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Abstract. This paper presents a method for automatic color and inten-
sity normalization of digitized histology slides stained with two different
agents. In comparison to previous approaches, prior information on the
stain vectors is used in the estimation process, resulting in improved sta-
bility of the estimates. Due to the prevalence of hematoxylin and eosin
staining for histology slides, the proposed method has significant prac-
tical utility. In particular, it can be used as a first step to standardize
appearances across slides, that is very effective at countering effects due
to differing stain amounts and protocols, and to slide fading. The ap-
proach is validated using synthetic experiments and 13 real datasets.

1 Introduction

To highlight distinct structures in microscopy images of tissue samples, tissue
staining is commonly used. Frequently two stains, such as hematoxylin and eosin
(H&E), are applied for purposes such as discriminating cell nuclei and cytoplasm.
Variations in staining results can be minimized by using fully standardized stain-
ing protocols. However, in practice precise control over stain color and staining
intensity is typically not possible: stains may fade over time, stain colors may
differ slightly, slides may have been imaged on different microscopes, or data
that has already been digitized may need to be analyzed.

Standard (non-fluorescent) stains absorb light. Local stain concentrations
and stain colors determine the appearance of an illuminated slide sample under
the microscope. If no stain is present and the underlying tissue does not absorb
a significant amount of light, the corresponding pixel will appear bright. Areas
where the stains accumulate will appear darker. Absorption is wavelength depen-
dent, and a particular stain can be characterized by its absorption coefficients,
forming a vector (the stain vector) of dimension equal to the number of wave-
lengths in the sensor used for imaging (three for a standard RGB color camera,
as in this work). Given the stain vectors, an image can be decomposed into indi-
vidual stain components via color deconvolution [1], and stains can subsequently
be intensity adjusted. This paper proposes a method for automatic stain vector
estimation and slide appearance normalization (color and intensity), which can
in turn improve quantitative, computerized analysis.

Previous approaches to extract stain vectors include (1) manual region of in-
terest definition, (2) methods relying on non-negative matrix factorizations [2],
and (3) plane fitting in the optical density domain [3]. The approach presented
in this paper is most closely related to [3]. Novel contributions include: (1) a



rigorous theory for the color model used, (2) the introduction of prior infor-
mation for the stain vector taking into account varying amounts of stain (such
as that encountered in the case of sparsely distributed nuclei on large amounts
of stained background tissue), (3) an alternating optimization method and its
connection to a sub-problem from trust region optimization, (4) a novel twist on
Otsu thresholding [4] which also includes prior information, (5) and quantitative
validation on synthetic and real datasets.

Sec. 2 introduces the stain model and formalizes the planar assumption for
the stain vectors of [3]. Sec. 3 discusses the plane fitting method with prior
information. The clustering approach is presented in Sec. 4. Sec. 5 presents
validation results, and Sec. 6 concludes.

2 Stain Vector Model

According to the Beer-Lambert law, the transmission of light through a material
can be modeled as I = I0e

−αcx, where I0 is the intensity of the incident light
and I the intensity of the light after passing through the medium; α is the
absorption coefficient, c the concentration of the absorbing substance, and x the
distance traveled through the medium. The absorbance, or optical density (OD),

is: OD = αcx = − log
(
I
I0

)
. The proposed method assumes that α and x are

constant for a specimen and a given stain, but that a stain’s concentration c
may change. For a multi-spectral image the relation is:

I = I0 � e−αcx, OD = − log(I � I0) = αcx,

where the absorption coefficient is color dependent (αi),� denotes the Hadamard
product (the element-wise vector product), and � the Hadamard division. Note
that low intensities will correspond to large optical densities and high intensities
(e.g. white areas) will correspond to low optical densities. Each stain has a
characteristic vector α of absorption coefficients. Given a specific distance x, the
optical density vector OD is linearly related to the absorption coefficient vector,
where the proportionality constant is given by the stain concentration: OD =
αxc. Applying the Beer-Lambert law to the two-stain color-image case (e.g.,

eosin and hematoxylin) yields I = I0 � e−(α
1c1x1+α2c2x2), where superscripts

denote values for the two distinct stains. Converting to optical density results in

− log(I � I0) = α1c1x1 +α2c2x2,

which shows that the obtainable intensity vectors I for a given illumination I0 lie
in the plane spanned by the absorption coefficient vectors αi (the stain vectors)
in the optical density domain. Since ci ≥ 0 and xi ≥ 0 and the αi are linearly
independent, any color (which can fully be explained by the imaging model)
needs to lie within the convex cone C = {x|x = q1α

1 + q2α
2, q1, q2 ≥ 0}. Fur-

ther, normalizing all possible optical density vectors, the resulting points must

all lie within CN = {x̃|x̃ = x
‖x‖ , x ∈

◦
C }, where

◦
C denotes C \ 0 and geometri-

cally, CN = Sn−1 ∩ C, the intersection between Sn−1 (the n-dimensional unit
sphere – n = 3 for an RGB camera) and C, which is a sector of a great circle.



3 Plane fitting with a plane prior

The optical density cone of Sec. 2 is a subset of a plane P passing through the
origin P = {x : nTx = 0}, where n is the plane’s unit normal. The signed
distance of any point to the plane can be computed as d(x,P) = nTx. The
plane closest to all points (wrt. their squared distances) minimizes

E(n) = nT

(∑
i

xix
T
i

)
n = nTSn, s.t. ‖n‖ = 1.

Since S is by construction symmetric positive-semi-definite, n is the eigenvector
of the smallest eigenvalue of S. Such an unconstrained estimation was proposed
in [3]. Estimation results are reliable when a sufficient amount of both stains is
present in a given slide sample. But when this assumption does not hold, which
happens for example when stained nuclei are sparse on a given sample, or if
artifactual stains (e.g., brown from melanin) is present, adding prior informa-
tion on the color direction is very important to assure good performance of the
estimator. The corresponding maximum-a-posteriori energy (with prior) is

E(n) =

(
1

2σ2

∑
i

d2(xi,P)

)
+

1

2(σ0)2
‖n− np‖2, s.t. ‖n‖ = 1, (1)

where σ and σ0 are the standard deviations for the measured points (assumed
to be independent) and the prior, respectively (assumed to be Gaussian).

An approximately planar distribution of points will only be observed if large
numbers of measurement points for both stains are contained in the set of data
points. This is often not the case. Therefore a weighting of the data points
assigned to either one of the stain directions can be very useful. Assume the
partitioning into two classes is given by a clustering method (as described in
Sec. 4). Then the energy (up to constants) can be decomposed as

E(n) =

 2∑
j=1

 nj∑
i∈Pj

d2(xi,P)

2σ2
+

α

2(σ0)2
‖n− np‖2

wj

 ,
where wi are appropriately chosen weights, Pi indicate the partitions, and ni are
the number of points in the respective partitions. A reweighting should take into
account the presence or absence of a sufficient number of datapoints in either
of the clusters. Further, a simplification to the form of Eq. 1 is desirable in case
both clusters are of equal size. For these properties to be fulfilled the following
conditions should hold:

αw1 + αw2 = 1, w1
N

2
+ w2

N

2
= N,

γ

n1
= w1,

γ

n2
= w2.

These conditions are fulfilled for α = 1
2 , w1 = 2n2

n , and w2 = 2n1

n . After some
algebra and rescaling (by 2σ2N/(4n1n2)) the energy becomes

E(n) = nT

(
1

2n1

n1∑
i=1

xix
T
i +

1

2n2

n2∑
i=1

xix
T
i

)
n+

N

4n1n2

σ2

(σ0)2
‖n− np‖2,



which is of the same form as Eq. 1: a weighted covariance matrix and a cluster-
dependent weighting of the prior term. The optimization problem is closely re-
lated to the sub-problem of finding a minimum over a boundary in trust-region
optimization [5]. The overall solution alternates between a solution of the opti-
mization problem and a reclustering (see Sec. 4) of the data points, to conver-
gence.

Theorem 1 (Optimal plane fit). Given the optimization problem

min
n
nTSn+

1

σ2
‖n− np‖2, ‖n‖ = 1,

where S is a real positive-semi-definite matrix, at optimality

(S + λI)n =
1

σ2
np, ‖n‖ = 1, S = S +

1

σ2
I, (S + λI) � 0.

Proof. Follows from the proof of the trust-region optimality conditions [5].

If S + λI is invertible, the Lagrangian multiplier can be obtained by solving

σ4
3∏
i=1

(λi + λ)2 =

3∑
i=1

(ñp)
2
i

3∏
j=1,j 6=i

(λj + λ)2, λ ∈ (−λ1,∞),

where λ1 is the smallest eigenvalue of S, and ñp = QTnp, with Q the ma-
trix of eigenvectors (as columns) of S. If the matrix is not invertible, the point
distribution exhibits symmetries which makes the solution non-unique.

Typically, the prior plane normal np will not be directly available, but will
be specified through a set of two given stain vectors {s1, s2}. The associated

normal vector prior is then np = s1×s2
‖s1×s2‖ .

4 Clustering of the data points

The plane fitting algorithm of Sec. 3 requires a clustering method to partition
the set of given normalized stain vectors with respect to the two stains applied
to a tissue specimen. K-means is arguably one of the most popular clustering
methods, and simplifies to Otsu-thresholding when two cluster centers are sought
for one-dimensional features. A globally optimal clustering can be computed
by Otsu thresholding [4] by discretizing the space of possible thresholds. The
computations are efficiently performed using the feature histogram. A suitable
one-dimensional feature for the clustering of the plane-fitting algorithm is angle
in the fitting plane with respect to a given reference direction (the midpoint of
the projection of the stain vector priors). The Otsu threshold minimizes within-
cluster variance weighted by cluster size. Prior stain vector information should
be used for the thresholding as well to avoid gross mis-clusterings when the
number of data points for one stain direction clearly dominates the other.



Prior information can be incorporated into Otsu thresholding by minimizing

E(I ≤ Iθ, µ1, µ2) =

 1

σ2
1

∑
i∈j:Ij≤Iθ

(Ii − µ2)2

+

 1

σ2
2

∑
i∈j:Ij>Iθ

(Ii − µ1)2


+

1

(σµ2 )2
(µ2 − µ2)2 +

1

(σµ1 )2
(µ1 − µ1)2,

with respect to the unknown threshold Iθ (which completely specifies the seg-
mentation) and the unknown central elements for the two stain angles µ1 and
µ2. For a given partitioning, the optimal values are

µi =
σ2
i

σ2
i + (σµi )2ni

µi +
(σµi )2ni

σ1
i + (σµi )2ni

Ii,

where ni denotes the numbers of points and Ii the mean angles in the parti-
tions. Note that µ1 and µ2 are not the foreground and the background mean
respectively, but are a weighted average of the means and the priors.

Computing the angle histogram for a set of points allows for direct, effi-
cient computation of Ii, and consequentially of µi. Searching over all discretized
threshold values results in the globally optimal threshold Iθ. Neglecting the prior
terms or specifying uniform priors and Gaussian distributions for the image like-
lihoods recovers the standard Otsu thresholding technique.

To avoid specifying separate priors for np and for the angle center priors
µi, they are computed based on the stain vector priors. Since the stain vectors
themselves are (according to the stain vector model) extreme directions speci-
fying the boundary of the optical density cone, they are not directly useful as
priors for Otsu thresholding, as pure colors are the exception, and a distribution
of mixed colors is observed. Therefore, given two stain vectors s1 and s2, the
priors are chosen as the angles with respect to the reference direction of the
projections Π {qi} = qi − qTi nn onto the current estimate of the plane, where
q1 = (1− α)s1 + αs2 and q2 = αs1 + (1− α)s2, α ∈ [0, 0.5) (α = 0.15 in experi-
ments done here) are directions moved slightly inward of the cone boundaries.

Once the plane has been fit, estimates of stain intensities are computed as the
medians of the clusters. Estimates of the stain vectors are obtained by comput-
ing the robust minima (γ-percentile) and maxima ((1−γ) percentile) within the
cluster centers; γ = 1 for all experiments performed here. These estimates enable
the transformation of images into any chosen color-space, and therefore normal-
ization of appearance across multiple slides. While related to the approach by [3]
the proposed method alleviates problems with uneven cluster sizes by defining
statistics within the clusters, by weighting the plane fit with respect to cluster
size, and by incorporating prior information. The benefits of this new approach
are presented in Sec. 5. Fig. 1 shows an overview of the plane fitting algorithm
with prior.



Data: σ/σ0, s1, s2

Result: Normal vector for plane fit: n
Compute prior normal vector np = s1×s2

‖s1×s2‖
;

Initialization n = np ;
repeat

Project data points onto plane nT
p x = 0 ;

Project priors q1 and q2 onto the plane (computed from s1, s2);
Express all points (including the priors) in angular coordinates ;
Perform globally optimal Otsu thresholding with priors in angular domain;
Compute new scatter matrix (based on clustering) ;
Compute new data variance (based on clustering) ;
Compute optimal normal vector n;

until convergence (i.e., cluster assignments no longer change) ;
Algorithm 1: Optimal plane fit.

Fig. 1. Algorithmic description of the optimal plane-fit algorithm.

Fig. 2. Estimation consistency for
the proposed method and the method
not using prior information [3] com-
paring the mean deviation from the
mean normal vector across a slide
(with respect to the tiles) in degrees.
Smaller values and a tighter distribu-
tion demonstrate the advantage of the
proposed method. Results are statis-
tically significantly different.
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5 Validation and Experimental Results

Figs. 3, 2 and 4 show the performance of the plane fitting algorithm with prior.
Fig. 3 shows the results of a synthetic experiment to estimate the plane nor-
mal. Three methods are compared: (1) estimation without a plane normal prior
(corresponding to the method in [3]), (2) estimation with a plane normal prior,
but without the clustering step, and (3) the full algorithm 1. Estimation results
shown are deviations (in degrees) of the estimated normal vector n̂ with respect
to the ground truth normal vector. To assess the influence of varying cluster
sizes and normal priors, two stain vectors s1, s2 were chosen at a 15 degree
angle. Varying numbers of stain vectors were generated for the two stains using
an isotropic Gaussian distribution (standard deviation of 0.1 which is similar to
that in our real data sets). Priors were generated from the stain vectors by tilting
the normal vector by an angle θ with respect to the axis defined by the stain vec-
tors (translated to the origin) and by rotating the priors within the plane by an
angle Φ. Fig. 3 shows that all three methods to determine the plane normal have
similar performance for clusters of equal size. Prior information improves the



results greatly for uneven point distributions (by almost 10 degrees on average
for the most extreme point imbalance 5/1000 as expected to occur for example
in regions with sparsely distributed nuclei). In cases where the effect of the prior
is most pronounced, the clustering further improves estimation results.
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Fig. 3. Synthetic experiments: Angle difference (in
degrees) between the estimated normal vector and
the ground truth. Top row: proposed method. Mid-
dle row: plane fit with prior without clustering error
minus with clustering error. Bottom row: plane fit
without prior error minus plane fit with prior with
clustering error. Estimates are results of 1000 ran-
dom samples for different priors and varying num-
bers (5/1000, ...) of points in the two stain clusters.
The proposed method performs best. The white line
shows the zero level set of angle differences.

Fig. 2 shows the per-
formance of the method
on 13 real datasets com-
pared to direct plane fit-
ting without a plane prior
as in [3]. The histology
images were subdivided
into areas of 1000x1000
pixels and were indepen-
dently adjusted for stain
intensity and stain direc-
tion using the two meth-
ods. Fig. 2 shows the es-
timation consistency for
the two methods by com-
paring the mean devia-
tion from the mean nor-
mal vector across a slide
(mean with respect to the
tiles). Estimation consis-
tency is statistically sig-
nificantly better for the
proposed method (with
p < 1e−4 using a t-test or
non-parametric permuta-
tion test). The mean de-
viation from the prior was
around 11 degrees for the
method using prior infor-
mation and 20 degrees for the method not using the prior information. The tight
distribution for the consistency results for the proposed method demonstrates
that the prior was not chosen to dominate the results.

To illustrate the behavior of the estimation method graphically Fig. 4 shows
the results for a real dataset compared to direct plane fitting without a plane
prior. Stain intensity scaling factors and the deviations from the mean of the
estimates for the normal direction are shown. For a well working method, the
results are expected to be approximately uniform. While the difference for the
stain correction between the two methods (in both cases prior information was
used for the clustering to obtain the intensity scalings) is not as drastic as for the
normal direction, the plane fitting method with prior improves intensity scalings
as can be witnessed by the reconstruction results, which are almost perfectly
uniform for the method using prior information and inconsistent otherwise.
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6 Conclusions

This paper presented a method to automatically adjust the appearance of stained
histology slides. It described a novel way of adding prior information for the stain
vectors and how to deal with unequal stain distribution through a clustering
process. The clustering is a novel adaptation of Otsu thresholding including
prior information. The underlying optimization problem relates to trust-region
optimization and is therefore well studied and easy to solve. Real and synthetic
experiments showcase the superior performance of the method developed.
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