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Abstract. Individual white matter fibers cannot be resolved by current
magnetic resonance (MR) technology. Many fibers of a fiber bundle will
pass through an individual volume element (voxel). Individual visual-
ized fiber tracts are thus the result of interpolation on a relatively coarse
voxel grid, and an infinite number of them may be generated in a given
volume by interpolation. This paper aims at creating a level set represen-
tation of a fiber bundle to describe this apparent continuum of fibers. It
further introduces a coordinate system warped to the fiber bundle geom-
etry, allowing for the definition of geometrically meaningful fiber bundle
measures.

1 Motivation and Background

Stroke, Alzheimer’s disease, epilepsy, multiple sclerosis, schizophrenia, and var-
ious other neuropsychiatric disorders have been implicated with white matter
abnormalities [1]. Diffusion weighted magnetic resonance imaging (DW-MRI)
measures the directional diffusivity of water molecules and has been used to
detect white matter bundles. The current resolution of in-vivo DW-MRI scans
is roughly in the millimeter range, whereas white matter fiber diameters are on
the order of micrometers. Even though fiber tracing algorithms give the impres-
sion of extracting individual fibers, these cannot be individually resolved. Many
fibers will be contained within an individual voxel. The best one can hope for is
thus to follow fiber bundles or sub-bundles.

Tractography algorithms need starting points to initialize fiber tracing. These
can be individual (user prescribed) points or points contained in regions/volumes
of interest defined by manual delineations in voxel space. The latter is used to
capture fiber bundles. A fiber bundle can be represented by a finite number of
streamlines, sampling its volume. To measure diffusion quantities (e.g., trace,
FA, etc.) along a fiber, Ding et al. [2] propose to construct a bundle-centric
medial axis. Mean diffusion quantities at a point, p, of the medial axis are then
defined as the mean of those quantities at the locations of the streamlines passing
through the normal plane of the medial axis at p. Corouge et al.[3] propose a
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correspondence of streamline points based on equal arclength from a defined
origin. The streamline sampling of a fiber bundle volume is not guaranteed to
be uniform. Measuring fiber bundle quantities, based on this sampling, will thus
favor regions of dense sampling unless one accounts for the non-uniformity of
the streamline distribution. This paper proposes a methodology to represent
the continuum of fibers constituting a fiber bundle implicitly, using three level
set functions. In doing so, a local coordinate system is introduced, warped to
the geometry of the fiber bundle, which for example allows for the computation
of fiber bundle measures over continuous cross sections and may be used for
visualization. Brun et al. [4] hinted at the usefuleness of such a local coordinate
system for fiber parameterization related to their work of pseudo-coloring of
a finite number of fiber traces using eigenvectors from a fiber affinity matrix.
The approach chosen in this paper is in between streamline- and grid-based
algorithms (see [2,3,5,6,7] and their references). It extends current streamline
algorithms by associating origin coordinates (where the streamline crosses a
predefined origin plane) and traveled arclength (with respect to the origin) with
every point of a streamline. This information is subsequently interpolated onto
the computational grid to generate the desired implicit representation.

2 Level Sets by Construction

Given an initial seed point, a fiber tract is generated at subvoxel resolution
following a vector field, v, aligned with the assumed water diffusion direction
(e.g., the direction of the principal eigenvector of an interpolated diffusion ten-
sor). Under mild assumptions on v, generated fiber tracts continuously depend
on the seed point, i.e., fiber tracts with proximal seed points will locally stay
close to each other. A finite number of streamlines cannot fully represent such a
continuum.

In the context of deformable curves and surfaces, level set representations
have been successful as implicit (continuous by interpolation) representations of
geometry, removing the dependency on particle based descriptions. Classically,
codimension one objects (e.g, a curve in the plane, surfaces in space, etc.) have
been represented and evolved, based on well developed theory, within the level set
framework. Evolving level set representations of objects of codimensions larger
than one is still challenging, however, various way of representing such objects
implicitly exist [8].

Sec. 2.1 describes the proposed level set representation. Unless otherwise
noted what follows will present the approach for bundle tracing in three spatial
dimensions.

2.1 Local Coordinate System and Implicit Representation

In this paper, curves (fibers) will be represented by the intersection of two level
set functions, points on the curve by intersecting with a third level set function.
In the context of fiber bundles, this representation induces a coordinate system
locally adapted to the fiber bundle geometry.
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Given two level set functions Φ(x) : R
3 �→ R and Ψ(x) : R

3 �→ R, with
‖∇Φ‖ �= 0, ‖∇Ψ‖ �= 0, a curve C(φ, ψ) is represented by the intersections of the
two level sets

C(φ, ψ) = Φ−1(φ) ∩ Ψ−1(ψ),

where (φ, ψ) denotes the local coordinates of the curve on a pre-specified two-
dimensional origin manifold, Θ, and (·)−1 the set valued inverse. To complete the
coordinate representation by parameterizing along a curve, an additional level
set function, Σ (Σ(x) = 0 for x ∈ Θ), encodes arclength, s, (‖Cs‖ = 1),

C(φ, ψ, s) = Φ−1(φ) ∩ Ψ−1(ψ) ∩Σ−1(s).

See Fig. 1 for an illustration. Sec. 3 describes the construction of the level set
functions.

Ψ = ψ

Φ = φ

C(φ, ψ)

s

Σ−1(0) = Θ

∂R

Ψ−1(ψ)

Φ−1(φ)

Fig. 1. Level set representation of a
fiber. Example fiber point at coordinates
(φ, ψ, 0), the origin manifold and its coor-
dinate system.

(a) Original rod.

(b) Twisted rod.

Fig. 2. Local effect of twisting

2.2 Extracting Measures of Geometry and Diffusion

Define y(x) = (Φ(x), Ψ(x))T and the indicator function

χR(y(x)) =

{
1 if y ∈ R,

0 otherwise,

where R is a region of interest within the origin manifold (e.g., an area that
encompasses a complete cross section of a fiber bundle, see Fig. 1). The volume
and local area of a fiber bundle are then

V =
∫

Ω

χR(y(x)) dΩ, A(s) =
∫

Ω

χR(y(x))δ(Σ(x) − s) dΩ,
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where Ω is the domain of integration and δ(·) denotes the Dirac delta function.
Mean and variance of a quantity q (e.g., fractional anisotropy) may be defined

over the volume

μq =
1
V

∫
Ω

q(x)χR(y(x)) dΩ, σ2
q =

1
V

∫
Ω

(q(x) − μq)2χR(y(x)) dΩ, (1)

or locally over an arclength isosurface1

μq(s) =
1

A(s)

∫
q(x)χR(y(x))δ(Σ(x) − s) dΩ,

σ2
q(s) =

1
A(s)

∫
(q(x) − μq(s))2χR(y(x))δ(Σ(x) − s) dΩ. (2)

These local measurements are useful to investigate changes along the fiber bundle
(in the fiber direction).

Looking at geometric properties (e.g., curvature, torsion) of an individual
fiber can be deceiving. Consider twisting a circular rod as depicted in Fig. 2. Its
core does not change during the twisting motion, whereas an initially straight
line on the outer surface of the rod will turn into a circular helix with constant,
non-vanishing curvature and torsion. Visualizing the levelsets of Φ and Ψ allows
to capture such twisting deformations.

A mean fiber, C(s), can be defined as the curve that passes through the centers
of gravities of the arclength isocontours2, i.e.,

C(s) =
∫

Ω

xχR(y(x))δ(Σ(x) − s) dΩ. (3)

3 Implementation

The level set functions Φ, Ψ , and Σ are computed on a grid (e.g., the voxel
grid prescribed by the scanner resolution). Given the velocity field v induced by
the reconstructed diffusion tensor field a fiber tract starting at point (φ, ψ) of
the origin manifold traces out the curve given by the solution of the ordinary
differential equation Cs(x, s) = v(x). In contrast to conventional tractography
algorithms, in this paper, every point on the fiber tract is associated with an
arclength, s, from the origin, as well as the point (φ, ψ), it originated from.
Expressed as a partial differential equation on the grid, the level set functions
need to fulfill{

v · ∇Σ = 1
Σ(x) = 0, x ∈ Θ

,

{
v · ∇Φ = 0
Φ(x) = φ(x), x ∈ Θ

,

{
v · ∇Ψ = 0
Ψ(x) = ψ(x), x ∈ Θ

. (4)

1 Eq. 1 and 2 assume a uniform density distribution of fibers. Their integrands may
be locally scaled to incorporate geometric stretch and compression effects. See [9] on
how to compute this scaling based on the mean curvature of the arclength levelset
Σ, which locally quantifies the tendency of fibers to converge or diverge.

2 A reparameterization is necessary to obtain an arc-length parameterized mean fiber.
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The straightforward (based on standard finite-differences) implementation of the
desirable Eulerian solution of Eqs. 4 suffers from undesired boundary effects as
shown in Fig. 3(b); boundary data pollutes the constructed level set function.
Consequently, the reconstructed fibers (solid lines) do not agree with the ground-
truth (crosses) based on the synthetic vector field of Fig. 3(a). Thus, in this
paper, Eqs. 4 are solved by explicitly computing fiber tracts and interpolating
the associated data at every fiber integration point onto the fixed grid. This
hybrid method agrees well with the theoretical fiber tracts of Fig. 3(c) and
readily extends existing streamline-based fiber tracing algorithms. A reseeding
strategy is employed to cope with diverging fibers. Secs. 3.1 and 3.2 discuss the
methods for interpolation, extrapolation, and reseeding.

(a) Synthetic vector field. (b) Eulerian solution. (c) Hybrid solution.

Fig. 3. Constructed fiber level set functions

3.1 Interpolation and Extrapolation

Levelset values at grid points need to be interpolated, since streamlines will
mostly not pass through them. Streamline integration points are not uniformly
distributed in space, yielding a scattered data interpolation problem. Here, nat-
ural neighbor interpolation is employed [10]. Given a set of points S, and its
associated Voronoi cells3 V(S), the natural neighbors of a point x are the points
whose Voronoi cells, Vp, intersect with the Voronoi cell, Vx, of x based on the
point set S ∪ x. Interpolation weights, for a measurement quantity q, are com-
puted based on the intersection areas of the Voronoi cells:

q(x) =
∑
p∈S

q(p)wp =
∑
p∈S

q(p)
Area(Vp ∩ Vx)
Area(Vx)

.

If the interpolation point x does not lie within the convex hull formed by the
given data points, values are linearly extrapolated to be able to capture the
implicit boundary of the fiber bundle.

3 The Voronoi cell Vx of a point x ∈ R
n, with respect to the point set S ∪ x, is the

n-dimensional polytope containing all the points closest to x.
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3.2 Density Measurements and Reseeding

Seeding fiber tracts from a region of interest will lead to a nonuniform coverage
of the fiber bundle by fiber tracts, especially in regions where fibers diverge.
Adaptively reseeding fibers within voxels of low density (lower than a given
threshold) allows for a more uniform sampling of space. Particle density at x is
computed by convolution with a smoothing kernel [11], S,

ρ(x) =
∫

Ω

∑
xi

δ(x − xi)S(x − x0) dΩ =
∑
xi

S(xi − x0),

where xi are the known locations of the fiber tract integration points. New fiber
tracts are only initialized at locations within the convex hull of already known
interpolation points (by means of natural neighbor interpolation) to avoid cap-
turing fibers not consistent with the initial seeding. Fig. 4(a) shows the esti-
mated point density before reseeding. Reseeding yields a more uniform density
(and thus tract) distribution. Figs. 4(b) and 4(c) show the arclength field and
its isocontours before and after reseeding. Values in regions that were previously
not computable are filled in through reseeding4.

(a) Original density. (b) Original arclength. (c) Reseeded arclength.

Fig. 4. Reseeding effect of the hybrid bundle tracing scheme

4 Results and Modalities

The algorithm described in Secs. 2 and 3 was applied to extract parts of the
cingulum bundle and the corona radiata.

For the cingulum, six diffusion weighted images and one baseline image were
acquired on a 1.5 Tesla GE scanner. Scans were performed coronally, with a
resolution of 1.7 x 1.7 x 4.0 (mm) and a one mm interslice spacing, using line
scan diffusion imaging. For the corona radiata, twenty-five diffusion weighted
images and one baseline image were acquired axially, with a resolution of 1.9
x 1.9 x 2.4 (mm), using Echo Planar Imaging on a 3.0 Tesla GE scanner. All
images were subsequently upsampled to isotropic voxels.

4 If the initial seeding is “dense enough”, reseeding may not be necessary.
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Figs. 5(a) and 5(d) show the boundaries of the traced cingulum bundle and
the corona radiata (i.e., the envelopes of χR(y(x))) overlayed on a sagittal brain
slice respectively. Fig. 5(e) shows the arclength isosurfaces for the corona radi-
ata. Figs. 5(b) and 5(f) show the respective arclength isosurfaces after reseeding
for the cingulum bundle and the corona radiata. Reseeding improved the trac-
ing result. Fig. 5(c) shows a zoom on one of the arclength isosurfaces of the
cingulum bundle. It highlights the uneven distribution of streamlines passing
through. Statistical quantities based on values computed at the locations of the
intersection points of the streamlines with the arclength isosurface can now be
replaced by integration over the arclength isosurface itself, removing potential
bias towards more densely sampled areas.

(a) Cingulum. (b) Arclength levelsets. (c) Nonuniformity.

(d) Corona radiata. (e) Arclength levelsets. (f) After reseeding.

Fig. 5. Experimental results for the cingulum bundle and the corona radiata. (See
http://pnl.bwh.harvard.edu/people/marc/miccai2006/ for color figures.)

5 Discussion and Future Work

Moving away from describing a fiber bundle by a finite number of streamlines,
this paper introduced an implicit representation of a fiber bundle. The bundle, in
this implicit representation, consists of a continuum of fibers. Fiber bundle prop-
erties can now be defined as integrals over cross-sectional areas or the bundle
volume, instead of relying on the possible nonuniform sampling of a stream-
line representation. Further, a complete coordinate system has been introduced,
warped to the geometry of the traced fiber bundle. We believe this coordinate
system may be useful to establish in-between subject correspondences for pop-
ulation studies. Further research will investigate the proposed methodology in
the context of multiple subjects and will look at alternative numerical schemes.

http://pnl.bwh.harvard.edu/people/marc/miccai2006/
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