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On the Detection of Simple Points in Higher
Dimensions Using Cubical Homology

Marc Niethammer, William D. Kalies, Konstantin Mischaikow, and Allen Tannenbaum

Abstract—Simple point detection is an important task for sev-
eral problems in discrete geometry, such as topology preserving
thinning in image processing to compute discrete skeletons. In
this paper, the approach to simple point detection is based on
techniques from cubical homology, a framework ideally suited for
problems in image processing. A ( -dimensional) unitary cube
(for a -dimensional digital image) is associated with every dis-
crete picture element, instead of a point in (the -dimensional
Euclidean space) as has been done previously. A simple point in
this setting then refers to the removal of a unitary cube without
changing the topology of the cubical complex induced by the
digital image. The main result is a characterization of a simple
point (i.e., simple unitary cube) in terms of the homology groups
of the (3 1) neighborhood of for arbitrary, finite dimensions

.

Index Terms—Cubical homology, digital geometry, simple point,
skeleton.

I. INTRODUCTION

I N THE context of digital topology, discrete data sets are
associated with geometric objects, such as two-dimensional

(2-D) images, three-dimensional (3-D) volumes, etc. Typically,
the data set is obtained by assigning to each pixel, voxel,
tetrapus, or any analogous higher dimensional object a point,
e.g., the center point. Connectivity, and in general topology,
is assigned to this set of points by applying a particular
neighborhood structure. The choice of neighborhood structure
determines which topological properties carry over from the
continuous to discrete settings. For example, when looking
at a discrete image composed of pixels, not all neighborhood
definitions (for the foreground and the background) will allow
for a discrete equivalent to the Jordan curve theorem.

Given a particular set of points and fixed neighborhood
structure, one can ask what happens to the induced topology
when one of the points is removed. A point is simple
in , if the topology associated with is equivalent to the
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topology associated with (a precise definition is pre-
sented below). Detecting simple points is of crucial importance
in thinning applications for example, where a discrete repre-
sentation of an object gets reduced to its topologically equiv-
alent skeleton. In the simplest (continuous) Euclidean case, the
skeleton or medial axis (in the sense of Blum [1]) is the set of
shock points emanating from an inward moving object boundary
traveling with unit speed. If the skeleton is augmented with ar-
rival time information, perfect boundary reconstruction can be
achieved. Skeletons can, for example, be used as shape descrip-
tors for object recognition, for object compression, to find cen-
terlines of objects, etc. See [2] and [3] for a review of skele-
tonization algorithms.

Given its importance, it is not surprising that simple point
detection has been studied in the context of digital topology.
Since most applications in image processing deal with 2-D or
3-D images, identification of simple points in this setting is well
understood. However, 3-D image sequences (e.g., of a beating
heart) demand simple point detection algorithms for four-di-
mensional (4-D) spaces (see [4] for a 4-D simple point result).
Furthermore, problems for higher space dimensions are easily
conceivable: the recent work by Han, et al. [5] requires the de-
tection of simple points during a level set evolution to preserve
the topology of an implicitly evolving surface; and the removal
of simple points is essential for the efficient implementation of
new dimension independent algorithms for computing the ho-
mology of maps [6].

The complexity of simple point detection increases with
the dimension of the space. If one applies the neighborhood
structure known as -connectivity, then the number
of elements in a neighborhood increases exponentially with
dimension . Furthermore, in the case of thinning, simple
point decisions often need to be made multiple times for many
elements of the data set (removing one simple point may create
a new simple point), resulting in a large number of decisions
to be taken. Thus, computationally efficient and dimension-in-
dependent algorithms for simple point detection are clearly
necessary.

This paper develops a characterization of a simple point of a
discrete -dimensional, binary dataset in terms of the homology
groups of the cubical complex induced by the -neigh-
borhood of . In contrast to most previous approaches, this char-
acterization is dimension-independent and thus facilitates the
design of dimension-independent algorithms (for an alternative
approach, see Pilarczyk [7]). Furthermore, computationally ef-
ficient algorithms to compute the resulting simple point condi-
tion exist and are freely available. Our approach is most closely
related to that of Tourlakis and Mylopoulos [8], [9], but asso-
ciates a -dimensional unitary cube (for a -dimensional digital
image) with every discrete picture element, instead of a point
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Fig. 1. 2-D neighborhoods. (a) 4-neighborhood of p. (b) 8-neighborhood of p.
(c) Cubical neighborhood CN(p) of p.

in the -dimensional Euclidean space . The simple point de-
tection scheme proposed in this paper makes use of cubical ho-
mology; for a recent treatment, see [10].

We now outline the contents of this note. Section II gives
proposed simple point conditions whose proofs are given in
the Appendix. Section III relates the approach presented in this
paper to previous work and compares it in particular to the
approach by Tourlakis and Mylopoulos [8], [9]. Our approach
is less general, but better suited for the processing of digital
datasets. Section IV summarizes the salient points of our
methodology and makes some conclusions.

II. DETECTING SIMPLE POINTS BY CUBICAL HOMOLOGY

This section presents the main results of this paper. We will
also aim at giving some intuition for these simple point con-
ditions. For clarity, we assume that a -dimensional image
is composed of unitary -dimensional cubes, i.e., translates of

, whose center has integer coordinates.
Note that the size of the cubes plays no role in determining the
topology of the image.

Define the -neighborhood and the -neighborhood
of as

respectively, where is the th coordinate of . Two points
and are -connected if .

Definition 1 (Cubical Neighborhood): Let . The cu-
bical neighborhood of a point is the union of
the -dimensional unitary cubes associated with the points in

, i.e.,

Fig. 1 illustrates the different neighborhood concepts in two
dimensions.

As is indicated in the Introduction, a point is simple if its re-
moval results in an equivalent topological space. Thus the no-
tion of simple is directly tied to the equivalence relation that is
being imposed on the topological space. At first glance, it may
appear that being homeomorphic is the most natural equivalence
relation. However, this is an extremely restrictive form of equiv-
alence and hence difficult to verify. Furthermore, it is unneces-

sarily strong; for example, an object is not homeomorphic to its
skeleton or medial axis. This suggests the following definition.

Definition 2 (Homotopy-Simple Point): Let . Let

A point is homotopy-simple if is homotopy equivalent to
.
Planar examples such as those of Figs. 2 and 3 suggest that

is a homotopy-simple point if and only if is contractible
(i.e., homotopic) to a single point. While in low dimensions
this condition is easy to visualize, our goal is to provide an
algorithm for the verification of simple points, and thus we
need a reformulation that is amenable to computation. This can
be accomplished using algebraic topology. While homotopy
groups provide an algebraic means of determining homotopy
type, unfortunately they are notoriously difficult to compute.
In contrast, homology groups are effectively computable.
Homology assigns to each topological space a sequence
of abelian groups, , , called homology
groups.

Homology can be computed by decomposing the space into
a finite number of units. In the traditional simplicial homology,
these units are simplices, a formalization of the notion of trian-
gulation. In the cubical homology, these units are pixels/voxels
and their respective vertices, edges, and higher dimensional
faces. Cubical homology is ideally suited for digital images, due
to its ability to handle -dimensional cubes directly. Whereas
simplicial homology is by now a standard tool of algebraic
topology [11], the direct application of cubical homology is
much more recent [10], [12].

Definition 3 (Homology-Simple Point): Let . Let

A point is homology-simple if for all
where the isomorphisms are induced by inclusion.

It is important to note that if two spaces are homotopy equiv-
alent, then they have the same homology groups; however the
converse need not be true. Thus, a homology-simple point is, in
general, a weaker concept than a homotopy-simple point. Nev-
ertheless, as we shall demonstrate, for low-dimensional settings,
i.e., , where the two concepts coincide.

We begin with a dimension independent result.
Theorem 1 (Homology-Simple Point): A point is a

homology-simple point in if and only if its cubical neighbor-
hood is acyclic; that is

if
if .

The proof is straightforward (it follows from [6, Lemma 7.1]
and [7, Lemma 9]). However, for the sake of completeness, we
include it in the Appendix.

A classical result due to Poincaré implies that there exist cu-
bical neighborhoods which are acyclic, but not con-
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Fig. 2. Collapsing a cubical complex. Cyclic case. � = 1, � = 1. The point
is not simple. (a) Original cubical complex. (b) Cubical complex with removed
center cube.

tractible. Thus, this result is insufficient to guarantee that a ho-
mology-simple point is a homotopy-simple point.

A homology group is torsion-free if .
In this case the homology group is completely described by its

Fig. 3. Collapsing a cubical complex. Acyclic case. � = 1, � = 0. The
point is simple. (a) Original cubical complex. (b) Cubical complex with removed
center cube.

rank which is referred to as the th Betti number and denoted
by . The Betti numbers provide considerable geometric
information. For example, given a 3-D image data, there are at
most three nontrivial homology groups , and . The
number of connected components, tunnels, and voids present in
the image are given by the Betti numbers , , and .

Theorem 2 (Betti Number Characterization of Homology-
Simple Point): Let and assume . A point

is a homology-simple point in if and only if

if
if .
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Fig. 4. Removing a pixel in a 2-D digital image. Illustration of the point and the unitary cube based approaches. (a) One point per pixel before removal of the
center pixel. (b) One point per pixel after removal of the center pixel. (c) One unitary cube per pixel before removal of the center pixel. (d) One unitary cube per
pixel after removal of the center pixel.

Proof: Let and assume that is the
elementary cube associated with . Let

. It is straightforward though technical to check
that is homotopy equivalent to . Observe that is
a cubical set contained in the boundary of . Since the
boundary of is homeomorphic to , the unit sphere in

, is torsion free [13]. Thus, the hypothesis of the the-
orem is equivalent to the acyclicity of . Analogous arguments
hold for .

Real projective space provides an example of a topo-
logical space whose homology is not torsion free, and hence,
not completely described by its Betti numbers. can be
expressed as a simplicial complex that consists of ten trian-
gles, 15 edges, and six vertices. This implies, by [10, Theorem
11.17] that it can be represented as a cubical complex in the
boundary of . In particular, homology-simple points
for cannot be characterized by Betti numbers for .
Thus, the previous theorem is sharp.

Theorem 3 (Homotopy-Simple Point): Let and
assume . A point is a homotopy-simple point in if and
only if

if
if .

Again, the proof of this result is straightforward but rather
technical and appears in the Appendix.

As is suggested above, at least in lower dimensional spaces,
Betti numbers and hence homology groups correspond to in-
tuitive geometric concepts like the number of connected com-
ponents, the number of loops, or the number of enclosed cav-
ities. Thus, having a simple point characterization in terms of
homology groups is also useful for applications where topology
does not necessarily need to be preserved, i.e., it is relatively
straightforward to augment the simple point condition with ad-
ditional rules based on homology groups to allow for mean-
ingful non-topology-preserving thinning (e.g., to always allow
the thinning to a line without the need for dealing with compli-
cated special cases).

III. RELATION TO PREVIOUS WORK

Many approaches for simple point detection have been pro-
posed [14]–[16]. While the method in this paper works on the
cubical level, many previous approaches work on the point level;
see Fig. 4 for an illustration.

Simple point algorithms have been based on connected
component analysis, computation of Euler characteristics, or
template matching, to name a few of the most popular methods.
Tabulating simple point configurations is prohibitive in higher
dimensions. For a 4-D cube, there are already possible
neighborhood configurations. Many simple point detection
approaches are not dimension independent. For example ap-
proaches relying on the graph induced by the points describing
a discrete dataset and their neighborhood structure. While the
dimensional dependency of a simple point condition may be
acceptable for computational efficiency (for example, efficient
tabulation has been implemented in [17] and [18] for three
dimensions), it is desirable to have more general, computable
conditions for higher dimensions- for example to facilitate easy
implementation of dimension independent thinning algorithms.
A comprehensive review of related methods is beyond the
scope of this paper. The interested reader is referred to the
excellent survey articles by Kong and Rosenfeld [19] on digital
topology and by McAndrew and Osborne [20] on algebraic
methods in digital topology and the references therein. Further,
see [3] and [21] for the use of algebraic topology in image
processing, see [22] for the computation of the Euler number
based on cubical homology, and see [23] for a general overview
of computational topology.

The approach for simple point detection proposed in
Section II is rooted in algebraic topology and most closely
related to the work of Tourlakis and Mylopoulos [9] to which it
will be compared in the remainder of this section.

Given a set of points

the polyhedron is made up solely of the points that fulfill:
1) ;
2) If all vertices of the unitary cube are in , then

.
Then, is the “smallest” polyhedron covering . Defining
the covering polyhedron this way induces a -connectivity
between the points in . Tourlakis and Myopoulos [9] define
the open star of a point with respect to the set of points as
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Fig. 5. Using the polyhedron approach to determine if a point x is simple. The loop case. Point x is not simple. (a) Set of points P . (b) Polyhedron �(P).
(c) Determining the base B(x;P).

Fig. 6. Using the polyhedron approach to determine if a point x is simple. The square case. Point x is simple. (a) Set of points P . (b) Polyhedron �(P).
(c) Determining the base B(x;P).

where is an elementary cell.1 The closed star of with respect
to is

where is a unitary cube. The base of in is then defined as

Figs. 5 and 6 show illustrations of these concepts.
The following proposition [9] is most closely linked to the

homology-simple point condition of Theorem I of this paper.
Proposition 1: Let . Assume that the dimension .

Then the following statements are equivalent.
1) is simple.
2) for all , where the

inclusion2 induces isomorphisms
for all .

3) for all , while .
Thus, is simple only if the base of in is simply
connected and acyclic.

The homology-simple point condition of Theorem 1 is equiv-
alent to Proposition (1) of [9] in two and three dimensions if we
construct the point set such that each element of a discrete

1The elementary cell associated with a general elementary cube Q = I �

I �� � ��I � is given by �Q = �I ��I �� � ���I , where �I := (l; l+1)
if I = [l; l + 1] and �I := [l] if I = [l; l].

2The inclusion condition is necessary for d = 3 and was proposed by Kong
and Rosenfeld [19]. For an illustration of the necessity of this condition, see
Fig. 7 as given in [20].

dataset is represented by all the vertices of its associated uni-
tary cube. This induces a -connectivity between the uni-
tary cubes associated with the elements of the original discrete
dataset. Since we only allow the removal of complete -dimen-
sional unitary cubes from our cubical complex, the inclusion
property of Proposition (1) is automatically satisfied, and the
counterexamples to the initial results in [9] as described in [19]
and [20] no longer hold. Further, Theorem 1 holds for arbitrary
finite dimensions, whereas Proposition (1) is only valid in the
two-dimensional and the 3-D case.

IV. SUMMARY AND CONCLUSIONS

We introduced two definitions for a simple point: the ho-
mology-simple point and the homotopy-simple point. We
showed that in low dimensions the two concepts
coincide. However, the less restrictive concept of a ho-
mology-simple point extends to any finite dimension. The
dimension-independence of the homology-simple point is in
contrast to previous approaches and makes it highly attractive
for example for skeletonization or for topology preserving
level set methods. The point associated with a unitary cube is
a homology-simple point if the cubical complex induced by
its -neighborhood (with the center cube removed) is
acyclic. For dimensions , this condition may be written in
terms of the Betti numbers of the induced cubical complex. The
point associated with a unitary cube is a homotopy-simple point
if the cubical complex induced by its -neighborhood
(with the center cube removed) is contractible (i.e., homotopic)
to a single point.

Dimension-independent algorithms for the computation of
Betti numbers in a cubical setting are readily available and fa-
cilitate the computation of the simple point condition. These al-
gorithms [17] have been used in dimensions three and higher to
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Fig. 7. (2d)-connectivity between points (top of the figure) allows for a change
in topology when a point is removed even though the homology groups are iso-
morphic. Removing a point with an acyclic cubical neighborhood using (3 �1)
connectivity does not allow such a change in topology. (a) Vertical loop. (b) Hor-
izontal loop. (c) Vertical loop represented by cubes. (d) Removing the shaded
cube preserves the vertical loop.

implement the simple point detection scheme proposed in this
paper.

APPENDIX

In this Appendix, Theorems 1 and 3 are reformulated into the
language of cubical homology and proven. For mathematical
details, see [10]. The following result is equivalent to Theorem
1.

Theorem: Let be a full cubical set. Let
, where

denotes the set of all elementary cubes in and
Let

Then, the point associated with the cube is a ho-
mology-simple point if and only if is acyclic.

Proof: We begin by showing that the simplicity of the point
associated with is determined by . Let

and
Set and . By definition the point
associated to is homology-simple if and only if

with this isomorphism being induced by the inclusion
map .

Observe that and . The associated
Mayer-Vietoris sequence is

(1)

However, is a strong deformation retract of , and, hence,
is acyclic. Therefore, for , (1) reduces to

(2)
By definition, the point associated to is simple if and only
if is an isomorphism for all . However, if is an isomor-
phism, then the images of and are trivial. This implies
that for .

Again, the acyclicity of implies that for (1) reduces
to

(3)

Since the zeroth homology group of any space is free,
if and only if .
We now turn to the proof of Theorem 3. If , then the

proof is a triviality and can be done by inspection. Thus, we
present the details in the case . Without loss of generality,
let us assume that is the elementary cube associated
with . Let . It is straightfor-
ward though technical to check that is homotopy equivalent
to . Thus, to prove Theorem 3, it is sufficient to prove
that we can construct a contraction from to .

By Theorem 2, the hypothesis of Theorem 3 is equivalent to
the acyclicity of .

We will make extensive use of the elementary collapses in
our construction of a contraction, hence we review some of the
essential definitions and properties. Let be a cubical complex.
Let be an elementary cube with a free face .
The elementary collapse of by results in the new cubical
complex . Let and denote the cubical
sets defined by the cubical complexes and , respectively.
Two important facts are that and is a
deformation retract of .

Let and denote the sets of elementary cubes as-
sociated with and . Furthermore, denotes
the set of -dimensional elementary cubes in , etc. Our goal
is to reduce to via a series of elementary collapses.
To do this we need to introduce some additional notation.

In general, given two cubical sets , e.g., ,
is not a cubical set. However, it can be written as the union of
elementary cells [10, Def. 2.13], which we denote by . Fur-
thermore, let denote the set of -dimensional elementary
cells in . Let . Then is a -dimensional
elementary cube. Let and . is a free
face of with respect to , if is the unique elementary cell
in such that and .

We can now begin our series of elementary collapses. Let
denote the set of elementary cells which are subsets of .
Observe that . Since ,

. Without loss of generality, we can assume that
or equivalently that . Let

be the cubical set obtained by the elementary collapse of
by . Then and .

Let denote the set of elementary cells which are subsets
of . Observe that and hence . If
at this stage , then and we are done. So
assume . We now proceed to remove elements of
via elementary collapses. This involves proving the existence of
free faces with respect to .
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Lemma 1: Let

If , then there exists which is a free face
for some .

Proof: If , then

Let . Observe that . Furthermore,
. However, we are assuming that which pre-

cludes the assumption that is acyclic.
Since is a cubical set, if , then

and hence
and is a free face of The same argument applies to

the other elements of .
Using Lemma 1, we can perform at least one elementary col-

lapses. Let denote the resulting space after such collapses
and let denote the set of elementary cells which are sub-
sets of .

Lemma 2: If , then there exists which
is a free face relative to for some .

Proof: Let

Since , we can without loss of generality assume that
. This implies that .

Let . If and , then can fail to
be a free face of relative to in two ways. Either or

and where .
We now proceed using a proof by contradiction. Observe that

if is acyclic using coefficients, then it is acyclic using
coefficients. Let . Consider the
chain

where we have identified the elementary cube with a basis el-
ement of . Observe that
and hence . Since ,

generates a nontrivial element of . Now
consider the Mayer-Vietoris sequence for

was obtained by a sequence of deformation retracts from
and hence is acylic. Thus, we get the following exact

sequence

where . Clearly, a contradiction.
Using Lemma 2, we can continue to perform elementary col-

lapses until . Let . Let denote the set
of elementary cells which are subsets of . If ,
we are done, i.e., . Thus, we assume .

Lemma 3: If , then there exists which
is a free face relative to for some .

Proof: Let and let
. Consider any chain

where we have identified the elementary cube with a basis ele-
ment of .

Assume that so that . Since
is acyclic, there exists such that

. However, , hence
which precludes , a con-

tradiction. Therefore, .
Assume that . This will be the

case if implies that there exist exactly two ele-
mentary cells such that . Since

is acyclic, there exists such that

. Now observe that ,

and, hence, . Since is
acyclic, there exist such that

. Since and
, not all can be elements of , thus there

exists a contradiction.
Let Given the preceding arguments,

and . This implies that is a tree, i.e., a
graph composed of vertices and edges with no cycles. Moreover,
assume that has no free faces relative to Since is a
tree, it must have at least two vertices which are free faces, and,
hence, these vertices must be in .

Let us denote two of these free vertices by and
. We may assume that there is a path in the tree

with edges from to .
However, since is acyclic, and are connected
by edges . Now observe that

and we have a contradic-
tion as described above.

Using Lemma 3, we can continue to perform elementary col-
lapses until . Let . Let denote the set
of elementary cells which are subsets of . Since is
acyclic, it is connected. Therefore, and the proof is
completed.
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