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Abstract— This paper discusses an optimal control approach
for the registration of image time-series (growth modeling).
It combines and augments work on an optimal control for-
mulation to optical flow with theory from large-displacement
diffeomorphic image registration. The unification of the two
viewpoints leads to (i) a more efficient computation of the
gradient of the optimization problem, (ii) an easier numerical
implementation, and (iii) an intuitive interpretation of the
adjoint equation underlying the optimization problem. Further,
a novel formulation for the unbiased estimation of image
correspondences across time is proposed.

I. INTRODUCTION

The most basic and fundamental tools for signal process-
ing are filtering, smoothing, and regression, followed by or
combined with an interpretation of the so-processed signals:
signal analysis. While these methods are very advanced for
example for scalar-valued data, the theory and methodology
is much less developed, but of equal importance, for the case
of time-varying images.

One of the key components of the analysis of time-
varying images is to establish dense point-correspondences
between images. The problem is known as image registration
in medical imaging or optical flow in computer vision. Its
solution is based on a model of allowable deformations and
a measure of image similarity. In the most general case,
deformations are described non-parametrically, where every
image element (pixel/voxel/...) is assigned an individual
estimated displacement. This generality makes the estimation
problem severely ill-posed. Well-posedness is achieved by
imposing regularity constraints on the deformations, penal-
izing deformations which are perceived as too extreme. If
regularization is performed directly on the displacements,
one obtains elastic registration. An alternative viewpoint is to
cast the image-to-image registration problem into a dynamic
formulation, where the source image flows to the target
image. Here, regularization is achieved by penalizing irreg-
ularities in the flow field, resulting in registration based on
a model of fluid flow, and allowing for larger displacements
than elastic registration approaches. The fluid flow model can
be interpreted from an optimal control perspective, where
the optimal control sought is the time-dependent velocity
field flowing one image into the other. While a multitude
of image-to-image registration methods exist, registration
across time is less well explored, but of high importance
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in areas such as visual tracking [29], [13], [20], [21], motion
analysis [2], [1], [28], [24], cardiac motion estimation [15],
[22], [19], and neuroimaging [18], [25].

A straightforward way to extend image-to-image registra-
tion approaches to time-series is to composite the registration
solutions obtained from image pairs [11]. To obtain and make
use of temporal consistency, optical flow approaches have
been augmented by incorporating a temporal smoothness
constraint [3], [10]. While these methods have shown ex-
cellent results at recovering local velocity information [10],
they are not designed to estimate deformations over extended
periods of time. Since no image is used as a fixed reference,
but instead velocity information is only estimated locally, the
overall system state (space deformation over time) becomes
unobservable, causing estimation drift.

A fixed template may be used to serve as a reference and
to counteract the estimation drift. Such a template can either
be (i) a single representative image [4], [27], [19], [20], [21],
[29], [13], [9] establishing the frame of reference for all
other images in the image sequence, or (ii) a spatio-temporal
template [25], thus reducing the time-dependent registration
problem to registration in spatio-temporal space. The pro-
posed approach falls into the former category, employing a
fluid-flow model for the regularization of the time-dependent
velocity fields to be estimated.

In this paper, we explore the connections between optimal
control and the large-displacement diffeomorphic mapping
registration method for growth models (i.e., the estimation of
deformations of a template image across time) pioneered by
Miller et al. [18]. We demonstrate the relation to the optimal
control approach to optical flow by Borzi et al. [9], use it
to derive a computationally efficient approach to solve the
optimization problem and propose an unbiased formulation,
which estimates the time-dependent deformation jointly with
a template image representative of the image time-series.

Section II discusses the growth model and its optimal-
ity conditions obtained for continuous-time measurements.
Section III explains the changes when moving to a more
realistic discrete-time measurement model. Discretizations of
the resulting equations are explained in Section IV, resulting
in a novel hybrid formulation, which combines computa-
tional efficiency with numerical accuracy for growth models
with sparse discrete-time measurement samples. Section V
proposes an unbiased formulation of the growth model. We
conclude and discuss future work in Section VII. Details on
derivations can be found in the Appendix.



II. CONTINUOUS GROWTH MODELING

Miller et al. [19] proposed a continuous growth model for
the registration of image time sequences minimizing
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where v is a time-dependent velocity that flows the template
image Ir (defined at ¢ = t%y) across time to match the

measured images 1™ (¢) as well as possible. Here, ||v|y =
(v,v)v, {f,9)v = (Lf, Lg) = (LTLf, g), L is a differential
operator, L' its adjoint and (-,-) denotes the inner product!.

The template image I deforms over time according to
the map ®; ;,, which in turn is induced by the velocity field
v according to

(I)t + Ddv = 0, q)(t()) = 1d.

(Note, the map from time point u to time point ¢ is denoted
Dy =Pryy 0,10

Instead of directly minimizing Equation 1, we recast the
optimization problem into a continuous (dynamically con-
strained) registration problem for time sequences, which can
be interpreted as an optimal control problem with respect to
the sought for time-dependent velocity field v, with the first-
order system dynamics given by an advection equation for
the template image. The optimal control v is the minimizer
of
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S.t. % = It + (DI)U = O7 I(lfo) = IT. (2)
The associated optimality conditions are?
I + (DI)’U =0, I(to) = Ir,
-\ —div(dw) = —%(I(t) — I™(t)),
AT) =0,
2LTLv + (DI)"A =0, 3)

specifying the state equation, the co-state equation (its ad-
joint, a scalar conservation law), and the stationarity con-
dition. The adjoint variable measures the accumulated error
over time subject to spatial warping (i.e., the overall error is
conserved throughout its transport), where the source term
of the conservation law injects the error between measure-
ment I™(t) and estimate I (t). The stationarity condition
corresponds to the gradient used to find the problem solution
iteratively, i.e.,

V,E =2L"Lv + (D)X

The adjoint formulation of the growth model (Eq. 3) makes
use of the fact that the gradients V,,;) £ (for each time point

IChoosing L appropriately [18], assures that the resulting maps & are
diffeomorphic, which is a highly desirable property for example for a variety
of applications in medical image analysis.

2For space reasons, we do not give the derivation here. The derivation is
similar to the one for the continuous-discrete growth model, of Section III,
which is detailed in the Appendix.

t) are not independent. Adjoint methods are used for example
for meteorological simulations and are the core of variational
data assimilation methods and optimal control [8], [12], [16],
[7]. Note, that just as in the original solution approach by Beg
et al. [5], or for the evolution of Sobolev active contours [26],
improvements in convergence by gradient descent in Sobolev
space may be obtained for adjoint solution methods [23].

III. CONTINUOUS-DISCRETE GROWTH
MODELING

While growth models (such as the one introduced in
Section II) are typically formulated with continuous-time
measurements, this is frequently not a suitable modeling
choice for practical applications.

Notable exceptions, are the works by Khan et al. [14]
and Borzi et al. [9], who proposed models with continuous-
time dynamics and discrete time-measurements. In this paper,
we combine their viewpoints to derive an efficient way of
computing the gradient for the growth model optimization
problem (which relies on a discrete form of time integrals
in the formulation by Khan et al. [14]) combined with a
simplified numerical solution method, circumventing the ne-
cessity for high-order accurate, nonlinear numerical schemes,
as used by Borzi et al. [9].

The energy related to the growth model with discrete-time
measurements is
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Due to internal measurement constraints, we have jump
constraints for the adjoint variable A\ associated with the
unconstrained problem. This yields the optimality conditions

I+ (DI)v = 0, ®)
-\ —div(lw) = 0, piecewise,
2L Ly + (DDA = 0,
I(ty) = Ip,
2
Mtr-1(=)) = 5" (tar—1) = I(tar-1)),

Ati(=)) =

where (—) denotes left-sided and (+) a right-sided values in
time, which are distinct at the measurement points.

Since the equations need to be implemented discretely,
we regard the continuous formulation as a special case of
the continuous-discrete formulation with dense sampling in
time. The derivation of the optimality conditions is given in
the Appendix.

In contrast to Borzi et al. [9], formulation 4 does not
impose explicit temporal smoothness constraints. This allows
for simple solutions of the underlying advection equation
for I and the scalar conservation law for A. Further, by
utilizing Borzi’s optimal control formulation in the context

Mt(H)) + 2 (™ (80) — T(1),



of large-displacement diffeomorphic growth modeling for
images [18], [14], we obtain an alternative formulation of the
solution problem, which is easy to derive, and leads directly
to more efficient numerical implementations as discussed in
Section IV.

IV. EFFICIENT DISCRETIZATION

The continuous and the continuous-discrete approaches
operate directly on the image I and the co-state \. This is
sufficient in theory. However, for practical implementations
the use of sophisticated numerics is recommended to be able
to capture discontinuities in state and co-state, which not only
are expected to occur, but are the essential driving force of
the overall registration formulation. Borzi et al. [9] use a
flux-delimiter to minimize numerical smoothing effects. In
contrast, many registration methods in medical imaging do
not operate on images directly, but instead update estimations
of the map, which aligns image sets. Thus, image disconti-
nuities are no longer problematic, since the object of interest
(the map itself) is smooth. Unfortunately, the extensions
of these methods to time-series have to-date resulted in
numerical schemes with costly gradient computations.

While the continuous formulation of Section II requires
the integration of an advection equation for I forward in
time and of a scalar conservation law with source term for
A backward in time, the standard map-based formulation of
Miller et al. [19] computes the gradient at every time-point
as

V.E =2LTLv
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which requires the evaluation of a time integral for every
time point. For the continuous-discrete formulation, Khan et
al. [14] obtain
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where the indicator function 1p,4)(t) = 1, t € [a,b], 0,
otherwise. The same equation can be obtained from the
optimality conditions for the continuous-discrete approach
by pulling all measurements back to the original images
(template or measurement) through the maps ®. It is the
equivalent of the time-integral in the continuous setting.
While this formulation is numerically benign and accurate,
it is computationally costly.

The approach proposed in this paper can be viewed as
an alternative solution, which combines the efficiency of the
image-based adjoint formulation with the numerical benefits
gained from a map-based solution strategy. As can be seen
from the optimality conditions 5, gradients at different time-
points are not independent. Thus computational complexity
can be reduced by simply propagating the adjoint backward
in time, where integrations in between measurement points

Fig. 1. Tllustration of gradient computations. The standard approach (top) is
quadratic in the number of image interpolations needed. The new approach
(bottom) scales linearly.

are performed using maps to reduce numerical dissipation
effects. Of note, this hybrid scheme is only necessary for
the adjoint A, the images I(t) can efficiently be related back
to the template image I defined at ;.

Two types of equations play a central role in the optimal
control formulation for registration: The advection equation
flowing image intensities along the velocity field v and
the adjoint equation flowing the matching error along v
backward in time, while conserving its overall mass. Given a
current estimate of the velocity field v, the current estimates
for the forward map ®;, and the backward map ®~! =
Dy 4,,_, are governed by

O, + DO =0, B(ty) = id,
—o; ' —Dd v =0, Dty 1) =id.

Since the image I simply undergoes a space transformation
and A a mass-preserving transformation, solutions of I(t)
and \(t) can be computed through the solutions of ®(¢) and
D1(t) as

I(t) =Ir o ®(t); A(t) = |DO (t)|A(tar—1) 0 @ 1(2).

These relations allow for the gradient computations for the
growth model (3) by evolutions on the maps ® and ®~!. The
updates of state I and co-state A can be computed entirely
through successive summations and mappings, where the
adjoint is updated at every measurement point through a
discrete error-injection term. For two time-points only, the
approach simplifies to standard large displacement diffeo-
morphic registration. An overview of the algorithm (with
the unbiased extension discussed in Section V) is shown
in Figure 2. Figure 1 illustrates the difference between the
standard gradient computation (including the time integral)
and the one proposed in this paper.

V. UNBIASED FORMULATIONS

Growth models use a template image that is registered
across time to derive an image-based growth trajectory.
The template is frequently the first image measurement
(I"™(t0)). This may be suboptimal from an image registration
perspective, because it biases the result obtained with respect



to I™(tp). It is also sometimes undesirable: e.g., structural
MR brain images only exhibit little contrast in the early
stages of neurodevelopment, and show increasingly better
contrast with age. One could argue that in such case, a lon-
gitudinal analysis should be performed in reverse (from old
to young). However, this does not remove the overall bias.
Recently, a number of methods have been developed to allow
for unbiased image-to-image registration and unbiased atlas
building (image-averaging). To the best of our knowledge,
unbiased growth models have not been investigated to-date.

Almost none of the approaches for unbiased registration
and unbiased atlas-building can be adapted to define an
unbiased growth model. Beg and Khan [6] give an overview
of symmetric data attachment terms for large deformation
image registration. The methods described are designed for
image-pairs and the symmetry is achieved in the simplest
form by bi-directional image matching, estimating the de-
formations and penalizing deformation differences (between
the forward and the backward map). Another approach subdi-
vides the image-to-image registration problem into two time
intervals of equal length, matching images in the middle.
Due to their innate dependency on image pairs, the proposed
approaches do not extend to the case of more than two
images.

We unbias the estimation problem by regarding the tem-
plate image I7 as a free parameter and estimate it jointly
with the velocity field v. For the basic two image case, this
results in penalized matching of both images and is thus
symmetric.

While the image-based formulation of the growth model
is advantageous to derive efficient schemes to compute the
gradient with respect to v, the map-based formulation

M=2 ctipa(-)
b= Z / [vll} + (A, @ + (D®)v) dt
i=0 Y ti(+)
M-1
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i
allows for the easy derivation of the best template image
(from the viewpoint of optimal control with free initial and
free final state).

Computing the variation, we note that the gradient of the
energy with respect to the template image is

9 M-1
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whose steady state condition is
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30f note, while this approach is unbiased in theory, for practical imple-
mentations, with coarse spatial discretizations, the domain of definition for
the template image may matter: If large size differences are expected across
time, it is advisable to define the template image at a time point of large
spatial extent.

./@

Fig. 3. Different ways of computing growth. Left: chaining registrations to-
gether, keeping one boundary fixed. Middle: chaining unbiased registrations
together. Right: Complete growth model. Standard registration (left) matches
one image exactly and penalizes discrepancies to the other. Unbiased image-
to-image registration removes this bias between images (middle), unbiased
growth modeling removes it for a series of images.

and thus
Ir = Im(to) + Zi‘izl ‘D(bto,ti Im(tl) ° q)to,tq‘, ,
1+ Zf\ifl |Dq)t0,ti
which is a weighted image average, with weights propor-
tional to image size changes with respect to their original
domain of definition (i.e., if an image is locally compressed
to be aligned in template space it will carry greater weight
locally than an image that gets locally expanded). The
overall unbiased algorithm for registration of time-series is
summarized in Figure 2. Figure 3 illustrates the difference
between registration schemes.

VI. RESULTS AND DISCUSSION

To demonstrate the behavior of the hybrid implementation
scheme for the adjoint equation, we investigated its behavior
for the solution of a simple advection equation u; + u, = 0
and compared it to results obtained from a purely map-
based solution (i.e., the map is evolved with forward Euler
time discretization and upwinding for the spatial derivatives),
from the direct solution of the equation through a total
variation diminishing, fifth order weighted-essentially-non-
oscillatory (WENO) implementation, as well as from a direct
solution obtained from first-order upwinding and forward
Euler time discretization. Results are shown in Figure 4.
As expected, direct solutions blur the final result, with the
WENO scheme doing qualitatively better than the first-order
upwind approach, which leads to strong signal blurring. The
map solution result is virtually indistinguishable from the
sought for final profile. The proposed hybrid solution yields
results of high quality for reasonable numbers of intermediate
steps. Of note, the 100 steps of the example problem would
correspond to 100 discrete-time measurements. Extremely
large numbers of steps (1000 in this case) yield mis-
estimations. This case corresponds to an application of the
hybrid scheme to effectively continuous-time measurements,
where a fully map-based scheme is recommended.

Figures 5 and 7 show the results of time-series registra-
tion for a set of three distinct synthetic shapes for strong
and weak regularizations respectively. Shapes are generally
matched well, though changes regarded as too extreme are
not recovered, as can be seen from the warping of image
1 to 2 in Figure 5. Forward and inverse maps are smooth
(diffeomorphic), but significantly more extreme for weak



Algorithm 1: Unbiased hybrid continuous-discrete growth-model

Data: {I"(t;)}, i = 0(1)M — 1, to, tar—1, 0, L
Result: v
Initialization: v =0, A =0, I = I(tg) ;
repeat
Flow map forward: ®; + (D®)v =0, D(to) = id;
Flow map backward: —®; ! — (D& 1)v =0, & (tp_1) = id;
Atar—1(+)) = 0;
1=M —1;
while i > 0 do
AE(=) = M) + 2 (7 (1) — Ir 0 D(t,));
Flow temporary map, T—1, backward, t € [t;_1(+),t:(—)]): =T~ = (DT Yo =0, T (t(-)) =id;
Compute adjoint updates, ¢ € [t;—1(+),t:(—)]: A(t) = 1 ;
1—1—1;
end
Update velocity fields: v(t)y = — (2v(¢) + (LTL) "1 (D®(t))TA(t));
I (t0) 437001 ' I D®ug, s |17 (8:)0Reg.1;
14550 [D®g. i, ’

Update template image: I =

until convergence ;

Fig. 2. Algorithmic description of the hybrid continuous-discrete growth-model

regularizations, as shown in Figure 7 (which trades off a
better image match with regularity of the recovered maps).
Figures 6 and 8 show the template estimations throughout
the registration process for strong and weak regularizations
respectively. They both converge after only one iteration step.
The estimated templates constitute a compromise between
mean shape and average intensity across all shapes. Since
object area factors into the computation of the unbiased

template, the outer part of the template images is estimated as Image 1

dark gray (consistent with the area covered by dark colors for HH
images 2 and 3). The shape interior approximates a circular e
shape for strong regularization, which constitutes a good -
compromise of the interior shapes of the three images, while HTH ERER
avoiding structural blurring. Weak regularization yields an
interior shape dominated by the interior shape of image 2 H%
which has the strongest contrast.

Figure 9 shows unbiased time-series registration results
for a set of real magnetic resonance axial brain image slices
of subjects between 38 and 81 years of age. Images were
obtained through the OASIS project [17]. We used the skull-
stripped, normalized brain volumes provided. Subjects are
distinct and are all female. They were selected for presen-
tational purposes. The most prominent difference between
the five selected subjects is the increase of the ventricle
sizes with age. Cortical structure is distinct. Registration Images 2 and 3
successfully follows the expansion of the ventricles. The warped to 1.
evolving template image, shown in Figure 10, demonstrates
overall preservation of structure, while smoothing inconsis-
tent cortical areas.

Image 1 warped
to 2 and 3.

Fig. 5. Unbiased growth-modeling for a synthetic example with strong

VII. CONCLUSIONS AND FUTURE WORK

A. Conclusions
o=0.1.

We presented a novel optimal control perspective on
image-based growth modeling, resulting in a computationally

regularization. Image sequence (top row), computed deformation fields
(second row), and forward and inverse image warpings (bottom two rows).
Ten temporal discretization steps between images. L = —0.3V?2 + 1,
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Comparison of numerical schemes for a simple advection equation: ut + uz = 0. The domain is of length 1 discretized into 100 elements.

Evolution time ¢ = 0.4. Evolving the map ® with upwinding and Euler forward produces a virtually indistinguishable solution (right) from the true final
profile (left). A 5-th order WENO scheme captures the shape well, but introduces some signal distortion, whereas first-order upwinding leads to severe
blurring of the initial profile (right). The hybrid scheme (middle) produces high-quality results for reasonable numbers of intermediate interpolation steps
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Fig. 9. Unbiased growth-modeling for a set of brain images of different ages. Image sequence (top row), computed deformation fields (second row), and
forward and inverse image warpings (bottom two rows). One temporal discretization step per year. L = —0.02V2 + 1, 0 = 0.5

Fig. 6. Synthetic template evolution with strong regularization. Conver-
gence is achieved after one iteration step. The result shows a compromise
between the shapes used to construct the template image, both in terms
of shape as well as in terms of intensity distributions. Overall structure is
maintained. L = —0.3V? 4+ 1, 0 = 0.1.

efficient algorithm for sparse discrete-time measurements.
The optimality conditions obtained highlight the properties
of the optimization process, where image mismatches are
propagated backward in time through a conservation law
preserving the overall error measure subject to space de-
formations. The derivations allow for three different imple-
mentations (two of them new) for growth modeling: (i) A
direct implementation based on the image and its adjoint; the
approach then does no longer require an explicit coordinate
system and can in principle operate on any manifold (but may
require sophisticated numerics). (ii) A hybrid version, which



through an alternate derivation, giving additional insight into
the behavior and properties of the optimization. Further, we
proposed, to the best of our knowledge, the first unbiased
formulation for time-series registration (the growth model),
obtained through joint estimation of a free initial state (the
template image) and the optimal control (the time-dependent
velocity field).

B. Future Work
Image 1 warped

to 2 and 3. We will explore memory-efficient implementations, initial-

value formulations, as well as generalizations of the approach
to higher order dynamics. The latter would allow for the es-
timation of smooth image trajectories, avoiding the currently
present velocity jumps at measurement instants. This is of
particular interest, for processes varying smoothly in time,
which can only be sampled coarsely in time.

Images 2 and 3
warped to 1.
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APPENDIX I
VELOCITY GRADIENT AND OPTIMALITY CONDITIONS

Due to internal measurement constraints we will have
jump constraints for the adjoint variable A\ associated with
the unconstrained problem

tavr—1
E(v,I,\~) = / loll? + (\ I, + (DI)v) dt

Fig. 8. Template evolution for the synthetic example, with weak regular- to

ization. Convergence is achieved after one iteration step. The result shows M—1

a compromise between the shapes used to construct the template image, 1 m 2
both in terms of shape as well as in terms of intensity distributions. Overall + <'Vv I(tU) - IT> + ; Z HI(tl) -1 (tl) HLQ :
structure is maintained. L = —0.075V2 + 1, o = 0.1. i=0

Due to the jump constraints, the resulting dynamics equa-
tions will only be valid piecewise, in-between measurement
intervals. We thus rewrite the energy as

M-2 tipa(-)
= ( Z / [0l + (A It + (DI)v) dt)
i=0 Yti(+)

M—-1
Fig. 10. Template evolution for the set of brain images. Convergence is + <% I(to) _ IT> + i Z ||I(tz) _m (tz)H% )
achieved after one iteration step, showing a compromise between the shapes o2 ¢ 2
used to construct the template image, both in terms of shape as well as in =0

terms of intensity distributions. Overall structure is maintained. The variation is

M=2 rtipa(-)
o= (Y / 2(v, vy + (d\, I + (DI)o)
is designed for the continuous-discrete case as encountered i=0 Jti(+)

frec.luenFly in prggtice. Thg approach combines .the efficient £\, dI+(DdI v+ (DI)dv) dt) Hdy, I(to)—Ir)+{y, dI(to))
optimality conditions obtained through the optimal control

perspective, with a numerical scheme which yields good o M-I m

accuracy, while keeping the complexity of the gradient + o2 Z (I(t:) = I"™(t:), dI(t:)),
computations low. (iii) We recovered the continuous-discrete =0

approach by Khan et al. [14] for a completely map-based im-  which can be written (after rearranging terms, integration
plementation. However, we provide an alternative perspective by parts, and noting that dI(t;(—)) = dI(t;(+)) because of



continuity of the state variable I) as

M=2 etiga(-)
0F = / (2LTLv + (DI)T ), dv)
i=0 Jti(+)
+ (AN I, + (DI)w) + (=X, — div(\), dI) dt)
M—-2

£ 30 (At () (t40) = AE) AT (6(+)))

1=

M—-1

+ 5 Z (I(t;) = I™(t:), dI(t:))

o
i=0
+ <d77 I(tO) - IT> + <’7v dl(t0)>
which simplifies (with dI(tg) = dIT = 0) to

M -2

tit1(—)
SE = ( / (2L Lv + (DI)T\, dv)
t

i—0 Jti(+)

+ (AN I, + (DI)w) + (=N, — div(\w), dI) dt)

+ (dv, I(to) — I) + (M(trar—1(—))
M—2

+ %(I(thl) —I™(tar-1)) dI(tar—1))+ Y (=A(ti(+))

i=1
2 m
+ (=) + 5 (1) = I (t:), (%))
The optimality conditions follow.

APPENDIX II
TEMPLATE-IMAGE GRADIENT

Computing the variation with respect to the template
image Ir is simplified, by using a map-based formulation.
For v and & fixed. The Ir-dependent energy term is

1 M-—1
BE(lr) = — > Hro @4 — I™(t:)17,
=0

Its variation is

S

-1

5E(IT;CZIT) = <ITO<I))ti,t0—Im(ti),CIZITO‘I)tMgO>7

2
o2

I
=)

i
which (after change of variables) becomes

M—-1

2
0F=—5 D (1D,
=0

(IT — Im(ti) o (I)to,ti)’ dIT>

and yields the gradient.
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