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Abstract. This paper proposes a new method to compute connectiv-
ity information from diffusion weighted images. It is inspired by graph-
based approaches to connectivity definition, but formulates the estima-
tion problem in the continuum. In particular, it defines the connectivity
through the minimum cut in tensor-weighted space. It is therefore closely
related to prior work on segmentation using continuous versions of graph
cuts. A numerical solution based on a staggered grid is proposed which
allows for the computation of flux directly through diffusion tensors.
The resulting global connectivity measure is the maximum diffusive flow
supported between two regions of interest.

1 Introduction

Diffusion weighted magnetic resonance imaging (DW-MRI) can be used to mea-
sure local water diffusion in tissues in vivo. Local diffusion information is com-
monly used to infer connectivity information (for example in the brain) through
tractography. Connectivity measures have been defined using streamline tractog-
raphy, probabilistic tractography [1], optimal path approaches [2], or by geodesics
in a tensor-warped space [3]. One of the major shortcomings of classical stream-
line tractography is its sensitivity to noise, due to the random drift occurring
during the underlying integration process and due to regions with ambiguous
orientation information. Probabilistic tractography alleviates the problem of ori-
entation ambiguity by sampling large numbers of fibers, but it is still based on
streamline tractography. Optimal path approaches on the other hand approach
the tractography problem by finding the shortest path between two regions of in-
terest. This is conceptually nice, because the solution space is better constrained,
however, in practice these methods are prone to taking shortcuts, which requires
tight control through masking to obtain anatomically meaningful connections.

Zalesky et al. [4] recently defined a connectivity measure by computing the
maximum flow through a graph. They identify three desirable properties, which
do not hold for standard connectivity measures: 1) independence to length of the
connection, 2) proportionality to bundle cross-sectional area, and 3) invariance
of the measure under exchange of source and target regions.

The approach developed in this paper is inspired by [4]. However it formu-
lates the solution in the continuum (removing the need for graph construction)
and uses the full tensor information (opposed to only the direction of the ma-
jor eigenvector) for the connectivity computation. This paper is not concerned



with finding the actual path, but rather the maximally supported flow between
two regions of interest using a tensor-valued metric is computed. More gen-
eral measures could easily be incorporated into the framework. The proposed
method constitutes a continuous tensorial version of a minimum cut/maximum
flow computation and is related to recent work in image segmentation [5,6].

Major advantages of the proposed method over previous work are: (i) The
method allows for the easy integration of tensor information (which is much
harder for a standard graph-based solution) and is extensible to more general
descriptions of diffusion. (ii) The method is essentially parameter-free and di-
rectly computes a physically meaningful quantity which can be used as a surro-
gate measure for connectivity. (iii) The associated optimization problem can be
solved reliably, because it is convex and therefore the globally optimal solution
can be computed.

Sec. 2 formulates the segmentation problem. Sec. 3 discusses the numerical
solution. Synthetic and real results are presented in Sec. 4. Sec. 5 concludes with
an outlook on future work.

2 Segmentation/Maximum-Flow Problem

One of the simplest diffusion models is the diffusion tensor which relates local
diffusion properties to measured DW signals through the Stejskal-Tanner equa-
tion

Sk = S0e
−bgT

k Dgk ,

where b is the b-value, gk are the gradient directions, S0 is the baseline image,
Sk are the diffusion weighted images, and D denotes the diffusion tensor. Dgk

can be interpreted as the diffusive flux according to Fick’s law of diffusion. A
global measure of connectivity between two regions of interest, which fulfills the
properties given by Zalesky [4] can then be defined as the maximal diffusive flow
between the two regions according to Fick’s law.

Given a source (S) and a target (T ) region, the maximal diffusive flow by an
underlying tensor field assuming an incompressible fluid without internal sources
or sinks can be obtained by solving the segmentation problem associated with
minimizing the energy

E(u) =
∫
‖D∇u‖ dx, x ∈ Ω, u ∈ {0, 1}, u(x) = 1 ∀ x ∈ S; u(x) = 0 ∀ x ∈ T ,

(1)
where u is an indicator function, labeling voxels between the cut and the source
with 1, and 0 everywhere else, and Ω ⊂ R3 is the domain of definition (in this
setting typically given by a white matter mask), S, T ⊂ Ω. The discontinuity
set of the optimal solution

u∗ = argmin
u

E(u),

can be considered the tensor-valued, continuous equivalent of a minimum cut in a
graph. The maximum diffusive flow is the flux integrated across this discontinuity
set or more simply the energy value at the optimum, i.e., E(u∗).



Note that an approach to tractography and connectivity information based
on the diffusive flux (Fick’s law) has been previously proposed by O’Donnell [3].
However, in this case the (implied) optimization problem is to minimize

E(u) =
1
2

∫
‖D 1

2∇u‖2 dx, x ∈ Ω, u ∈ R, u(x) = 1 ∀ x ∈ S; u(x) = 0 ∀ x ∈ T .

This results in a smooth concentration field which can be used to define cor-
respondences between source and target. A connectivity measures can then be
defined by integrating the flux along the correspondence trajectories between
source and target. In contrast, the minimization of Eq. 1 results directly in a
measurement of the maximal flow by integrating the flux over the discontinuity
set (the tensor-weighted total variation) with u ∈ {0, 1}. There is no need to
explicitly compute the correspondences.

The energy 1 is non-convex, because the domain of u is a non-convex set.
However, relaxing the condition on u to u ∈ [0, 1] results in a convex optimiza-
tion problem [6]. See also [5,7] for segmentation methods using isotropic metrics.
Despite this relaxation, the solutions obtained for u are essentially binary [6],
i.e., any segmentation obtained by thresholding u∗ at a value θ ∈ (0, 1) will be
globally optimal. The discontinuity set indicates the location of the minimum
cut. The energy is also directly related to anisotropic total variation regulariza-
tion [8].

The relaxed problem can be solved by the equivalent minimax problem

{u∗, p∗} = arg min
u

max
p

∫
pTD∇u dx, ‖p‖ ≤ 1 u ∈ [0, 1]. (2)

The dual energy is

Edual = −
∫

S

div(DT p) dx +
∫
◦
Ω

min(0, div(DT p)) d
◦
Ω,

where
◦
Ω denotes all voxels which are neither source nor target voxels. The dual

energy can be used to assess the quality of a current solution iterate, since it is
a tight lower bound on the energy [9].

While increased flow values may be obtained due to the inclusion of flux
contributions of anatomically questionable fibers, the result of the method is (in
contrast to optimal path methods) not dominated by potential shortcuts. In-
stead, the value of the maximum flow will be dominated by the influence of the
strongest connection between source and target. Note that a major advantage
of the proposed method is that it is completely parameter-free unlike standard
methods based on streamline tractography, which typically have parameters con-
trolling step-size, curvature, minimal and maximal length, integration method
used, etc.

3 Numerical Considerations

The gradient descent scheme to solve 2 is

uτ = div(DT p) pτ = D∇u, ‖p‖ ≤ 1, u ∈ [0, 1], (3)



which is known as the Arrow-Hurwitz-Uzawa method [10]. Implementation re-
quires the computation of the divergence of the transformed dual variables p as
well as the gradient of the indicator function u. To measure flow through tensors
at the location where the tensors are defined the gradient operator should be
chosen such that it is evaluated colocated with p. This is achieved by a staggered
grid, as depicted in Fig. 11. Using trilinear interpolation (for an image volume –
assuming for presentational simplicity isotropic voxels) for the indicator variables
surrounding a dual variable

u(x + dx, y + dy, z + dz) = (1− dx)(1− dy)(1− dz)u(x, y, z)
+ dx(1− dy)(1− dz)u(x + 1, y, z) + · · · ; dx, dy, dz ∈ [0, 1],

the gradient is simply the average of the gradients in the respective spatial
directions, i.e.,

(ux)i+ 1
2 ,j+ 1

2 ,k+ 1
2

=
1
4

∑
a,b∈{0,1}2

(ui+1,j+a,k+b − ui,j+a,k+b) ,

and similarly for the other spatial directions. The spatial derivatives for the
divergence operator need to be chosen such that it is the adjoint of the gradient
operator for u, therefore

(px)i,j,k =
1
4

∑
a,b∈{− 1

2 , 1
2}2

(
pi+ 1

2 ,j+a,k+b − pi− 1
2 ,j+a,k+b

)
,

and similarly for the other spatial directions, so that div(p) = px + py + pz. The
dual variables p are defined strictly inside the domain of the indicator variables
u (as illustrated in Fig. 1). The derivatives of p at the boundary of the domain
are computed such that values for p for indices outside the domain are set to
zero. These are the natural boundary conditions for −div(·) to be adjoint to ∇
on the staggered grid.

Using a modified gradient descent for saddlepoint problems due to Popov [11]
instead of the direct scheme 3 accelerates convergence. This is a fast primal-
dual iteration scheme, which was used successfully by Pock et al. [12] for the
minimization of the Mumford-Shah functional. The algorithm for the tensor-
valued case is given in Fig. 2.

4 Results

Sec. 4.1 shows the performance of the algorithm on synthetic experiments and
compares results to [4]. Sec. 4.2 applies the algorithm to a set of DT-MR images
of macaques at age 2 weeks and 6 months.
1 When defining both the gradient and the divergence operator on the same grid,

for example by forward and backward differences respectively, the solution becomes
asymmetric. Further, the minimum cut will lie in-between voxels, instead of cutting
through their centers. The staggered grid avoids this undesirable behavior.



Fig. 1. Illustration of the principle of the staggered
grid. Flow vectors p are defined at the location of the
gray squares, indicator variables u are defined at the
locations of the circles. Consequentially, gradients are
defined on the squares and divergence on the circles.
This allows for computation of flow through the ten-
sors themselves.

Data: Seed points, tensor field D
Result: Indicator function u, flow field p, maximum-flow value µ
Transfer the seedpoints from original grid to the staggered grid ;
Initialize source and target points with u = 1 and u = 0; other points to u = 1

2
;

Initialize p = 0, ua = u, ub = u ;
repeat

Compute gradient: g = ∇ub ;
Update flow field: p = p + τDg ;
Ensure ‖p‖ ≤ 1: p = p/(max(1, ‖p‖) ;
Compute divergence: d = div(DT p) ;
Update u: ua = u + τd; ub = 2ua − u; u = ua ;
Compute relative duality gap: ∆ = energy-dual energy

energy

until convergence (∆ ≤ θ) ;
µ is

R
‖D∇u‖ dΩ.

Algorithm 1: Primal-dual solution method.

Fig. 2. Algorithmic description of the primal-dual method of [12] as applied to
the tensor-segmentation case.

4.1 Synthetic experiments

A simple two-dimensional synthetic example for crossing fibers, illustrated in
Fig. 3, shows the behavior of the algorithm under noise and directional ambigu-
ities (due to crossings under the diffusion tensor model). The noise-free tensors
were chosen as

T1 =
1

1000

(
3 0
0 1

)
and T2 =

1
1000

(
1 0
0 3

)
respectively. The eigenvalues of the tensors for the vertical strip were weighted by
a scaling factor f ∈ [0, 1] and tensors were combined in the overlapping region by
selecting the maximum eigenvalues of the two tensors in both directions. To add
noise, DWIs were computed with b-value b = 1000, baseline intensity S0 = 1000
from the tensors at degrees {0, 22.5, 45, 67.5, 90} (defining the two-dimensional
gradient directions) in the plane. Rician noise with varying σ was subsequently
added. Least-squares tensor estimation resulted in a noisy-tensor. Tensors are
zero outside the crossing strips.

A set of experiments was performed combining noise levels for σ ∈ [0, 100]
and crossing fractions f ∈ [0, 1]. Fig. 5 shows the mean and the standard devia-



tion for the computed maximum flow values for a set of 25 random repetitions
of the experiments over the complete range for f and σ. The exact value for the
noise-free experiment is 45e− 3 (obtained by integrating the diffusive flux over
a cross section), which is matched by the computed value in the noise-free case.
While the computed flow value decreases with increases in the noise level (noise
causes tensors to reorient, resulting in an overall decrease of diffusive flow as
illustrated in Fig. 4 ), its value is consistent with changes in the crossing frac-
tion. Estimation accuracy over the 25 repetitions is high, however an increase in
estimation variance is observed for increases in noise level.

To compare the results to other methods in the literature, Fig. 6 shows results
for the (recreated) synthetic Archimedian spiral by Zalesky and Fornito [4]. The
synthetic dataset consists of noisy cigar-shaped tensors, which are aligned with
the tangent of the Archimedean spiral and isotropic tensors at a given distance
away from the spiral. See [4] for details on the dataset. DWIs for thirty gradi-
ent directions were generated for an image resolution of 256x256x14. No partial
volume modeling (as in [4]) was used, instead the algorithm runs directly on the
original (not upsampled) grid, using a mask with 4 mm radius around the center
of the spiral. Fig. 6 shows maximum flow estimation results for radii of the spi-
ral of 1, 2, 3 and 4 mm respectively. Results represent computations between an
initial source point and 9 target points distributed evenly over the spiral. The re-
sult of a good method should show increased connectivity measures for increases
in radius, because this corresponds to a larger number of fibers and therefore a
stronger connection. A method should also show essentially flat connectivity pro-
files when sampled along different points of the path, indicating invariance to the
length of the path. The proposed algorithm yields highly consistent estimation
results. Fig. 7 shows the normalized connectivity profiles (with a connectivity of
1 at the source location) obtained from the results in [4] for the method proposed
in [4], for FSL [13], and for FSL with compensation for length bias in comparison
to the maximum flow method of this paper. The maximum flow method clearly
outperforms the other methods in terms of estimation consistency, obtaining a
almost perfectly flat connectivity profile along the spiral.

4.2 Experiments on real datasets

The proposed method was applied to scans from an ongoing study of neurode-
velopmental alterations caused by infant maltreatment in rhesus monkeys. Six
selected rhesus macaques were scanned longitudinally. Data from 2 weeks old
subjects (neonates) and 6 months old subjects was analyzed. Scans were ac-
quired on a 3T Siemens Trio scanner with 8-channel phase array trans-receiving
volume coil. High-resolution T1-weighted and T2 weighted MRI scans were ac-
quired first, followed by the DTI scans (voxel size: 1.3x1.3x1.3mm3 with zero gap,
60 directions, TR/TE=5000/86 ms, 40 slices, FOV: 83 mm, b:0, 1000 s/mm2,
12 averages). These datasets were selected as they have SNR values at low (at 2
weeks) and intermediate (6 months) level.

An expert rater, trained in streamline fiber tractography, determined source
and target regions that produced valid DTI fiber tracts for the corpus callo-
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Fig. 3. Noise-free crossing case for different crossing fractions. The green and
the black bars indicate the source and the target regions respectively. The red
and blue colors are the planar equivalents of color-by-orientation plots, where
blue denotes flow in the up/down-direction and red in the left/right direction.
The intensity is modulated by fractional anisotropy of the underlying tensor.
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Fig. 4. Noisy crossing case, to illustrate the noise magnitudes applied.
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Fig. 5. Mean energy values (left) and their standard deviation (right) for 25
repetitions of 100 different σ/fraction pairings for the synthetic crossing dataset.
Maximum flow decreases with increases in noise level, but is highly consistent
under changes in crossing fraction.

sum genus, the splenium tracts, and for the internal capsule motor tract (see
Fig. 8 for an illustration). Corresponding source and target regions were used to
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Fig. 6. Synthetic spiral as proposed in [4] (left). Estimation results for varying
radii of the spiral (right; 1, 2, 3, 4 mm radius, bottom to top) for increasing
distances of the target region from the source region along the spiral.

compute the proposed connectivity values (see Tab. 9). Connectivity computa-
tions were restricted to an expert-generated white matter mask, obtained by FA
thresholding. From Tab. 9 several conclusions can be drawn: a) as expected the
internal capsule has higher connectivity values than the splenium and the genu,
b) splenium and genu have more similar values, but the genu is slightly higher
(again expected), c) with the exception of the splenium a connectivity increase
from 2 weeks to 6 months is visible, d) surprisingly the inter-subject variability
is higher than the longitudinal changes.

In summary, while the tests indicated limitations of the method mainly with
respect to inter-subject variability (for the dataset used), the results also point
to the potential use of the maximal flow connectivity measure as an alternative
to existing, tractography based connectivity measures.

5 Conclusion and Future Work

This paper described a global method to compute connectivity measures from
DTI. It can be viewed as a continuous version of the approach by Zalesky [4],
but additionally makes use of a tensor’s diffusion strength. While the method
is described in terms of the tensor model, it can be generalized to more general
descriptions of diffusion. Unlike many other methods, the computed results are
not based on the explicit computation of streamlines. However, a flow-field is
constructed internally (given by the dual variable). Since this flow field is not
unique it is not a replacement for streamline tractography at this stage. However,
the computed maximum flow value is globally optimal (identical for all optimal
flow fields), can be reliably obtained due to the underlying convex optimization
problem of the method, and can be used as a surrogate measure for connectivity.
An interesting future research direction is to construct admissible flow fields
which adhere as much as possible to the underlying tensor-field, while preserving
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Fig. 7. Connectivity-normalized synthetic simulation results. Comparisons with
FSL, FSL (length bias compensated), and Zalesky’s method recreated from data
of [4]. Symbols indicate spiral radius as in Fig. 6. The proposed method produces
the most consistent estimation results.

Fig. 8. ROI for the genu (pink), splenium (orange) and the internal capsule
motor tracts (yellow) shown on the FA maps for the 2 weeks (left) and 6 months
(right) monkey data. Fiber tracts from standard streamline method were shown
to highlight the ROI, but are not used in the proposed method.

the flow magnitude and direction at the location of the minimum cut. This would
allow for the reconstruction of flow fields (and fibers) through ambiguous regions.



Fig. 9. Global connectivity values
(mean and standard deviation) for
3 selected fiber tract regions in rhe-
sus macaques at age 2 weeks and 6
months.

Tract 2 weeks 6 months
Name Mean Stdev Mean Stdev
Genu 0.051 0.008 0.057 0.003

Splenium 0.040 0.015 0.040 0.020
Internal Capsule 0.125 0.026 0.136 0.027
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