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Abstract. This paper proposes a methodology to segment tubular fiber
bundles from diffusion weighted magnetic resonance images (DW-MRI).
Segmentation is simplified by locally reorienting diffusion information
based on large-scale fiber bundle geometry. Segmentation is achieved
through simple global statistical modeling of diffusion orientation. Uti-
lizing a modification of a recent segmentation approach by Bresson et
al. [19] allows for a convex optimization formulation of the segmentation
problem, combining orientation statistics and spatial regularization. The
approach compares favorably with segmentation by full-brain streamline
tractography.

1 Introduction

Diffusion weighted (DW) magnetic resonance imaging (MRI) allows for in-vivo
measurements of water diffusion in tissues such as the human brain. While
brain white matter appears uniform in structural MRI, DW-MRI measurements
can provide estimates of macroscopic fiber bundle direction as well as indicate
changes in tissue properties. However, the relation between DW-MRI signal and
white matter ultra-structure is only known partially. For example, how axonal
organization and geometry relates to a measured diffusion profile in general re-
mains an open question. Fiber bundle direction correlates with the major diffu-
sion direction in fiber bundle areas comprised of large numbers of approximately
unidirectional axons [1]. This allows for the estimation of distinct fiber bundles
from DW-MRI measurements.

A variety of approaches to extract white matter bundles from diffusion
weighted images exist. They may be classified into streamline-based approaches
and voxel-based approaches. The streamline-based approaches utilize stream-
line tractography to come up with bundle segmentations. This can for example
be direct voxelization of the streamlines, voxelization preceded by streamline
clustering [21], or stochastic tractography [16, 11]. Voxel-based approaches aim
at extracting white matter bundles directly from the voxel data without using
streamline tractography. Approaches include voxel-based clustering [18], surface-
evolution using global statistics [6, 23] or local similarity terms [10], optimal
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connectivity methods [17], region-growing [9], hidden Markov measure fields [15]
and fuzzy segmentation [14].

This paper proposes a segmentation approach based on reorienting the dif-
fusion measurements. Reorientation information is derived from large-scale fiber
bundle geometry; it facilitates region-based fiber bundle segmentation with
global statistics. The approach is computationally efficient, is simple, allows for
reliable optimization, and is robust to local noise effects.

Briefly summarizing the remainder of this paper, in Sec. 2, we give an
overview of the system. Sec. 3 introduces the local coordinate system used for the
reorientation of diffusion information. Sec. 4 describes how to extend the local
coordinate system to the complete image volume. The reorientation of diffusion
data is described in Sec. 5. Sec. 6 and 7 describe the statistical modeling of fiber
bundle direction and its use for bundle segmentation respectively. Results are
given in Sec. 8. Sec. 9 concludes the paper with a discussion of the approach,
and an outlook on possible future work.

2 System Overview

This section summarizes the key steps in the proposed segmentation approach.
The overall goal of the method is to be able to segment tubular fiber bundles
from diffusion weighted images. Segmentation requires a suitable similarity mea-
sure for voxel grouping into object foreground and object background. While a
multitude of segmentation methods for diffusion weighted images exists (see
Sec. 1) arguably the methods used in practice are based on streamlining: direct
voxelization of streamlining results, clustering of streamlines, or stochastic trac-
tography. This is surprising, because (i) streamlining approaches are sensitive
to noise and (ii) volumetric segmentation algorithms developed outside the area
of diffusion weighted imaging have either not been applied to DW-MRI or only
with limited success. A major impediment to adopting existing volumetric seg-
mentation approaches for DWI segmentation is the nature of DWI data. DWI
data is (i) vector-valued (tensor-valued if diffusion tensors are computed), is (ii)
axial (identifying antipodal directions), typically has (iii) low signal to noise ratio
and is of relatively low resolution, and is (iv) spatially non-stationary (i.e., large
scale orientation changes are expected to occur within individual fiber bundles).

Fig. 1 illustrates diffusion tensors changing direction along a fiber bundle and
the same set of diffusion tensors when realigned relative to a representative fiber
tract. This realignment process is at the core of the approach proposed in this
paper. Realignment simplifies the original problem by making it spatially sta-
tionary. Segmentation methods for vector-valued images can then be employed
for fiber bundle segmentation. Note that standard streamline tractography usu-
ally incorporates a weak, implicit form of spatial realignment by disallowing
orientation changes considered too drastic.

The proposed approach is:

1) For every candidate point in the image volume, find the closest point on the
representative fiber tract.
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(a) Original fiber bundle. (b) Realigned fiber bundle.

Fig. 1. Tensor reorientation concept. The spatially varying tensor orientation can
largely be removed by reorientation with respect to a representative fiber tract (blue).

2) Regard the candidate point as part of the fiber bundle if its diffusion infor-
mation is similar to the diffusion information at the closest point.

3) Create a spatially consistent segmentation based on the similarities of 2).

The key questions are, what is meant by “closest,” “similar,” and “spatially
consistent.” The direct approach to measure closeness is to look at Euclidean
distance. Euclidean distance typically does not yield unique point to point cor-
respondences. Sec. 4 thus proposes a method based on frame diffusion. Since the
focus of this paper is the segmentation of tubular fiber bundles, the overall fiber
bundle geometry can be approximately described by the space curve given by a
representative fiber tract. The (regularized) Frenet frame of the space curve can
then be used as a local coordinate frame and as the basis for frame diffusion; see
Sec. 3.

Many probabilistic and deterministic similarity measures have been proposed
for diffusion weighted imaging (in particular, for diffusion tensor imaging; see for
example [6, 10]). One of the simplest measures of diffusion similarity is to mea-
sure angular deviations of the major directions of diffusion. This is in line with
streamline tractography which typically uses only the principal diffusion direc-
tion for streamline propagation5 and will be used in a probabilistic formulation
in this paper as discussed in Sec. 6. To achieve spatial consistency, which cannot
be achieved by local segmentation decisions based on directional statistics and
reorientation of diffusion measurements alone, regularization is necessary. Sec. 7
describes the proposed segmentation approach based on a slight modification of
the convex optimization formulation by Bresson et al. [19].

3 The Regularized Axial Frenet Frame

To parameterize tubular fiber bundles, a suitable coordinate system is necessary.
For space-curves, the Frenet frame can be used. Given a parameterized curve
C(p) : [0, 1] 7→ R3, such that Css 6= 0, Cs 6= 0 (i.e., without singular points of
order 0 and 1 [4]) the Frenet frame is given by

Ts = κN , Ns = −κT − τB, Bs = τN ,
∂

∂s
=

1
‖Cp‖

∂

∂p
.

5 Tensor derived measures other than principal diffusion direction are typically only
used as tract termination criteria.
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T = Cp

‖Cp‖ is the unit tangent vector, N and B are the normal and the binormal,
κ and τ denote curvature and torsion respectively, and s denotes arc-length. See
Fig. 2 for a depiction of the Frenet frame. Computing T from C is immediate.
Computing N yields B = T ×N and thus the desired local coordinate frame.

In this paper the space curve is given by a representative fiber tract. For
the experiments of Sec. 8 streamline tractography was used to compute the
representative fiber. For a more robust approach, streamlining should be replaced
by an optimal path method [8]. In what follows, a known representative fiber
tract is assumed.

Since the Frenet frame is based on differential properties of the space curve it
is sensitive to noise. Instead of using the Frenet frame directly, the frame diffusion
is instead based on a regularized version of the Frenet frame. Fig. 2 (right) shows
a progressively more regularized Frenet frame. Note that for the reorientation
of diffusion information (see Sec. 5) the Frenet axes can be flipped. All compu-
tations in this paper identify antipodal directions; derivatives are computed by
prealigning all vector-valued quantities locally before derivative computation.

T

T

T

T

B

B
N

N

B

B

N

N

Fig. 2. The Frenet frame {T ,N ,B} consisting of tangent, normal, and binormal to C.
Regularization helps to obtain smoothly varying frames from noisy data (right).

4 Frame Diffusion

Instead of declaring a point in space to correspond to its closest point (mea-
sured by Euclidean distance) on the representative tract, here, correspondence
is established implicitly through a diffusion process. This allows for smoother
correspondences avoiding orientation jumps which occur at shock points for the
Euclidean distance map. Since orientation is the quantity of interest, the orien-
tation information is diffused away from the representative tract. Tschumperle
and Deriche [22] regularize diffusion tensor fields by evolutions on frame fields.
This can be used to define the diffusion of the frame field off the reference tract.
Formally,

Fθ(x, θ) = ∆xF, x ∈ Ω \ C, F(x, θ) = Fb, x ∈ C, (1)

where F = {T a,N a,Ba} is the set of the axes implied by the regularized Frenet
frame, Fb denotes the boundary condition given by the Frenet-frame-implied
axes on the tract, x ∈ R3 denotes spatial position, θ artificial evolution time,
and ∆x = ∂2

∂2x + ∂2

∂2y + ∂2

∂2z the spatial Laplacian operator. The frame diffusion
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problem (1) can be solved [22] by evolving a set of three coupled vector diffusions:
Tθ = ∆T − (∆T · T )T − (∆N · T )N − (∆B · T )B,

Nθ = ∆N − (∆T · N )T − (∆N · N )N − (∆B · N )B,

Bθ = ∆B − (∆T · B)T − (∆N · B)N − (∆B · B)B

which may be rewritten [22] as the rotations

Tθ = R× T , Nθ = R×N , Bθ = R× B,

where R = T × ∆T + N × ∆N + B × ∆B and F = {T a,N a,Ba} is given by
identifying antipodal directions. While the statistics used for the segmentation
in Sec. 7 only use directional information, diffusing the complete frame informa-
tion specifies a local rotation. This allows for easy extension of the methodol-
ogy to formulations using for example the full tensor information or orientation
distribution functions. Fig. 3 shows two 2D examples of frame diffusion. The
resulting diffused frame field is smoother. Interestingly, the partial half-circle
example shows that, to a limited extent, frame diffusion can be used to fill in
missing information. This is a useful feature in case it is not possible to obtain
one connected representative fiber tract.

(a) Initialization. (b) Diffused. (c) Initialization. (d) Diffused.

Fig. 3. Frame diffusion yields smooth frame fields and thus smooth reorientations. Ini-
tializations using Euclidean distance point correspondences show frame discontinuities.

5 Frame Reorientation

The diffused frames can be used to reorient diffusion measurements locally to
a canonical frame M6. This reorientation can be applied to any representation
of diffusion information, e.g., the diffusion tensor, orientation distribution func-
tions, etc. For clarity, reorientation is explained here for the case of diffusion
tensors T . Given the diffused frame {T ,N ,B} and the associated rotation ma-
trix F = [T ,N ,B] a tensor T is reoriented by applying the relative rotation
MFT , i.e., by

T r = MFT TFMT .

The tensor reorientation yields tight tensor statistics while allowing a segmen-
tation algorithm to apply spatial regularizations in the original space. It greatly
simplifies computations by avoiding an explicit warping to straighten a curved
fiber bundle.
6 See Sec. 6 for a way to determine the canonical frame automatically
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6 Orientation Statistics

We now describe the probabilistic modeling of fiber bundle orientations.

6.1 Watson Distribution

The Watson distribution is one of the simplest distributions for directional ran-
dom variables [24, 2, 20]. It is radially symmetric around a mean direction µ,
with a spread controlled by the concentration parameter k.

The Watson distribution on the unit sphere S2 has probability density

pw(q|µ, k) =
1

4π 1F1( 1
2 ; 3

2 ; k)
ek(µT q)2

, pw(q|µ, 0) =
1
4π

,

where µ is the mean direction vector, k the concentration parameter7, q ∈ S2 is
a direction represented as a column vector, and 1F1(·; ··) denotes the confluent
hypergeometric function. The Watson distribution is bipolar for k > 0, with
maxima at ±µ and uniform for k = 0. To model the interior of a fiber bundle, µ
is set to the tangential direction of the canonical frame M . Reorienting diffusion
information results in a tight Watson distribution with large concentration pa-
rameter k. The statistics outside the fiber bundle are modeled using the uniform
distribution, since no preferred direction can be assumed in general in the fiber
exterior.

While it is possible to use more complicated probability distributions (e.g.,
the Bingham distribution, or distributions on the diffusion tensor directly) to
model a fiber tract orientation distribution, the Watson distributions chosen (in
conjunction with the reorientation scheme) have the advantage of modeling the
interior and the exterior of the fiber bundle with only one free parameter, the
concentration k, greatly simplifying the estimation task and allowing for an easy
interpretation of the estimated probability distribution.

6.2 Parameter estimation for the Watson distribution

The distribution parameters k and µ are easy to estimate. Given a set of N
points qi ∈ S2 (written as column vectors and representing spatial directions),
the maximum likelihood estimate of µ is the major eigenvector of the sample
covariance [5] C = 1

N

∑N
i=1 qiq

T
i and 1 − λ1 (with λ1 the largest eigenvalue of

C) is the maximum likelihood estimate of 1
k . Estimation of µ is performed only

as a means of estimating the canonical frame direction and computed only on
the representative tract. It is assumed fixed throughout the segmentation pro-
cess described in Sec. 7. Only the concentration parameter k is estimated during
bundle segmentation. For increased estimation robustness, robust estimators for
the concentration parameter k may be used to account for cases where orienta-
tion measurements are either incorrect or cannot be reliably determined (as for
example for isotropic tensors).
7 To avoid ambiguities the concentration is denoted as k; κ denotes curvature in this

paper.
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7 Segmentation

We now integrate the diffusion data reorientation method and the statistical
modeling described in Sec. 6 within a probabilistic version of the Chan-Vese [3]
segmentation framework [7] using the probability distributions of Sec. 6.

7.1 Optimization Problem

The probabilistic Chan-Vese segmentation approach [3] is a piecewise-constant
approximation problem, minimizing the energy functional

Ecv(Ωi, p1, p2) =
∫

∂Ωi

ds+λ

∫
Ωi

(− log p1(f(x)) dΩ+λ

∫
Ω\Ωi

(− log p2(f(x)) dΩ,

(2)
where f(·) denotes an image feature (here, direction), p1 and p2 are the likeli-
hoods for the interior and the exterior of the segmentation respectively, Ω is the
computational domain and Ωi is the interior domain. Choosing

p1(q) = pw(q|µ, k), p2(q) = pw(q|µ, 0) =
1
4π

,

constitutes the segmentation approach. See Sec. 6.1 for a discussion of this choice.

7.2 Numerical Solution

According to a slight modification of the solution approach in [19], the proba-
bilistic Chan-Vese energy minimization problem 2 (on log-likelihood functions
instead of image intensities) can be recast as the minimization of

Ecvb(u, c1, c2) =
∫

Ω

‖∇u(x)‖ dΩ +
∫

Ω

λr1(x, c1, c2)u + αν(u) dΩ (3)

where

ν(ζ) = max{0, 2|ζ − 1
2
| − 1}, (the exact penalty function),

r1(x, c1, c2) = log
p2(f(x))
p1(f(x))

= log
(

1F1(
1
2
;
3
2
; k)

)
− k

(
µT q

)2
.

The boundary is recovered as Ωi = {x : u(x) > ξ}, ξ ∈ [0, 1]. Eq. 3 can be solved
efficiently through a dual formulation of the total-variation norm [19]:

1) Solve for u keeping v fixed:

min
u

{∫
Ω

‖∇u‖ dx +
1
2θ
‖u− v‖2

L2

}
(4)

2) Solve for v keeping u fixed:

min
v

{
1
2θ
‖u− v‖2

L2 +
∫

Ω

λr1(x, p1, p2)v + αν(v) dx

}
(5)
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3) Repeat until convergence.

Eq. 5 has the solution v = min{max{u(x)− θλr1(x, p1, p2), 0}, 1} and Eq. 4 can
be solved using a fixed-point iteration

u = v − θdiv p, pn+1 =
pn + δt∇(div(pn)− v

θ

1 + δt|∇(div(pn)− v
θ |

, p = (p1, p2, p3), δt ≤ 1
6
.

To enforce segmenting a bundle containing the representative tract set{
v = 1 for all points on the representative tract,
v = 0 for all points at a distance d ≥ dmax from the representative tract.

The segmented fiber bundle is the set of voxels with u ≥ 1
2 which are contained

in the connected component containing the voxels of the representative tract.
This is also the volume which is used throughout the evolution to update the
estimation of the concentration k of the fiber bundle’s Watson distribution.

8 Results

This section gives results for the proposed segmentation approach. Synthetic
examples are discussed in Sec. 8.1. Sec. 8.2 presents results for a real DW-
MRI of the brain and compares them to segmentation results obtained through
streamline tractography.

8.1 Synthetic example

A synthetic tensor example was generated. Tensors are assumed of uniform shape
with eigenvalues (1.5, 0.5, 0.5)e−3 oriented along a circular path to model a fiber
bundle. Tensors oriented orthogonally to the circular path model the outside.
Diffusion weighted images were generated using the Steijskal Tanner equation
Sk = S0e

−bgT
k Tgk , where Sk denotes the diffusion weighted image acquired by

applying a gradient direction gk with b-value b, and T the diffusion tensor. Pa-
rameters were S0 = 1000, b = 1000 with 46 gradient directions equally spaced
on the unit sphere. Rician noise of σ = 70 was introduced to the baseline im-
age S0 (non-diffusion weighted) and the diffusion weighted images Sk. Fig. 4
shows the original data and the resulting segmentation on the top row (with
the streamline indicating the computed representative tract) and the reoriented
data with associated segmentation on the bottom row. For this synthetic exam-
ple, reorientation results in an almost perfectly uniform tensor distribution on
the inside and the outside of the simulated fiber bundle. Consequently, while the
proposed approach fails at segmenting the original data, it segments the reori-
ented data well. Note, that the failure to segment the original data is not merely
a result of the segmentation method employed. Any segmentation relying purely
on region-based statistics will either have to include some of the background in
its bundle segmentation or will severely under-segment the bundle itself, since
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background and foreground are not clearly separable based on global statistics.
While including edge-based terms may improve the segmentation of the origi-
nal data, regional terms will be of limited use and will locally counteract the
edge influence requiring a delicate balance between region-based and edge-based
energies to faithfully segment the simulated fiber bundle.

(a) Original. (b) Original. (c) Reoriented. (d) Reoriented.

Fig. 4. Synthetic segmentation example overlaid on a color by orientation representa-
tion. Reorientation results in a successful segmentation (k = 10, θ = 0.01, λ = 0.7).

8.2 Real example

The real example was computed for the cingulum bundle using a 3T DW-MRI
upsampled to isotropic resolution (0.93 mm3) with 8 baseline images and 51
uniformly distributed gradient directions (b=586). The representative tract was
computed using streamline tractography.

Fig. 5 shows color by orientation representations for a sagittal slice through
the brain with the cingulum bundle (mainly in green) before and after reorienta-
tion. The reoriented image shows a consistently green cingulum bundle, whereas
in the original image the cingulum bundle is colored blue when wrapping pos-
teriorly around the corpus callosum, indicating a change of orientation from
anterior-posterior to superior-inferior. Example segmentation results of the pro-
posed approach are shown for the reoriented and the original data. Algorithm
parameters were set to θ = 0.01, λ = 0.5. The concentration parameter was set
to k = 100 and converged to k = 19.5 throughout the evolution for the reori-
ented dataset. The surface models generated from the computed segmentations
show that the segmentation for the reoriented data approximates the cingulum
bundle more faithfully.

Finally, to demonstrate the strength of the reorientation approach, Fig. 6
gives an example for the cingulum bundle segmentation at a posterior slice of the
cingulum bundle where the cingulum bundle wraps around the corpus callosum.
While in the reoriented case the segmentation is successful and the direction of
the cingulum bundle is uniform (green), the segmentation on the original data
fails in this part of the fiber bundle.

To compare the proposed methods to alternative segmentation approaches,
the cingulum bundle was segmented using a region of interest based approach
(the same regions of interest used to generate the representative fiber tract for
reorientation). Two small axial regions of interest were defined for the cingu-
lum bundle (superiorly to the corpus callosum). Streamline tractography with
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(a) Before reorientation. (b) Before reorientation. (c) Original.

(d) After reorientation. (e) After reorientation. (f) Reoriented.

Fig. 5. Sagittal slice of the cingulum bundle, before and after tensor reorientation.
The cingulum bundle appears more uniform in direction (green) after reorientation.
Reorientation greatly improves the segmentation result of the proposed approach.

(a) Original (O). (b) Segmented (O). (c) Reoriented (R). (d) Segmented (R).

Fig. 6. Posterior coronal slice: Color by orientation shows advantage of reorientation.

voxelization, full brain streamline tractography with voxelization, as well as seg-
mentation on the original and reoriented data using the proposed approach was
performed. Fig. 7 illustrates segmentation results for these methods for coronal
slices in the superior part of the cingulum bundle (where the cingulum bun-
dle is not strongly curved). As expected streamline tractography and full brain
streamline tractography mainly capture the interior of the fiber bundle, with
full brain tractography performing qualitatively better than standard region of
interest based streamline tractography (streamlines were seeded one per voxel
in the regions of interest). The proposed segmentation approach captures the
cingulum bundle well for the reoriented and for the original data, showing the
utility of segmenting in orientation space. However, the reoriented segmentation
results are better where the cingulum bundle curves strongly, as shown in Fig. 6.

9 Conclusion and Discussion

This paper proposed a new segmentation method for tubular fiber bundles. It is
based on reorientation of diffusion measurements resulting in more uniform data
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Original FBS S O RO

Fig. 7. Superior coronal slices: Original data; results for streamline (S) and full brain
streamline (FBS) tractography, for the proposed segmentation on original data (O) and
on reoriented data (RO). Only the proposed approach segments up to the perceived
bundle boundary in orientation space.

distributions inside the fiber bundle of interest. Segmentation is performed by
an efficient convex approximation of the probabilistic Chan-Vese energy using
region-based directional statistics. The approach compares favorably to stream-
line approaches for bundle segmentation. However, since no realistic ground-
truth for DW-MRI is available to date quantitative analysis is difficult. Ex-
tensions to sheet-like structures are conceivable, where the representative tract
would be replaced by a representative sheet [12, 13] (using the major diffusion
direction combined with the normal to the medial sheet to define a frame for
reorientation). Population studies could be performed by either performing seg-
mentation in atlas space, or by using an atlas defined representative tract and
subject-specific bundle segmentations.
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