possible simple cycles of the graph
associated with a simple two-dimensional discrete ap-
proximation of a zero level set of two circular objects.
None of these exemplary simple cycles are valid rep-
resentatives for a discrete, simple closed curve.

Initial Candidates. In order to single out sensible
candidates for the discrete, simple closed curves in
which we are interested, we introduce a measure for
edge deviation from the edge contained in the sought-
after piecewise linear approximation of the zero level
set. Specifically, given the two points x0 and x1 (the
vertices of the edge e), define the two line segments

x(p) = x0 + (x1 − x0) p, and

x′(p) = p0 + ( p1 − p0) p,

where p ∈ [0, 1], and

p0 = x0 − u(x0) and p1 = x1 − u(x1).

The distance is then defined as (see Fig. (7) for an
illustration):

d
(
x, x′) = d(e) :=

∫ 1

0
‖(x − x′)(p)‖2dp

= ‖u(x0)‖2 + u(x0)T (u(x1) − u(x0))

+ 1

3
‖u(x1) − u(x0)‖2.

Define the set of illegal starting edges Ei as

Ei := {e ∈ E : e is out − edge of v ∈ V,

∃ simple cycleS : v ∈ S and |S| = 3},

i.e., the set of edges that are part of simple cycles of
length three. These are edges at positions where the
discrete curve “ceases to be simple” and a point has
more than two neighbors.

The following heuristic algorithm is used to find
discrete, simple closed curve candidates:



On the Evolution of Vector Distance Functions of Closed Curves 15

Figure 6. Some possible simple cycles that are not valid representatives for a discrete closed curve.

(0) Set the set of uncovered edges to Eu = E \ Ei .
(1) While Eu �= ∅: (repeat steps (2)–(4)):
(2) Find e ∈ Eu : d(e) ≤ d(e′)∀e′ ∈ Eu, e �= e′.
(3) Find all simple cycles containing e that represent

a discrete, simple closed curve and put them in Se

(the set of these cycles).
(4) If Se = ∅ remove e from Eu . Otherwise, the

smoothest6 of the cycles in Se is the desired, dis-
crete, simple closed-curve candidate whose edges
are removed from Eu .

Measuring Smoothness:. The smoothness of a cy-
cle depends on the likelihood of a cycle to follow a
path across a vertex that has more than two neighbors.
Specifically, if P is the set of all paths through a vertex
p ∈ V , define the path-likelihood as

l(pi ) = e− ci (p)2

2σ2 , pi ∈ P,

where ci is an approximation to the curvature at p for
the path pi and the probability P of a cycle taking the

Figure 7. Illustration of the line quality measure.

path pi at vertex p as

P(pi ) = l(pi )

�i l(pi )
.

The smoothness s of a cycle C is then defined to be

s(C) := 1 −
∏

∀pi ∈C

P(pi ).

The smaller s(C), the smoother the cycle C is. Fig. (8)
illustrates this smoothness computation. Starting with
an edge emanating from the light gray block at the bot-
tom left of Fig. 8(a), the three cycles given in Figs. 8(b–
d) are possible. Due to symmetry, it suffices if we com-
pute curvature approximations at the point pa denoted
by the asterisk. The four hatched blocks are used for
the discrete curvature computations. We assume that
the diagonal distance between points is one. In case (b),
curvature c(pa) = 0. In the cases (c) and (d),

c(pa) := y0 − 2y1 + y2

(�y)2 =
0 − 2 1√

2
+ 0

(
1√
2

) = −2
√

2.

Using σ = 2, the likelihoods at the crossing points
are

l(pa) =





1 for case (b),

1

e
for cases (c) and (d).
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Figure 8. Starting with an edge leaving the light gray block at the bottom left, three candidate cycles for the discrete configuration (a) are
possible, with (b) being the smoothest one.

Figure 9. Merging curves scenarios.



On the Evolution of Vector Distance Functions of Closed Curves 17

The corresponding probabilities thus become

P(pa) =






e

e + 2
for case (b),

1

e + 2
for cases (c) and (d),

which yields to the smoothness values

s(C) =






1 −
(

e

e + 2

)2

for case (b),

1 −
(

1

e + 2

)2

for cases (c) and (d).

Since s is smallest in case (b), the corresponding cycle
is the smoothest.

Refining the Piecewise Linear Approximation: Once
a cycle has been determined, its piecewise linear ap-
proximation is still relatively crude. To refine the ap-
proximation (keeping the connectivity at the same
time), successively split a line segment into two line
segments. Given the two end-points p0 and p1 of a line
segment, define

pm := 1

2
( p0 + p1) − u ( p0 + p1) .

The line segment ( p0, p1) is then replaced by the two
line segments ( p0, pm) and ( pm, p1).

This process can be repeated multiple times if nec-
essary. Due to numerical inaccuracies in the vector
distance function oversampling may result in a rugged-
looking curve. To increase curve smoothness approx-
imate this over-sampled piecewise linear approxima-
tion to the zero level set by a least squares quadratic
spline (Dierckx, 1993) or a least squares piecewise lin-
ear approximation. It is then straightforward, but rela-
tively computationally costly, to redistance the vector
distance function based on the obtained piecewise lin-
ear approximation.

Explicit Redistancing: Given a line segment L de-
fined by its two endpoints p0 and p1, define the
vector distance u of a point p to the line segment
L as:

u( p, L) = p − p0 − (( p − p0)T t)t

if ( p − p0)T t ∈ [0, ‖ p1 − p0‖],

where

t = p1 − p0

‖ p1 − p0‖ .

Otherwise,

u( p, L) =
{

p − p0 if ‖ p0 − p‖ ≤ ‖ p1 − p‖,
p − p1 otherwise.

The reinitialized vector distance function at a point x
is then approximately

u(x) = argmin
u(x,L),L∈L ‖u(x, L)‖.

3.7.3. Detecting Simple Points. Detecting simple
points gets increasingly complex with higher space
dimensions. Since the potential space dimensions may
be higher than three, it is desirable to use a method for
simple point detection applicable in arbitrary space di-
mensions. Previous work has focused on specific space
dimensions: see for example (Bertrand, 1996; Gau and
Kong, 2002; Klette, 2003; Kong, 1997).

Our approach is based on cubical homology and
is not restricted to a specific space dimension. Cu-
bical homology is ideally suited to digital images,
due to its ability to handle voxels or pixels directly.
Whereas homology is by now a standard tool of al-
gebraic topology (Massey, 1991), cubical homology
is more recent (Kaczynski et al., 2004; Kalies et al.,
1999). Homology seeks to count holes in a topological
space. For three-dimensional image data for example,
three non-trivial homology groups H0, H1 and H2 ex-
ist. The number of connected components, tunnels and
voids present in the image are given by the Betti num-
bers β0, β1 and β2 respectively; where βi is the rank of
the homology group Hi . Homology is a combinatorial
theory, i.e., it can be computed by decomposing the
space into a finite number of units. In the traditional
simplicial homology, these units are simplices (a sim-
plex is a hypertetrahedron, it is the simplest possible
polytope for a given space dimension, e.g., a line in
one dimension, a triangle in two dimensions, etc.). In
the cubical homology these units are d-xels and also
their respective vertices, edges and higher-dimensional
faces, they are called elementary cubes.

Formally, an elementary cube Q is given by the finite
product (Kaczynski et al., 2001)

Q = I1 × I2 × · · · × Id ⊂ R
d , (17)

where Ii is either a singleton (degenerated) interval
I = [l, l] = [l] or an interval of unit length I =
[l, l+1] for some l ∈ Z. The number of non-degenerate
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components in Q is called the dimension of Q (dimQ).
If a set X ⊂ R

d can be written as a finite number of
elementary cubes, it is called a cubical set. The set of
all elementary cubes is denoted by K, and the set of all
elementary cubes Q in R

d with dimQ = k by Kk , for
k ∈ N. In three dimensions, the set of all elementary
cubesK consists of all vertices, edges, faces and voxels.

Definition 1. Let X ⊂ R
d be a cubical set. Let

K(X ) := {Q ∈ K | Q ⊂ X} and

Kk(X ) := {Q ∈ K(X ) | dimQ = k} .

To pass from the combinatorial structure of the el-
ementary cubes, e.g., the collection of voxels, to the
algebraic structure of homology groups, one constructs
the free Abelian group (i.e., a commutative group that
has a basis) of k-chains, Ck(X ) by declaring each el-
ement of Kk(X ) to be a distinct generator (or basis
element). Let Ck denote Ck(Rd ).

Given k ∈ Z, the cubical boundary operator

∂k : Ck → Ck−1 (18)

is the group homomorphism7 defined on every elemen-
tary cube Q ∈ Kk as the alternating sum of its (k − 1)-
dimensional faces. Due to linearity this boundary op-
erator extends to all k-chains. A k-chain z ∈ Ck(X ) is
called a cycle in X if ∂k z = 0. A k-chain z ∈ Ck(X ) is
called a boundary in X if there exists a c ∈ Ck+1(X )
such that ∂k+1c = z. The set of all cycles and the set of
all boundaries in X form subgroups in Ck(X ) and are
given by8

Zk(X ) := ker ∂ X
k = Ck(X ) ∩ ker ∂k (19)

Bk(X ) := image ∂ X
k+1 = ∂k+1 (Ck+1(X )) (20)

respectively.

Definition 2. The k-th cubical homology group of X is
the quotient group

Hk(X ) := Zk(X )/Bk(X ).

The Betti numbers βk are then given as

βk(X ) := rank(Hk(X )). (21)

The elements of Hk(X ) are called the k-generators
of X. The homology groups are computed9 as (for ex-
ample) described in Kalies et al. (1999). If N is the
(3d − 1)-neighborhood of the d-xel x, x is a simple

point if Niethammer et al. (2004a)

β0(N ) = 1, βi (N ) = 0, 0 < i ≤ 4, i ∈ N.

See Niethammer et al. (2004a) for the simple point
condition for arbitrary dimensions d

For our thinning purpose, it is also useful to allow
for topological changes. One useful change for finding
a discrete approximation to the zero level set is to allow
for the “piercing” of discrete planes, i.e., if the removal
of an d-xel changes the topology of the (3d − 1) neigh-
borhood from β0 = 1, βi = 0, i > 0 to β0 = 1, β1 =
1, βi = 0, i > 1, we allow this removal to occur.

4. Four-Dimensional Evolution for the Normal
Geometric Dynamic Active Contour

One of the key examples for the proposed vector dis-
tance methodology is the evolution of a normal dy-
namic active contour (see Section 5 for results). We
review some of the background material for this fol-
lowing (Niethammer et al., 2004b), to which we refer
the reader for all relevant details.

Specifically, consider the evolution of closed curves
of the form C : S1 × [0, τ ) �→ R

2, τ ∈ R
+ in the plane,

where C = C(p, t) and C(0, t) = C(1, t) (Grayson,
1987), with t ∈ [0, τ ) being the time, and p ∈ [0, 1]
the curve’s parametrization on the unit circle S1.

The governing equations for the dynamic active
contour model are derived by computing the Euler-
Lagrange equation associated with the action integral

L =
∫ t1

t=t0

∫ 1

p=0

(
1

2
µ‖Ct‖2 − g

)
‖Cp‖dp dt,

resulting in

µCt t = −µ(T · Cts)Ct − µ(Ct · Cts)T

−
(

1

2
µ‖Ct‖2 − g

)
κN − (∇g · N )N , (22)

where N is the unit inward normal, T = ∂C
∂s is the unit

tangent vector to the curve, κ = Css ·N denotes curva-
ture, s is the arclength parameter (do Carmo, 1976), g is
a potential function and µ is related to the mass of the
curve. In comparison to the classical active contour,
time in (22) is not an artificial time parameter intro-
duced to solve an Euler-Lagrange equation, but instead
appears naturally in Eq. (22), is physically motivated
and augments the state space by a velocity vector for
every point on the evolving curve.
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It can be shown that the solution of Eq. (22) can
only have a nonvanishing tangential velocity if its ini-
tial condition has a nonvanishing tangential velocity
(Niethammer et al., 2004b). Assume that the initial
condition is free of tangential velocities. Eq. (22) sim-
plifies to

Ct = βN ,

βt =
(

1

2
β2 + 1

µ
g

)
κ − 1

µ
∇g · N , (23)

the evolution equation for normal dynamic geometric
curve evolution (with β being the speed in the normal
direction).

Although the evolution equations for the normal dy-
namic geometric curve evolution seem to only require
a curve evolving in three dimensional space (for the
position in the plane and the normal velocity for every
point on the curve—the projection of the space curve
onto the image plane then recovers the geometric shape
of the evolving planar curve) this is not sufficient in
general when implementing the evolution for multiple
curves simultaneously. In certain cases (i.e., when the
projections of curves overlap in the image plane) there
is no clear inside and outside of the projected curve.
Then it is not apparent how to assign a unique normal
vector to every point of the projected curves in the
image plane without the normal vector exhibiting a
discontinuity (when traced along an individual curve).
Also, even if such a normal vector would be given, it is
not desirable to perform the topological merging and
splitting based on this representation, i.e., based on the
position and the normal velocity coefficient. Indeed,
if we use the unit inward normals of two curves, two
curves will not necessarily merge even though they co-
incide with position and velocity, because the normal
velocity coefficient β can (and in this case will) differ
in sign (see Fig. (9) for an illustration). It is thus more
desirable to perform the level set implementation in
a four-dimensional space (this is a codimension three
problem) so that merging and splitting is performed
based on the real velocity vector. We call this the full
level set approach.

Previous work (Niethammer et al., 2004b) was not
concerned with the propagation of the curves in this
higher-dimensional space. Instead a partial level set
approach was used, where curves in the image plane
are represented by a level set function and the nor-
mal speed is simply propagated along with the curves.
This guarantees dynamic curve propagation according

to Eq. (23) as long as the level sets, used for the repre-
sentation of the curves’ positions in the image plane,
do not merge or split. Consequently, curves sliding past
each other cannot be represented in this setting. If this
is desired, a full level set approach needs to be em-
ployed. Then a completely implicit representation of
the curve based on Eq. (23) is evolved, allowing for
full topological flexibility. Of specific interest is the
requirement that two curves will only be merged at a
point if their positions and velocities at this point are
identical, i.e., the methodology allows for curves to
slide past each other if this is what their dynamical de-
scription requires them to do. When two curves slide
past each other, the projection onto the image plane
will show two intersecting closed curves. The merging
behavior will be very different from the one observed
for the partial level set approach. While two objects
that get merged with the partial level set approach will
lose their joint boundary, this will not be the case for
the full level set approach where the two contours will
get fused at their joint boundary.

We will treat the combined spatial and velocity evo-
lution of closed curves within the vector distance func-
tion setting (as a full level set approach), thus providing
a sample problem for the vector distance function ap-
proach to level-set evolutions in higher co-dimension.
Eq. (23) was derived based on curves evolving in the
plane. However, the implicit evolution of closed curves
by a vector distance function approach requires the
computation of planar quantities (e.g., the mean cur-
vature vector in the image plane) based on the vector
distance function values u, which implicitly describe a
curve in R

4. In short, Equation (23) needs to be written
in terms of u.

With

v =
(

v0

v1

)
= βN ,

an evolution equation analogous to Equation (12) is

Ct = v,

vt = βtN − ββsT = βtN − 1

2

(
β2

)
s T ,

which is (upon substitution of Eq. (23))

Ct = v,

vt =
(

1

2
‖v‖2 + g

µ

)
κN − 1

µ
(∇g · N )N

−1

2

(‖v‖2
)

s T . (24)
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To implement Eq. (24) in a level set framework the
tangential, T , and the normal, N , vectors need to be
written in terms of u. Also, a replacement for the mean
curvature vector in the plane Hp = κN has to be
found. The curve position C and the curve velocity v

are given implicitly by

C(x) = P(x),

v(x) = Pv(x), (25)

where

P
(

( x1 x2 x3 x4
T

)
)

=
( x1

x2

)
,

Pv

(
( x1 x2 x3 x4

T
)
)

=
( x3

x4

)
,

and x ∈ M = u−1(0).
Since the object dimension is one, exactly one eigen-

value of Du will be zero, while the others will be
one (Gomes and Faugeras, 2001a). The eigenvector
corresponding to the zero eigenvalue will be aligned
with the tangential direction of the curve. For numerical
robustness we propose to compute the full-dimensional
tangential vector as

T f = t
‖t‖ ,

where

t = argmin
∀qi ∈Q ‖λi‖ (q i ) ,

Q =
{

q ∈ R
4 :

1

2

(
Du + (Du)T

)
q = λq, λ ∈ R

}
.

The tangential vector T in the plane is then the
normalized projection of T f onto the image plane:

T = P
(
T f

)

‖P (
T f

) ‖ .

We define

o := T ⊥ =
( 0 −1

1 0

)
T , T u =





T
0

0



 , T u ∈ R
4,

and propose to compute the mean curvature vector in
the plane as

Hp = Ts =
(

1

‖T · P (
T f

) ‖P
((

DT u
)
T f

) · o

)
o

and the squared velocity variation along the curve as

(
β2

)
s = 1

‖T · P (
T f

) ‖∇ (‖v · o‖2
)
T f ,

where we replaced quantities that should be normal to
the planar curve by its projections onto o to increase
numerical robustness. Defining the reprojected veloc-
ity to be

vR := (v · o) o,

we obtain (using the reprojected velocity) the overall
evolution equation

Ct = vR,

vt =
(

1

2
‖vR‖2 + 1

µ
g

)
Hp − 1

µ
(∇g · o) o

− 1

2‖T · P (
T f

) ‖
(∇ (‖vR‖2) T f

)
T . (27)

In principle v should always be perpendicular to the
evolving curve. In case of a numerical implementation
this will not be the case due to numerical inaccura-
cies. It might thus be useful to enforce this property
dynamically by changing Eq. (27) to

Ct = vR,

vt =
(

1

2
‖vR‖2 + 1

µ
g

)
Hp − 1

µ
(∇g · o) o

− 1

2‖T · P(T f )‖ (∇(‖vR‖2)T f )T −K (v−vR).

The newly introduced term will ensure that the tan-
gential velocity components will vanish for t → ∞
(based on the correction gain K > 0).

5. Examples

In this section, we present some numerical test ex-
amples to illustrate the behavior of the algorithms.
We show (i) a test example demonstrating the supe-
riority of the vector distance function approach over



On the Evolution of Vector Distance Functions of Closed Curves 21

the distance function approach, (ii) a mean curvature
evolution, (iii) a translational evolution, and (iv) evo-
lutions of one and two circular objects in a potential
well.

Figure (10) shows a one dimensional toy problem.
It demonstrates the superiority of the vector distance
function approach as opposed to the distance function
approach. Error compensation has a very beneficial ef-
fect on the distance function results, but cannot prevent
the distance function from drifting away from its cor-
rect values (this is more dramatic for the case without
error compensation). On the other hand, error compen-
sation does not significantly improve the result for the
vector distance function evolution in this example. In
both cases (with or without error compensation) the
vector distance function scheme accurately follows the
desired movement.

Note that the main difference between the two ap-
proaches, and the reason for the dramatically different
results in this example, lies in numerical problems for
the distance function case: here the curve has a kink
at the location of interest. The kink leads to numeri-

cal dissipation, smearing out the kink and resulting in
smaller gradients (which cause very high sensitivity
of the minimum of the level set function to numerical
errors). On the other hand the vector distance func-
tion does not have a kink at the point of interest. In
fact, the function is continuous and differentiable there.
This is favorable for obtaining a reliable numerical
solution.

Figure 11 shows a two-dimensional result for a
vector distance function based curvature flow. This
is merely a result to demonstrate the feasibility of
vector distance function evolutions, since this prob-
lem could be solved by a standard level set approach
using a signed distance function. The results show a
nice regularization and the expected behavior (the ob-
ject becomes increasingly circular over time). Finally,
Figs. 12 and 13 show the result of propagating a cir-
cular object by applying a constant velocity field. By
using error compensation (this is a prime example of
the usefulness of this approach in certain cases) the
theoretical result is almost indistinguishable from the
numerical result.

Figure 10. One-dimensional distance function and vector distance function evolutions. Dash-dotted curves are the results for the distance
function evolution, dotted curves are the initial curves for comparison, and solid curves are the results for the vector distance function evolutions.
The results represent evolutions for 400 timesteps with a timestep of 0.1. The evolutions were performed with a constant velocity field of 1
which flips sign every 100 iterations.
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Figure 11. Vector distance function based curvature flow. Arrows indicate the vector distance function u.

Figure 12. Circular object subject to a uniform flow field with theoretical solution. Evolution steps 0 and 250.
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Figure 13. Circular object subject to a uniform flow field with theoretical solution. Evolution steps 500 and 1000.

Figure 14. Oscillating circular curve. Evolution steps 0-15.

Figures 14–15 show a circular object oscillating in a
potential well based on the evolution equations derived
in Section 410. The curve shown is the projection of the
space curve on the image plane with velocity vectors
given by the space curve. Clearly the circular object

oscillates. It dissipates energy due to the numerics and
the reinitialization scheme, and stops oscillating in
finite time.

To test the behavior for topological changes,
Figs. 16–17 show two circles oscillating simulta-
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Figure 15. Oscillating circular curve. Evolution steps 20–35.

Figure 16. Two oscillating circles. Time steps 0 to 3.
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Figure 17. Two oscillating circles. Time steps 4 to 9.

Figure 18. Projections of the thinned discrete zero level set representation.
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neously in the same potential well used previously.
They slide over each other while their velocities are
significantly different from each other, but merge once
their velocities become numerically indistinguishable.
Note that this is a demanding example since we chose
to discretize the velocity with the same accuracy as the
spatial dimension (see the pixel size in the images).
As illustration, Fig. (18) shows the three-dimensional
projections for a representative thinned discrete
approximation to the zero level set.

6. Conclusions

We have argued that the vector distance function based
level set approach is a useful tool for practical evolu-
tions of objects of codimension greater than one. To
address implementation issues, analysis was restricted
to the class of objects representable by the class of
closed curves. The restriction greatly simplified the
explicit reconstruction of the zero level set required for
reinitialization purposes.

Increasing space dimensions leads to an increasing
number of neighbors for each hypercube (in the com-
putational narrow-banded grid) and thus to an increase
in computational cost per iteration. Significant reduc-
tions in computational complexity are possible through
narrow-banding schemes, which is of great importance
for evolutions in high-dimensional spaces.

This paper thus presents the combination of an
implicit scheme (the vector distance function based
level set propagation) with occasional explicit reini-
tializations of the vector distance function. The ex-
plicit reinitializations are based on discrete geome-
try and the theory of computational homology. While
a completely implicit scheme would be desirable,
also with regard to the representation and evolu-
tion of a less restrictive object class, the reconstruc-
tion of an explicit representation of the zero level
set has the advantage of remedying the fattening
problem. Topological mergers can then be addressed
satisfactorily.

A better mathematical understanding of the vector
distance function evolution scheme is highly desirable.
Numerical methods tailored specifically to the evolu-
tion of these discontinuous vector fields are useful and
should be investigated. To obtain a completely implicit
scheme, implicit reinitialization strategies need to be
devised. This is a challenging problem, numerically
and in the context of how to properly handle fattening
artifacts.

Overall, the results obtained for the proposed
methodology are encouraging. Initialization poses no
problem in this setting, narrow-banding is feasible, and
topological changes are handled satisfactorily.
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Notes

1. For an efficient implementation this set has to be approximated,
since we do not know the distance of a point x to A beforehand.

2. The overall scheme is then an iteration free scheme to produce
a vector distance function.

3. Choose the gradient direction dictated by the numerical scheme.
4. For vector distance function evolutions: b = −v, where v is the

speed of the zero level set.
5. For our purpose, a discrete simple closed curve γd in Z

d is a
finite subset of Z

d , such that γd is (3d − 1)-connected and each
point of γd is adjacent to exactly two other points of γd .

6. See the subsequent subparagraph on how to measure the smooth-
ness of such a cycle.

7. A map f : G �→ G ′ between the two Abelian groups G and G ′ is
called a homomorphism (Kaczynski et al., 2004) if f (g1 +g2) =
f (g1) + f (g2) for all g1, g2 ∈ G.

8. ker f denotes the kernel of f, i.e., ker f = f −1(0).
9. Software to compute the Betti-numbers of a cubical complex is

freely available (http://www.math.gatech.edu/ chom).
10. The potential function is of the form g = 1

1+(∇ I∗G)2 , where I is
the intensity image (here a circular blob) and G is a Gaussian
filter. The results are for µ = K = 1.
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