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Dynamic Active Contours for Visual Tracking
Marc Niethammer, Allen Tannenbaum, and Sigurd Angenent

Abstract—Visual tracking using active contours is usually set in
a static framework. The active contour tracks the object of interest
in a given frame of an image sequence. A subsequent prediction
step ensures good initial placement for the next frame. This ap-
proach is unnatural; the curve evolution gets decoupled from the
actual dynamics of the objects to be tracked. True dynamical ap-
proaches exist, all being marker particle based and thus prone to
the shortcomings of such particle-based implementations. In par-
ticular, topological changes are not handled naturally in this frame-
work. The now classical level set approach is tailored for evolutions
of manifolds of codimension one. However, dynamic curve evolu-
tion is at least a codimension two problem. We propose an effi-
cient, level set based approach for dynamic curve evolution, which
addresses the artificial separation of segmentation and prediction
while retaining all the desirable properties of the level set formu-
lation. It is based on a new energy minimization functional which,
for the first time, puts dynamics into the geodesic active contour
framework.

Index Terms—Dynamic active contours, geodesic active con-
tours, level set methods, visual tracking.

I. INTRODUCTION

OBJECT tracking can be accomplished in many ways in-
cluding by mechanical, acoustical, magnetic, inertial, or

optical sensing, and by radio and microwaves, to mention a few.
The ideal tracker should be “tiny, self-contained, complete, ac-
curate, fast, immune to occlusions, robust, tenacious, wireless,
and cheap” [1], [2]. As of now such a tracker does not exist;
tradeoffs are necessary, and a method should be chosen based on
the application in mind. Optical sensing is unobtrusive and can
be simplified by choosing a simple (possibly prespecified) work
environment, or by altering the appearance of the objects to be
tracked (e.g., by painting them, or by mounting light sources
on them). The desired objects to be tracked then become much
easier to detect. However, in certain instances (e.g., for an un-
cooperative object to be followed) this is not possible. Visual
tracking is the task of following the positions of possibly mul-
tiple objects based on the inputs of one or many cameras (the
optical sensors). In the context of visual tracking, we can dis-
tinguish between the two tasks of locating and following an ob-
ject (e.g., for surveillance applications), and influencing objects
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or our environment (e.g., controlling the movement of a plane,
based on visual input). The latter will most likely encompass the
first (possibly resulting in nested control loops). Both tasks can
be accomplished by means of feedback mechanisms. In either
case we need a good estimate of object position. Once we have
this estimation, we either have fulfilled our task (e.g., for surveil-
lance applications), or use this information to close a control
loop. This brings to mind a broad range of applications. Indeed,
be it for medical or military use, the need for visual tracking is
ubiquitous.

Visual feedback control differs significantly from classical
control. Sensors are imaging devices (usually cameras) which
deliver an abundance of information of which only a fraction
may be needed for a specific control task. The sensor output
needs to be preprocessed to extract the relevant information for
the tracking problem, e.g., the position of an object to be fol-
lowed. Preprocessing usually encompasses noise-suppression
(e.g., image smoothing) and segmentation to delineate objects
from their background and from each other. Segmentation has
been an active field of study in various application areas, most
prominently in the medical sciences. Static segmentation prob-
lems are challenging. Segmentation algorithms usually need to
be adapted to the problem at hand. There is no omnipotent seg-
mentation algorithm. Visual tracking is a dynamic segmenta-
tion problem, where segmentations change over time. Here, ad-
ditional information (e.g., apparent image motion) is available,
but further degrees of freedom and thus difficulties are intro-
duced, for example related to processing speed in real-time ap-
plications. Visual tracking poses various interesting questions to
control theoreticians and engineers, among others:

• How can one properly deal with the unusual sensor
signal, i.e., image information, projections on the
image plane, correspondences for stereo vision, etc.?

• How should uncertainties be modeled? In most cases
only very simple motion and system models are avail-
able. Delays may be significant in case of computation-
ally demanding tracking algorithms.

• How should robustness or tracking quality be quanti-
fied? For example, what is the most suitable metric for
the space of curves?

Humans and animals perform visual tracking tasks with ease
every day: Following cars in traffic, watching other people, fol-
lowing the lines of text in a document, etc. These mundane tasks
seem simple, but robust reliable algorithms and their computer
implementation have proven to be quite challenging [3]. We rely
on a highly developed brain, assumptions about the world ac-
quired throughout a lifetime, and our eyes as visual sensors.
The design of algorithms which would make a machine behave
and perceive similarly to humans in all situations is a daunting
task which is far from being solved. However, if we are only
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interested in a specific application, the problem becomes more
tractable. Visual tracking is a relatively well defined problem
when dealing with well defined environments.1

Applications for visual tracking are diverse. Some key areas
of research include the following.

• Vehicle guidance and control: See [4]–[9] for applica-
tions to autonomous driving.2 See Sinopoli et al. [10]
and Sharp et al. [11] for visual tracking systems for the
navigation and the landing of an unmanned aerial ve-
hicle, respectively.

• Surveillance and identification: See [12]–[14] for ap-
plications to target tracking and biometric identifica-
tion.

• Robotics/Manufacturing: See Corke [15] and Hutchin-
sion et al. [16] for discussions on visual servo control
which requires the visual tracking of objects/object
features as a preprocessing stage. Here visual tracking
is used to increase the bandwidth and accuracy of
robots. We note that visual grasping falls into this
category of tasks.

• User interfaces: See [17] for real-time fingertip
tracking and gesture recognition, and [3] for virtual
environments.

• Video processing: See [18] for automated addition of
virtual objects to a movie.

• Medical applications: See [19] for applications to vi-
sion guided surgery (surgical instrument tracking) and
[20] for medical image tracking.

A wide variety of algorithms for visual tracking exists, e.g.,
feature trackers, blob trackers, contour/surface trackers. See
[21]–[26], and the references therein. All of these have their
own advantages and disadvantages. The seminal paper of Kass
et al. [27] spawned a huge interest in the area of contour/surface
tracking algorithms. This is the class of algorithms on which
we will focus in this paper.

II. PROBLEM STATEMENT, MOTIVATION, AND SCOPE

Typical geometric active contours [28]–[32] are static. How-
ever, variational formulations many times appear to be dynamic
because the resulting Euler–Lagrange equations are solved by
gradient descent, introducing an artificial time parameter. This
time parameter simply describes the evolution of the gradient
descent. It will usually not be related to physical time. A two
step approach is typically used for visual tracking by static ac-
tive contours. First, the curve evolves on a static frame until con-
vergence (or for a fixed number of evolution steps). Second, the
location of the curve in the next frame is predicted. In the sim-
plest case, this prediction is the current location. Better predic-
tion results can be achieved by using optical flow information,
for example. In this two step approach, the curve is not moving
intrinsically, but instead is placed in the solution’s vicinity by
an external observer (the prediction algorithm). The curve is

1This is an overview of application areas for visual tracking. Due to the chal-
lenging nature of the general visual tracking problem, task-specific algorithms
are usually necessary. There is no “silver bullet” [1].

2Exemplary for these research efforts are the European Prometheus and the
American PATH programs.

completely unaware of its state. In contrast, Terzopoulos and
Szeliski [33] or Peterfreund [34] view curve evolution from a
dynamical systems perspective; both methods are marker par-
ticle based and are fast, but they may suffer from numerical
problems (e.g., in the case of sharp corners [35]–[37]). In the
static case, level set methods are known to handle sharp cor-
ners, topological changes, and to be numerically robust. In their
standard form, they are restricted to codimension one problems,
and thus not suitable for dynamic curve evolution. Extensions
of level set methods to higher codimensions exist and a level set
formulation for dynamic curve evolution is desirable [38], [39].
We will present a straightforward level set based dynamic curve
evolution framework in this paper.

The results of this paper relate to dynamic snakes [33] as
geodesic or conformal active contours [30], [29] relate to
the original snake formulation [27]. Here we are advocating
a different philosophy to dynamic curve evolution. Instead
of discretizing evolution equations upfront (early lumping),
we keep the partial differential equations as long as possible
(late lumping [40]), resulting in a more natural and geometric
formulation.

We demonstrate that we can attach information to a contour
evolving in a level set framework. This is related to the approach
in [41] and is a crucial step toward more flexible level set based
approaches. Most level set based evolution equations in image
processing are static and/or do not possess state information.
This can be a major drawback, e.g., if we want to follow a con-
tour portion over time.

Error injection is a standard method from control theory
to construct observers. All snakes using an observer (e.g.,
Kalman filter-based or particle filter-based) use error injection.
Observers for marker particle based systems are finite dimen-
sional. Our proposed approach requires an observer for an
infinite dimensional, nonlinear system. The existing theory for
such systems is still in its infancy; system theoretic results are
available only in special cases. We restrict ourselves to error
injection resembling a nonlinear, infinite dimensional observer
if we are close enough to the basin of attraction of the object
of interest. The incorporation of the optical flow constraint
is natural in this framework. Our formulation restricts the
propagation to the direction normal to the object direction; this
is exactly measured by the optical flow, in contrast to previous
approaches [33] for dynamic snakes which do not restrict the
direction of movement. Thus, even though error injection is
classical, it is novel in this level set framework.

We now briefly summarize the contents of the remaining
sections of this paper. Section III gives a brief overview over
existing methods for contour based visual tracking. Section IV
introduces the concept of static curve evolution and positions
it in relation to classical image processing. Section V reviews
the fundamentals of parameterized dynamic curve evolution.
Section VI introduces geometric dynamic curve evolution and
discusses the evolution equations. The level set formulation
for normal geometric dynamic curve evolution is given in Sec-
tion VII. Sections VIII and X deal with error injection into the
evolution equations and occlusion detection, respectively. Sim-
ulation results obtained on real image sequences are presented
in Section XI. Section XII discusses our results and future
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work. We also include some appendices with the derivations of
the key formulas.

III. ALTERNATIVE CONTOUR-BASED TRACKING

METHODOLOGIES

The literature on tracking is vast. To give a complete overview
on tracking methodologies is beyond the scope of this paper.
We limit ourselves to a brief overview of the (what we think)
closest approaches, i.e., contour based tracking methodologies,
highlighting their differences.3

A possible classification for contour based trackers is based
on

• the motion model: finite dimensional (parametric) or
infinite dimensional;

• the curve model: finite dimensional, or infinite dimen-
sional;

• the solution method: optimization, or integration in
time;

• the type of curve influence terms (boundary, area, sta-
tistics, etc.).

Most visual tracking approaches employ finite dimensional
motion models and finite dimensional curve evolution models.
If the curve change over time is only described by the motion
model (the motion group), i.e., if there is no change of the curve
shape and consequently no curve evolution model, curve based
trackers can easily be cast as finite dimensional observation
problems. Approaches include all flavors of the Kalman filter
(“classical” Kalman filter, extended Kalman filter, unscented
Kalman filter or sigma point filter), probability data associa-
tion filters, and particle filters [42]. Finite-dimensional motion
groups are usually chosen to be translation, translation plus ro-
tation, or the affine transformation group.

Extending these finite dimensional filtering methods to elastic
deformations isgenerallynot straightforward, since theevolution
equations or observations tend to be nonlinear. One approach
is to parameterize the curve shape. This can for example be
done by Fourier modes, principal component analysis, or in the
simplest possible case by a piecewise linear approximation of the
boundary (a particle-based method). In the latter dynamic case
[33], [34], [43], the boundary is represented by a prespecified
number of points plus their associated velocities. Increasing
the degrees of freedom has the disadvantage of increasing
the computational complexity. This is particularly true for
particle filtering approaches, which can only handle a moderate
number of states without becoming computationally intractable.
Also, parameterizing a curve shape (independent of the type
of parameterization used) introduces a strong shape bias: i.e.,
the shape is assumed to lie in a certain (prespecified) class.
This may be desired in case of an object with clearly defined
shape, but may be unwanted if objects are allowed to deform
completely elastically.

Moving away from finite dimensional to infinite-dimensional
curve representations results in great flexibility, but comes at
the cost of less theoretical insight. Nonlinear infinite-dimen-
sional curve evolution equations require nonlinear infinite-di-

3In what follows we refer to contour based visual tracking based methods,
even if we only write visual tracking.

mensional observers which are (unlike observers for linear sys-
tems) understood only for special system classes.

Infinite-dimensional curve descriptions have been used
in combination with the trivial motion model [27] (i.e., no
dynamic motion is assumed, all shape changes are purely
static), in combination with finite dimensional motion models
[44]–[47], as well as in combination with infinite-dimensional
motion models [48], [49]. Since finite-dimensional motion
models cannot account for arbitrary elastic deformations they
are frequently combined with an elastic update step: this is
called deformotion in [45] and employed for tracking purposes
in conjunction with a simple observer structure in [47] and in a
particle-filtering framework in [44]. Particle-filtering [42] has
been very popular in the computer vision community, but is
usually restricted to low-dimensional state spaces to keep the
computational cost reasonable. In [42], an affine motion model
is used, there is no elastic deformation of the curve. Rathi et
al. [44] extend the particle-filtering approach to include elastic
curve deformation in the observer update step. However, the
state space is not truly infinite-dimensional, in particular there
is no infinite-dimensional motion model.

Approaches using infinite-dimensional motion models for vi-
sual tracking usually employ some form of passive advection,
e.g., the curve gets pushed forward through an external vector
field for example established through an optical flow computa-
tion [48] or through a motion segmentation step [49].

In this paper, we are interested in adding dynamics to the
curve evolution itself, so that it is no longer passively advected,
but possesses an intrinsic velocity associated with every point
on the curve. The approach taken is to construct an infinite-di-
mensional dynamically evolving curve based on the ideas by
Terzopoulos [33]. It is a dynamical systems viewpoint which
does not require static optimization steps as in many other ap-
proaches.

IV. STATIC CURVE EVOLUTION

Image processing in the line of traditional signal processing
is concerned with low-level vision tasks: e.g., performing image
denoising, edge detection, deconvolutions, etc. In this setting
images are treated as multidimensional signals, and there are
usually no high-level assumptions regarding the image content
(e.g., looking specifically to find an object of specific texture,
etc.). On the other side of the spectrum is high-level vision
(high-level reasoning) which tries to address the latter problem
of what is represented in an image. The image is to be decom-
posed into meaningful subparts (the process of segmentation;
e.g., foreground, background, uniform regions) which are sub-
sequently analyzed (e.g., which types of objects do the seg-
mented regions correspond to). Creating such a high-level vi-
sion system is a tremendously hard task, far from being solved.
Tasks that are straightforward for humans turn out to be strik-
ingly difficult in the algorithmic setting of computers, requiring
assumptions about and simplifications of the vision problem to
be approached. There is no segmentation algorithm that works
for all cases. A popular simplification is to assume that ob-
jects in an image are separated from their background, for ex-
ample by intensity edges, variations in image statistics, color,
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etc. Template matching is a common approach for image seg-
mentations of known objects. Unfortunately, while robust, tem-
plate matching is also inherently inflexible. If the image repre-
sents anything not accounted for in the template (e.g., an addi-
tional protrusion in the shape of the object) the template will
not be able to capture it. Solid objects may be described by
their interior, or (if only the shape outline is sufficient) by their
boundary curves. Boundary descriptions are the vantage point
for segmentations by curve evolution. The assumption here is
that whatever object we are looking to segment may be de-
scribed by a closed curve representing its boundary. Kass et
al. [27] introduced what is known as the classical snake model
for curve based segmentation. The basic idea is to minimize
an energy functional depending on image influences (i.e., at-
tracting it to edges) and curve shape. Given a parameterized
curve in the plane of the form , where

, is the parame-
terization, , (i.e., the curve is closed),
and is an artificial time, the energy

(1)

is minimized, where and are parameterization de-
pendent design parameters (usually set constant) and is
some potential function (with the desired location of forming
a potential well). A common choice for the potential function is

where denotes image position, is the image inten-
sity, is a positive integer, and is a Gaussian. See Fig. 1 for an
illustration of curve parameterization. In most applications, the
rigidity term is disregarded (i.e., ). The energy (1) is
independent of time. It is a static optimization problem, which
may be solved by means of calculus of variations. The corre-
sponding Euler–Lagrange equation for the candidate minimizer
of is

(2)

The right hand side of (2) can be interpreted as an infinite-di-
mensional gradient. Consequently, moving into the negative
gradient direction results in the gradient descent solution
scheme for (1)

(3)

The solution of (1) is a tradeoff between the elasticity term
(trying to shrink the curve length), the rigidity term (favoring
straight curve segments), and the image influence term (trying to
attract the curve for example to an intensity edge). The tradeoff
implies that sharp corners are usually not represented well (un-
less they are coded explicitly into the method). Problematic

with the original snake formulation is that it is not geometric,
i.e., the derivatives do not represent clear geometric quantities
(e.g., normals and curvature) and the solution depends on the
somewhat arbitrary parameterization . On the other hand, the
geodesic active contour [48], [30], another curve-based segmen-
tation method, is completely geometric. To understand the mo-
tivation behind the geodesic active contour it is instructive to
look at the length minimizing flow first, i.e., the curve evolution
that minimizes

where denotes arclength and the length of the curve . The
gradient descent scheme that minimizes curve length is

(4)

where denotes the unit-inward normal to and
is the signed curvature. Equation (4) is known as the geometric
heat equation or the Euclidean curve shortening flow. Gage and
Hamilton [50] proved that a planar embedded convex curve con-
verges to a round point when evolving according to (4). (A round
point is a point that, when the curve is normalized in order to en-
close an area equal to , is equal to the unit disk.) Grayson [51]
proved that a planar embedded nonconvex curve converges to
a convex one, and from there to a round point from Gage and
Hamilton result. Note that in spite of the local character of the
evolution, global properties are obtained, which is a very inter-
esting feature of this evolution. For other results related to the
Euclidean shortening flow, see [50]–[55]. The Euclidean curve
shortening flow only depends on the curve shape. There is no
image influence term. The idea of geodesic active contours is to
introduce a conformal factor (in analogy to the potential
function introduced above) into the energy functional, to mini-
mize the weighted length4

(5)

The gradient flow corresponding to (5) is

(6)

Equation (6) only involves geometric terms, the curvature and
the normal and is completely independent of parameteriza-
tion. The term is the geometric analog to the elasticity term

of (3) and the gradient term gets replaced by
its projection onto . There is no correspondence to the rigidity
term of the parametric snake, however this term is frequently
discarded due to its fourth-order derivative. See [56] and [57]
for more details. Many extensions to and variations of the ac-
tive contour exist (e.g, adding an inflationary term). For more
information, see [57] and the references therein.

Neither the snake (3) nor the geodesic active contour (6) are
truly dynamic curve evolutions. In both cases only the steady
state solution on a static image is sought. In visual tracking, ob-
jects move over time. Consequently tracking with closed curves

4Recently direction dependent conformal factors have been introduced, i.e.,
g(C; C ).
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Fig. 1. Parameterized curve evolution. The parametrization travels with a particle. In general, the parametrization will not stay uniformly spaced. The black disk
and the asterisk indicate particles attached to the curve; their assigned value for p will stay the same throughout the evolution.

implies estimating closed curves moving in space and time. This
is not readily described by the snake or the geodesic active con-
tour. Section V describes a dynamic extension to the parametric
snake. However, the objective of this paper is the dynamic ex-
tension of the geodesic active contour which will be discussed
in Section VI.

V. PARAMETRIZED DYNAMIC CURVE EVOLUTION

In this section, we review parameterized dynamic curve evo-
lution [33]. We also introduce the mathematical setup required
to derive the geometric dynamic curve evolution equations of
Section VI.

We consider the evolution of closed curves of the form
in the plane, where and

[51], with being the time, and the curve’s
parametrization (see Fig. 1 for an illustration). The classical for-
mulation for dynamic curve evolution proposed by Terzopoulos
and Szeliski [33] is derived by means of minimization of the ac-
tion integral

(7)

where the subscripts denote partial derivatives (e.g., is the
curve’s velocity). The Lagrangian, , is the differ-
ence between the kinetic and the potential energy. The potential
energy of the curve is the energy of the snake (1)

The kinetic energy is

where corresponds to mass per unit length. The Lagrangian is
then

(8)

Computing the first variation of the action integral (7) and
setting it to zero yields the Euler–Lagrange equations for the
candidate minimizer [58] in force balance form

(9)

Equation (9) depends on the parametrization and is therefore
not geometric (see Xu et al. [56] for a discussion on the relation-
ship between parametric and geometric active contours). Our
proposed methodology (see Section VI) will be completely in-
dependent of parametrization. It will be geometric.

VI. GEOMETRIC DYNAMIC CURVE EVOLUTION

In this section, we will present the geometric dynamic curve
evolution equations, which evolve according to physically mo-
tivated time. These evolution equations constitute a geometric
formulation of the parameterized dynamic approach reviewed
in Section V in analogy with the connection between parame-
terized and geometric curve evolution described in Section IV.
Minimizing (7) using the potential energy of the geodesic active
contour (5)

and the kinetic energy

results in the Lagrangian

(10)

Computing the first variation of the action integral (10)
yields

(11)
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Fig. 2. Normal direction, C constant and linearly increasing.

which is geometric and a natural extension of the geodesic active
contour approach [29], [30] (see Appendix I for a derivation).
Here is the unit inward normal, the unit tangent
vector to the curve, denotes curvature and is the
arclength parameter [59].

We can consider the term in (11) as a force
exerted by the image potential on the curve . Compare this
to the evolution equation for geodesic active contours as given
in [57] and [60] ( ). From a controls
perspective, this can be interpreted as a control law, based on
and its spatial gradient , which is designed to move the curve
closer to the bottom of the potential well formed by .

Equation (11) describes a curve evolution that is only influ-
enced by inertia terms and information on the curve itself. To
increase robustness the potential energy can include region-
based terms (see, for example, [61]–[63]). This would change
the evolution (11), but such changes pose no problem to our
proposed level set approach.

The state–space form of (11) is

(12)

where , , ,
, , and are scalar functions in

and its derivatives. The evolution describes the movement of a
curve in , where the geometrical shape can be recovered by
the simple projection

A. Interpretation of the Evolution Terms for the Geometric
Dynamic Curve Evolution

To get an understanding of (11) it is fruitful to look at the
effect of its individual terms. The term

accelerates the curve toward the potential well formed by .
Note that points toward the potential well. The term

accelerates the curve based on its smoothness properties and

(13)

represents a smoothing term for the tangential velocity. We can
decompose the velocity change at every point on the curve

into its tangential and normal components as

We assume that the tangential and the normal components
change approximately linearly close to the point of interest. A
Taylor series expansion (at arclength ) yields

In order to appreciate the effect of the term (13), it is sufficient
to consider the two fundamental cases depicted in Figs. 2 and 3.
The normal component (depicted in Fig. 2) is irrelevant for the
evolution, since in this case. The tangential com-
ponent (depicted in Fig. 3) will counteract tangential gradients
of . The two cases correspond to a linearly and a paraboli-
cally increasing velocity in the tangential direction. In both
cases, the term will counteract this tendency of
tangentially diverging particles on the curve, ideally smoothing
out the tangential velocities over the curve .
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Fig. 3. Tangential direction, C constant and linearly increasing.

Fig. 4. Behavior of the term �� (C � C ) T . (a) Normal. (b) Tangential.

The term

governs the transport of particles along the tangential direc-
tion. To understand what is occurring locally, we assume we are
looking at a locally linear piece of the curve and decompose the
velocity into

It is instructive to look at a triangular velocity shape in the
normal direction [as shown in Fig. 4(a)] and in the tangential
direction [as shown in Fig. 4(b)]. The triangular velocity shape
in the normal direction induces a tangential movement of parti-

cles on the curve. This can be interpreted as a rubberband effect.
Assume that the rubberband gets pulled at one point. This will
elongate the rubberband. Since the point at which it is pulled
stays fixed (no movement except for the displacement due to
the pulling) particles next to it flow away from it. The triangular
velocity shape in the tangential direction also induces tangential
motion of the particles. However, this motion will counteract the
initial tangential direction and will thus also lead to a smoothing
effect on the change of tangential velocity vector over arclength.

B. Normal Geometric Dynamic Curve Evolution

To get a quantitative interpretation of the behavior of the
curve evolution (11), it is instructive to derive the corresponding
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evolution equations for the tangential and normal velocity com-
ponents of the curve.

We can write

(14)

where the parametrization is independent of time and travels
with its particle (i.e., every particle corresponds to a specific
value for all times), and and correspond to the tangential
and the normal speed functions, respectively. By substituting
(14) into (11) and using results from [64] (see Appendix II) we
obtain the two coupled partial differential equations

(15)

Here, and are the transport terms for the tan-
gential and the normal velocity along the contour, and

is the well known geodesic active contour image influence
term [30], [29]. In contrast to the static geodesic active contour,
this term influences the curve’s normal velocity rather than di-
rectly the curve’s position. It can be interpreted as a force. Fi-
nally, the terms and incorporate
the dynamic elasticity effects of the curve. If we envision a ro-
tating circle, we can interpret the term
as a rubberband (i.e., if we rotate the circle faster it will try to
expand, but at the same time it will try to contract due to its
then increasing normal velocity; oscillations can occur). If we
restrict the movement of the curve to its normal direction (i.e.,
if we set ) we obtain

(16)

This is a much simpler evolution equation. In our case it is iden-
tical to the full evolution (15) if the initial tangential velocity is
zero. The image term only influences the normal velocity evo-
lution . It does not create any additional tangential velocity.
Thus, if , then ; the flow with is
contained in (11) as an invariant subsystem. The restriction to
curve movement in the normal direction is a design choice to
simplify the approach. See Section VI-C for an illustration of
the influence of a tangential velocity component.

If there is an initial tangential velocity, and/or if the image
influence contributes to the normal velocity and to the tan-
gential velocity , the normal evolution equation will not nec-
essarily be equivalent to the full evolution (15). We can always
parametrize a curve such that the tangential velocity term van-
ishes. Specifically, if we consider a reparameterization

where then

The time evolution for can then be decomposed into

If we choose as

we obtain

which is a curve evolution equation without a tangential com-
ponent. For all times, , the curve will move along its normal
direction. However, the tangential velocity is still present in the
update equation for . After some algebraic manipulations, we
arrive at

(17)

which depends on the time derivative of the reparameterization
function , which in turn depends on the tangential component

. The left-hand side of (17) represents a transport term along
the curve, the speed of which depends on the time derivative of
the reparameterization function .

C. Special Solutions

To illustrate the behavior of (15) and (16), we study a simple
circular example. Assume . Then . Further-
more, assume that we evolve a circle with radius and constant
initial velocities

Then the normal evolution reduces to

(18)

and the full evolution becomes

(19)

where we made use of the facts that (given the initial conditions
for the circle)
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Fig. 5. Left column: Evolution of the radius for the normal velocity evolution (dashed line) and the full velocity evolution (solid line). Middle column: Evolution
of normal velocity (dashed line) and tangential velocity (solid line) for the full velocity approach. Right column: Evolution of normal velocity for the normal
velocity evolution. (a) � = 0:1, � = 0, R = 100, 
 = 0, 
 = 0. (b) � = 1, � = 0, R = 100, 
 = 0, 
 = 0. (c) � = 1, � = 0, R = 100,

 = 0:1, 
 = 0:1.

and added an artificial friction term, with and being the
friction coefficients for the tangential and the normal velocity,
respectively. Since we are dealing with a circle with constant
initial velocity conditions, evolving on a uniform potential field

, we know that the solution will be rotationally invariant (with
respect to the origin of the circle). Thus we can evolve in (19)
by using only its normal velocity.

Fig. 5 shows the evolution of the radius, , the tangential ve-
locity (if applicable), the normal velocity for a small initial
value of , a larger initial value of , and with added friction,
respectively.

Fig. 5(a) shows the results for , , ,
, . We see that while in the normal evolution case

the circle accelerates rapidly and disappears in finite time, this
is not the case when we do not neglect the tangential velocity:
Then the circle oscillates. It rotates faster if it becomes smaller
and slower if it becomes larger. Due to the small initial tangen-
tial velocity the radius evolution is initially similar in both cases.
The oscillation effect is more drastic with increased initial tan-
gential velocity ( ). This can be seen in Fig. 5(b). Fig. 5(c)
shows the results with added friction ( ). Both cir-

cles disappear in finite time. The evolutions of the radius look
similar in both cases. Due to the large friction coefficients a large
amount of energy gets dissipated; oscillations no longer occur.

Equations (18) and (19) do not exhibit the same behavior. De-
pending on the initial value for , they will have fundamentally
different solutions. For , and in (19), the
solution is (geometrically) stationary, and the circle will keep its
shape and rotate with velocity for all times. Also if ,
in this example case, both evolutions will be identical.

VII. LEVEL SET FORMULATION

There are different ways to implement the derived curve
evolution equations (see, for example, [38]); many numerical
schemes exist. In this paper, we will restrict ourselves to level
set based curve representations. In contrast to the classical level
set approach [65], where the curve evolution speed is usually
based on geometric properties of the curve or induced by some
external process, the level set approach developed in this paper
attaches a velocity field to the curve and evolves it dynamically.
We distinguish between full and partial level set implementa-
tions. In the full case, curves evolve in a space consistent with
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the dimensionality of the problem. Geometric dynamic curve
evolution would thus be performed in in the simplest case
(since we are looking at planar curves). The codimensionality
will increase if additional information is to be attached to the
curve. Normal geometric dynamic curve evolution would be at
least a problem in . If is the dimensionality of the problem
the curve can for example be implicitly described by the zero
level set of an -dimensional vector distance function or the in-
tersection of hypersurfaces [66]. Full level set approaches
of this form are computationally expensive, since the evolutions
are performed in high dimensional spaces. Furthermore, it is
not obvious how to devise a methodology comparable to a
narrow band scheme [67] in the case of a representation based
on intersecting hypersurfaces.

A partial level set approach uses a level set formulation for the
propagation of an implicit description of the curve itself (thus
allowing for topological changes), but explicitly propagates the
velocity information associated with every point on the contour
by means of possibly multiple transport equations. This method
has the advantage of computational efficiency (a narrow band
implementation is possible in this case, and the evolution is per-
formed in a low dimensional space) but sacrifices object sepa-
ration: Tracked objects that collide will be merged.

In what follows, we will restrict ourselves to a partial level set
implementation of the normal geometric dynamic curve evolu-
tion (i.e., ). We will investigate the full level set
implementation, including tangential velocities, in our future
work.

A. Partial Level Set Approach for the Normal Geometric
Curve Evolution

The curve is represented as the zero level set of the function

where is a point in the image plane. We
choose to be a signed distance function, i.e., , a.e.,
such that outside the curve and inside the curve

. Since the evolution of the curve’s shape is independent of the
tangential velocity, we can write the level set evolution equation
for an arbitrary velocity as

(20)

where

In our case , where

(21)

is the spatial normal velocity at the point . This simplifies (20)
to

(22)

Substituting (21) into (16) and using the relation

yields

(23)

The left-hand side of (23) is the material derivative for the
normal velocity. If we use extension velocities, (23) simplifies
to

Since the extensions are normal to the contours, normal propa-
gation of the level set function will guarantee a constant velocity
value along the propagation direction (up to numerical errors).
Specifically in this case and thus

For an alternative derivation,5 we change our Lagrangian, and
extend it over a range of level sets. For each time and

, let

Using the Lagrangian

we obtain the action integral

which is

(24)

where is the one-dimensional Hausdorff measure and we
applied the coarea formula [68]. This casts the minimization
problem into minimization over an interval of level sets in a
fixed coordinate frame ( and are time independent coordi-
nates in the image plane). Using (22), we express as

(25)

5This will yield directly the normal evolution equation, without the detour of
deriving (15).
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Substituting (25) into (24) yields

which is the new -dependent action integral to be minimized.
Then, if and only if

The curve evolution is thus governed by the equation system

(26)

Expanding (26) yields again

The equation system (26) constitutes a conservation law for the
normal velocity . The propagation of the level set function
is described (as usual) by a Hamilton–Jacobi equation.

VIII. ERROR INJECTION

A system governed by a time-independent Lagrangian (i.e.,
) will preserve energy [58], but this is not necessarily de-

sirable. Indeed, envision a curve evolving on a static image with
an initial condition of zero normal velocity everywhere and with
an initial position of nonminimal potential energy. The curve
will oscillate in its potential well indefinitely. One solution to
this problem is to dissipate energy [33], which can be accom-
plished by simply adding a friction term to (26). However, to
increase robustness it is desirable to be able to dissipate and to
add energy to the system in a directed way. A principled way
to do this would be to use an observer to drive the system state
of the evolving curve to the object(s) to be tracked. In our case
this is not straightforward, since we are dealing with an infinite
dimensional nonlinear system. In order for the curve to approx-
imate the dynamic behavior of the tracked objects we use error
injection. This guarantees convergence of the curve to the de-
sired object(s) if the curve is initially in the appropriate basin of
attraction.

To perform error injection, we need an estimated position and
velocity vector for every point on the curve . Define the line
through the point on the current curve as

and the set of points in an interval on the line as

Define

Our set of estimated contour point candidates is the set of
potential edge points in

where is a Gaussian, is the disk around with radius
, and is the current image intensity. Given some problem

specific likelihood function the selected contour point is
the likelihood maximum

at position

It is sufficient to estimate normal velocity, since the curve evolu-
tion equation does not take tangential velocity components into
account. The estimation then can be performed (assuming we
have brightness constancy from image frame to image frame for
a moving image point) by means of the optical flow constraint
without the need for regularization. Note that we compute this
estimate only on a few chosen points in . The optical flow con-
straint is given as

where and are the velocities in the and the
direction, respectively. We restrict the velocities to the normal
direction by setting

This yields

and thus the desired velocity estimate

We define



NIETHAMMER et al.: DYNAMIC ACTIVE CONTOURS FOR VISUAL TRACKING 573

Fig. 6. Feature search is performed in the normal direction to the curve. The
search region is only allowed to intersect the curve at its origin of search (i.e.,
s ; s ; s ; . . .).

We propose using the following observer-like dynamical
system:

(27)

to dynamically blend the current curve into the desired curve
(see Fig. 7). Here, and are the error injection gains

for and , respectively. Any terms related to image features
are computed at the current location of the contour. The error
injection gains are weighted by the likelihood of the cor-
respondence points as a measure of prediction quality. The ad-
ditional terms and with tunable weighting factors and

are introduced to allow for curve and velocity regularization
if necessary, where

and

In case no correspondence point for a point on the zero level set
of is found, the evolution equation system (27) is replaced by

(28)

for this point.

IX. COMPUTATIONAL COMPLEXITY OF THE ALGORITHM

Level set methods increase the computational complexity of
curve evolution approaches. In the planar case, a one-dimen-
sional curve is represented as the zero level set of a function de-
fined on the two-dimensional image plane, . Level set methods
are of interest numerically (e.g., there is no fixed number of
particles to represent a curve and topological changes are han-
dled naturally), however, the evolution of the level set func-
tion far away from the zero level set is in general irrelevant
and increases the computational complexity without providing

Fig. 7. Correspondence point xxx , inside correspondence point xxx , and outside
correspondence point xxx of the curve Ĉ. C represents the contour of the object
to be tracked.

additional benefits. Thus, instead of updating a level set evo-
lution equation over all of (which incurs an update cost of

, if is represented on a square domain with dis-
crete gridpoints) the computational domain is chosen to be
a band surrounding the zero level set up to a certain distance.
This is the idea of the narrowband method [69]. If the narrow-
band consists of points, the computational complexity con-
sequently reduces from to . Frequently, the speed
function is only defined or sensible on or very close to the zero
level set and needs to be extended to the whole computational
domain. This may be accomplished for example by the fast
marching method [70], [65], [71] with a computational com-
plexity of or with a fast sweeping method [72] with
a computational complexity of . The latter is extremely
efficient for many “simple” flow fields (i.e., flow fields that are
spatially regular and do not change direction frequently) that are
encountered in practice (e.g., normal extensions as employed in
this paper), but may require a relatively large number of itera-
tions for flow fields that (for an individual particle stream line)
fluctuate in direction.

For a narrowband implementation (with points) of the
tracking algorithm proposed in Section VIII the computational
complexity is thus for every evolution step of

which includes the search for the feature points to determine
. Reinitialization of (which has to be performed relatively

infrequently if extension velocities for are used) is of
or (for a fast sweeping scheme and fast marching,
respectively). The evolution of

is again of complexity for every evolution step,
or for the velocity extension, and to find
the feature points . The computational complexity to find the
values for a feature point and is constant, scales with the
length of the line segment the search is performed over, but
gets multiplied by the number of points in the narrowband .
The overall computational complexity of the algorithm is thus

when using a fast sweeping method or for
the fast marching method. Only the redistancing and the compu-
tation of the extension velocities cannot be easily parallelized.
The proposed algorithm is in principle of the same order of
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computational complexity as the standard geodesic active con-
tour (though admittedly with a larger computational cost per
point, especially if the feature point search is not parallelized)
for which real time implementations at standard camera frame
rates exist.

X. OCCLUSION DETECTION

An occlusion in the context of this paper is any image change
that renders the object to be tracked partially (partial occlusion)
or completely (full occlusion) unobservable, e.g., when an ob-
ject moves in between the camera and the object to be tracked
and thus covers up parts or all of the latter. Tracking algorithms
need to utilize shape information and/or (at least for short-time
partial occlusions) make use of the time history of the object
being tracked (i.e., its dynamics) to be able to tolerate occlu-
sions. Static segmentation methods that do not use shape infor-
mation will in general not be able to handle occlusions.

This section introduces a simple occlusion detection algo-
rithm6 based on ideas in [73] to be used in conjunction with the
dynamic tracking algorithm proposed in Section VIII to handle
short-time partial occlusions.

The inside and the outside correspondence points are defined
as (see Fig. 7)

The occlusion detection strategy is split into the following six
subcases for every point on the contour.

0) There is no correspondence point.
1) Only the correspondence point is present.
2) The point is moving outward, the correspondence point

is present, but not its outside correspondence point.
3) The point is moving inward, the correspondence point

is present, but not its inside correspondence point.
4) The point is moving outward, both the correspondence

point and its outside correspondence point are present.
5) The point is moving inward, both the correspondence

point and its inside correspondence point are present.
We define the following Gaussian conditional probabilities:

where is the estimated time to occlusion, is the velocity
of the point ahead, overlined symbols denote negated values
(i.e., means not occluded), , are the
probabilities of and given an occlusion, and
and given there is no occlusion, respectively. The

6More sophisticated, and less parametric, occlusion detection algorithms are
conceivable; however, this is not the main focus of our work, and the one pro-
posed is sufficient to show that the dynamic geodesic active contour can handle
occlusions when combined with a suitable occlusion detection algorithm.

corresponding standard deviations are , , , and ; the
means are , , , . To compute the values of and
we make use of the currently detected correspondence point ,
and its interior and exterior correspondence points.

The probability for an occlusion is given by Bayes’ formula
as

We initialize and everywhere. The
priors at time step are the smoothed posteriors of time step

. In case 0), (i.e., the probability
is left unchanged), in all other cases

where

if outside of
otherwise

if outside of
otherwise

if inside of
otherwise

if inside of
otherwise

and

To estimate the current rigid body motion, the following system:

is solved, where . We set
and .

The evolution equation is changed to

This is an interpolation between (27) and (28) based on the oc-
clusion probability.
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Fig. 8. Illustration of the shape of the weighting function w(xxx) for the fish
sequence.

Fig. 9. Three frames of a fish sequence. This is a color image. (a)
Frame 0. (b) Frame 80. (c) Frame 90. (Color version available online at
http://ieeexplore.ieee.org.)

Fig. 10. Three frames of a car sequence. This is a color image. (a)
Frame 0. (b) Frame 14. (c) Frame 55. (Color version available online at
http://ieeexplore.ieee.org.)

XI. SIMULATION RESULTS

The proposed tracking algorithm is tested on two real video
sequences. Fig. 9 shows three frames of a fish sequence and
Fig. 10 shows three frames of a car sequence. In both cases
occlusions occur. For the fish sequence no occlusion detection is
performed, to demonstrate the behavior of the normal geometric
curve evolution algorithm alone, on an image sequence with a
short-time partial occlusion. Define7

if
if
if
otherwise.

The used likelihood function for the fish sequence is

The function depends on the image intensity , the potential
function , and the distance to the contour.

7This is simply a monotonic function which increases like a sigmoid up to
x = p , linearly increases for x 2 (p ; p ], linearly decreases to zero for
x 2 (p ; p ] and is zero everywhere else. See Fig. 8 for an illustration.

Fig. 11. Six frames of a fish sequence. Tracking using the geodesic active
contour. (a) Frame 0. (b) Frame 30. (c) Frame 45. (d) Frame 60. (e) Frame 75.
(f) Frame 90.

For the car sequence, we define

This is a measure of angle difference between edge orientation at
correspondence points and the normal of the curve. Ideally, both
should be aligned. The likelihood for a contour point candidate

is then computed as

and the occlusion detection of Section X is performed.
In both cases occlusions are handled. For the fish sequence

the occlusion is dealt with implicitly. The occluding fish moves
over the tracked fish quickly, so that the inertia effects keep the
fish at a reasonable location. For comparison Fig. 11 shows the
tracking of the fish in six frames of the same fish sequence by
means of a geodesic active contour. Here, the motion model is
static (i.e., the converged to location at frame is the initial
condition for the curve evolution at frame ) and the tracking
result at every frame represents the steady state of the geodesic
active contour evolution (6). While the fish is tracked initially,
the tracking contour subsequently adheres to a second fish and
finally looses track completely.

For the car example the occlusion (the lamp post) is treated
explicitly by means of the proposed occlusion detection algo-
rithm. In both cases the likelihood functions do not incorporate
any type of prior movement information. Doing so would in-
crease robustness, but limit flexibility. Finally, since this active
contour model is edge-based, the dynamic active contour cap-
tures the sharp edge of the shadow in the car sequence. Presum-
ably this could be handled by including more global area-based
terms or shape information in the model.

XII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new approach for visual tracking
based on dynamic geodesic active contours. This methodology
incorporates state information (here, normal velocity, but any
other kind of state information can be treated in a similar way)
with every particle on a contour described by means of a level
set function. It has the potential to deal with partial occlusions.
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Edge-based approaches trade off robustness for versatility. If
strong, clear edge information exists they are a very useful class
of algorithms; however, in many cases more robust techniques
arerequired.Methodsthat incorporatearea-basedinfluenceterms
have proven to be very efficient for certain applications. To add
more robustness to our methodology, we are currently working
on a dynamic area based approach based on elasticity theory.

Our proposed algorithm searches for image features (i.e.,
likelihood maxima) along normal lines of an evolving con-
tour. Thus, the algorithm lies between purely edge-based and
purely area-based approaches. This ties in very well with the
proposed occlusion detection algorithm, but it places much
importance in finding the “correct” correspondence points. The
main disadvantage of the occlusion detection algorithm is the
large number of tunable parameters it requires. Devising a less
parametric occlusion algorithm would be beneficial.

We also do not claim that our algorithm is optimal for the spe-
cific image sequences presented. Indeed, whenever possible, ad-
ditional information should be introduced. If we know we want
to track a car, we should make use of the shape information we
have. Not all deformations will make sense in this case. Our
main contribution lies in putting dynamic curve evolution into
a geometric framework and in demonstrating that we can trans-
port any kind of information along with a curve (e.g., marker
particles, enabling us to follow the movement of specific curve
parts over time). This gives us increased flexibility and enables
fundamentally different curve behaviors than in the static (non-
informed) case often used in the computer vision community.
Furthermore, applications for dynamic geodesic active contours
need not be restricted to tracking, e.g., applications in computer
graphics are conceivable (where the curve movement would
then be physically motivated), not necessarily involving an un-
derlying real image (e.g., we could design artificial potential
fields enforcing a desired type of movement).

As geodesic active contours extend to geodesic active sur-
faces, dynamic geodesic active contours can be extended to dy-
namic geodesic surfaces. Our main focus for future research will
be an extension toward area based dynamic evolutions.

APPENDIX I
GEOMETRIC DYNAMIC CURVE EVOLUTION

Equation (11) is derived as follows: assume the curve gets
perturbed by yielding the curve

The action integral (7) becomes

We compute the Gâteaux variation by taking the derivative with
respect to for ; see the first equation shown at the
bottom of the page. Assuming to be constant integration by
parts yields (29), as shown at the bottom of the page. The
boundary terms occurring from the integrations by parts drop
out for closed curves. Then, (since (29) has to be fulfilled for
any )

(30)
where

To simplify (30), we use the following correspondences:

Specifically, it follows that

Plugging everything in (30) results in

(31)

which is (11).

APPENDIX II
COUPLED NORMAL AND TANGENTIAL EVOLUTION

The general version of the geometric dynamic curve evolution
equation is given in (31) where is the unit inward normal and

We can always write

We choose the parameterization such that it is independent of
time. The parameterization thus travels with its particle.

(29)
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Let us derive the general (without prespecified special repa-
rameterization ) evolution equations for and (see [64] for
details on some of the equations used). Using an arbitrary curve
parameterization (with , , and

) define

Arclength is then given by

Then

We can also compute

From the previous expressions follows:

and

This yields

and

Some simple algebra results in

from (31), which can be written as

With

it follows that

(32)

This must be true for all . Equation (32) reduces to the fol-
lowing two coupled partial differential equations:

(33)
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