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Abstract

This paper proposes the use of the surface-based Laplace-Beltrami and the volumetric Laplace eigenvalues and eigenfunctions as
shape descriptors for the comparison and analysis of shapes. These spectral measures are isometry invariant and therefore allow
for shape comparisons with minimal shape pre-processing. In particular, no registration, mapping, or remeshing is necessary.
The discriminatory power of the 2D surface and 3D solid methods is demonstrated on a population of female caudate nuclei (a
subcortical gray matter structure of the brain, involved in memory function, emotion processing, and learning) of normal control
subjects and of subjects with schizotypal personality disorder. The behavior and properties of the Laplace-Beltrami eigenvalues
and eigenfunctions are discussed extensively for both the Dirichlet and Neumann boundary condition showing advantages of the
Neumann vs. the Dirichlet spectra in 3D. Furthermore, topological analyses employing the Morse-Smale complex (on the surfaces)
and the Reeb graph (in the solids) are performed on selected eigenfunctions, yielding shape descriptors, that are capable of localizing
geometric properties and detecting shape differences by indirectly registering topological features such as critical points, level sets
and integral lines of the gradient field across subjects. The use of these topological features of the Laplace-Beltrami eigenfunctions
in 2D and 3D for statistical shape analysis is novel.

Key words: Laplace-Beltrami Spectra, Eigenvalues, Eigenfunctions, Nodal domains, Morse-Smale complex, Reeb Graph, Brain structure,
Caudate Nucleus, Schizotypal personality disorder

1. Introduction

Morphometric studies of brain structures have classically
been based on volume measurements. More recently, shape
studies of gray matter brain structures have become pop-
ular. Methodologies for shape comparison may be divided
into global and local shape analysis approaches. While lo-
cal shape comparisons [41,24,19] yield powerful, spatially
localized results that are relatively straightforward to in-
terpret, they usually rely on a number of pre-processing
steps. In particular, one-to-one correspondences between
surfaces need to be established, shapes need to be regis-
tered and resampled, possibly influencing shape compar-
isons. While global shape comparison cannot spatially lo-
calize shape changes, global approaches may be formulated
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with a significantly reduced number of assumptions and
pre-processing steps, staying as true as possible to the orig-
inal data.

This paper describes a methodology for global shape
comparison based on the Laplace-Beltrami eigenvalues
and for local comparison based on selected eigenfunctions
(without the need to register the shapes). The Laplace-
Beltrami operator for non-rigid shape analysis of surfaces
and solids was first introduced in [36,34,37] together with
a description of the background and up to cubic finite el-
ement computations on different representations (triangle
meshes, tetrahedra, NURBS patches). In [28,29] the eigen-
values of the (mass density) Laplace operator were used
to analyze pixel images. This article focuses on statistical
analyses of the Laplace-Beltrami operator on triangulated
surfaces and of the volumetric Laplace operator on 3D
solids and extends earlier works [27,35] by additionally
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analyzing eigenfunctions and their topological features
to localize shape differences. [27] introduces the analysis
of eigenvalues of the 2D surface to medical applications.
Especially [35] can be seen as a preliminary study to this
work, already involving eigenvalues and eigenfunctions for
shape analysis. Related work in anatomical shape pro-
cessing that uses eigenfunctions of the Laplace-Beltrami
operator computed via standard linear FEM on triangle
meshes includes [30,31] who employ the eigenfunctions
as an orthogonal basis for smoothing and the nodal do-
mains of the first eigenfunction for partitioning of brain
structures. In [38] a Reeb graph is constructed for the first
eigenfunction of a modified Laplace-Beltrami operator on
2D surface representations to be used as a skeletal shape
representation. The modified operator gives more weight
to points located on the geodesic medial axis (also called
cut locus [42]) which originated in computational geome-
try (see [32,25] for its computation) and has become useful
in biomedical imaging. In [1] the Laplace-Beltrami oper-
ator is employed for surface parametrization but without
computing eigenfunctions or eigenvalues.

Previous approaches for global shape analysis in medical
imaging describe the use of invariant moments [20], the
shape index [18], and global shape descriptors based on
spherical harmonics [13]. The proposed methodology based
on the Laplace-Beltrami spectrum differs in the following
ways from such approaches.

1. It may be used to analyze surfaces or solids inde-
pendently of their isometric embedding whereas methods
based on spherical harmonics or invariant moments are not
isometry invariant (finding large shape differences in bend-
able near-isometric shapes that might only be located dif-
ferently but otherwise the same, e.g. a person in different
body postures). Furthermore, some spherical harmonics-
based methods require spherical representations and invari-
ant moments do not easily generalize to arbitrary Rieman-
nian manifolds.

2. Only minimal pre-processing of the data is required, in
particular no registration is needed. 3D volume data may
be represented by its 2D boundary surface, separating the
object interior from its exterior or by the 3D volume itself
(a volumetric, region-based approach). In the former case,
the extraction of a surface approximation from a binary
image volume is the only pre-processing step required. In
the volumetric case even this pre-processing step can be
avoided and computations may be performed directly on
the voxels of a given binary segmentation 1 . This is in sharp
contrast to other shape comparison methods, requiring ad-
ditional object registration, remeshing, etc. The presented
Laplace-Beltrami eigenvalues and eigenfunctions are invari-
ant to rigid transformations, isometries, and to grid/mesh

1 Note that of course other pre-processing steps might be necessary

to initially obtain the geometric data, such as scanning, manual

or automatic segmentation of the image. For the purpose of shape
analysis, the shape has to be given in a standard representation,

which is usually 3D voxel data or 2D triangular meshes.

discretization (as long as the discretization is sufficiently
accurate) [37] and fairly robust with respect to noise.

This article summarizes and significantly extends previ-
ous Laplace-Beltrami shape analysis work on subcortical
brain structures [27,35]. Results are presented both for the
2D surface case (triangle mesh), as well as for 3D solids
consisting of non-uniform voxel data. Neumann spectra are
used as shape descriptors in 3D, with powerful discrimina-
tion properties for coarse geometry discretizations. In addi-
tion to the eigenvalues (allowing only global shape compar-
isons), new eigenfunction analyses are introduced employ-
ing the Morse-Smale complex and Reeb graph to shed light
on the behavior of the spectra as well as on local shape dif-
ferences. This can be done by automatically defining local
geometric features described by topological features of the
eigenfunctions (e.g. critical points, nodal domains, level sets
and integral curves of the gradient field). The first eigen-
functions indirectly register these features robustly across
shapes, therefore an explicit mesh registration is not nec-
essary. In this paper we are mainly interested in the statis-
tical analysis of populations of shapes. We use a study of
differences in a subcortical structure (the caudate nucleus)
as a real world example to demonstrate the applicability
of the presented methods. The presented topological study
of eigenfunctions is a novel approach for statistical shape
analyses.

Section 2 describes the theoretical background of the
Laplace-Beltrami operator and the numerical computation
of its eigenvalues and eigenfunctions. Normalizations of the
spectra, properties of the Neumann spectrum as well as
the influence of noise and of the discretization are investi-
gated. Section 3 gives an overview of the used topological
structures, namely the Morse-Smale complex and the Reeb
graph while Section 4 explains the statistical methods used
for the analysis of populations of Laplace-Beltrami spectra.
Results for two populations of female caudate shapes are
given in Section 5. This section is subdivided into the 2D
and 3D analyses. Within each of these subsections, we start
with a global analysis on the eigenvalues and continue with
local shape measures derived from a selection of eigenfunc-
tions. The paper concludes with a summary and outlook in
Section 6.

2. Shape-DNA: The Laplace-Beltrami Spectrum

In this section we introduce the necessary background
for the computation of the Laplace-Beltrami spectrum be-
ginning sequence (also called ”Shape-DNA”). The ”Shape-
DNA” is a fingerprint or signature computed only from
the intrinsic geometry of an object. It can be used to iden-
tify and compare objects like surfaces and solids indepen-
dently of their representation, position and (if desired) in-
dependently of their size. This methodology was first in-
troduced in [36] though a sketchy description of basic ideas
and goals of this methodology is already contained in [43].
The Laplace-Beltrami spectrum can be regarded as the set
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of squared frequencies (the so-called natural or resonant
frequencies) that are associated to the eigenmodes of a gen-
eralized oscillating membrane defined on the manifold. We
will review the basic theory in the general case (for more
details refer to [37] and especially [34]).

2.1. Definitions

Let f be a real-valued function, with f ∈ C2, defined
on a Riemannian manifold M (differentiable manifold with
Riemannian metric). The Laplace-Beltrami Operator ∆ is:

∆f := div(grad f) (1)

with grad f the gradient of f and div the divergence on
the manifold (Chavel [7]). The Laplace-Beltrami operator
is a linear differential operator. It can be calculated in local
coordinates. Given a local parametrization

ψ : Rn → Rn+k (2)

of a submanifold M of Rn+k with

gij := 〈∂iψ, ∂jψ〉, G := (gij),

W :=
√

detG, (gij) := G−1,

(3)

(where i, j = 1, . . . , n and det denotes the determinant) the
Laplace-Beltrami operator becomes:

∆f = 1
W

∑
i,j ∂i(gijW∂jf). (4)

If M is a domain in the Euclidean plane M ⊂ R2, the
Laplace-Beltrami operator reduces to the well-known
Laplacian:

∆f =
∂2f

(∂x)2
+

∂2f

(∂y)2
. (5)

The wave equation
∆u = utt, (6)

may be decomposed into its time dependent and its spa-
tially dependent parts

u(x, t) = f(x)a(t). (7)

Separating variables in the wave equation yields [8]

∆f
f

=
att

a
= −λ, λ = const.

Thus, the vibrational modes may be obtained through the
Helmholtz equation (also known as the Laplacian eigenvalue
problem) on manifold M with or without boundary

∆f = −λf. (8)

The solutions of this equation represent the spatial part of
the solutions of the wave equation (with an infinite num-
ber of eigenvalue λi and eigenfunction fi pairs). In the case
of M being a planar region, f(u, v) in Eq. (8) can be un-
derstood as the natural vibration form (also eigenfunction)
of a homogeneous membrane with the eigenvalue λ. The
square roots of the eigenvalues are the resonant or natu-
ral frequencies (ωi =

√
λi). If a periodic external driving

force is applied at one of these frequencies, an unbounded
response will be generated in the medium (important, for
example, for the construction of bridges). In this work the
material properties are assumed to be uniform. The stan-
dard boundary condition of a fixed membrane is the Dirich-
let boundary condition where f ≡ 0 on the boundary of the
domain (see Fig. 1 for two eigenfunctions of the disk). In
some cases we also apply the Neumann boundary condition
where the derivative in the normal direction of the bound-
ary ∂f

∂n ≡ 0 is zero along the boundary. Here the normal
direction n of the boundary should not be confused with
a normal of the embedded Riemannian manifold (e.g., sur-
face normal). n is normal to the boundary and tangential
to the manifold. We will speak of the Dirichlet or Neumann
spectrum depending on the boundary condition used.

The spectrum is defined to be the family of eigenvalues of
the Helmholtz equation (Eq. (8)), consisting of a diverging
sequence 0 ≤ λ1 ≤ λ2 ≤ · · · ↑ +∞, with each eigenvalue
repeated according to its multiplicity and with each associ-
ated finite-dimensional eigenspace (represented by the cor-
responding base of eigenfunctions). In the case of the Neu-
mann boundary condition and for closed surfaces without
boundary the first eigenvalue λ1 is always equal to zero,
because in this case the constant functions are solutions of
the Helmholtz equation. We then omit the first eigenvalue
so that λ1 will be the first non-zero eigenvalue.

Fig. 1. Eigenfunction 30 and 50 of the disk.

Because of the rather simple Euclidean nature of the
voxel representations used later, the more general (Rieman-
nian) definitions given above are not necessarily needed
to understand the computation in the 3D voxel case. Nev-
ertheless, the metric terms are helpful when dealing with
cuboid voxels (as we do) and of course for analyzing the
2D boundary surfaces of the shapes. Furthermore, this
approach clarifies that the eigenvalues are indeed isome-
try invariants with respect to the Riemannian manifold.
Note that two solid bodies embedded in R3 are isomet-
ric if and only if they are congruent (translated, rotated
and mirrored). In the surface case this is not true, since
non-congruent but isometric surfaces exist.

2.2. Properties

The following paragraphs describe well-known results on
the Laplace-Beltrami operator and its spectrum.
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(i) The spectrum is isometry invariant as it only de-
pends on the gradient and divergence which in turn
are defined to be dependent only on the Riemannian
structure of the manifold ((Eq. 4)), i.e., the intrinsic
geometry.

(ii) Furthermore, scaling an n-dimensional manifold by
the factor a results in eigenvalues scaled by the factor
1
a2 . Therefore, by normalizing the eigenvalues, shape
can be compared regardless of the object’s scale (and
position as mentioned earlier).

(iii) Changes of the membrane’s shape result in continu-
ous changes of its spectrum [8].

(iv) The spectrum does not characterize the shape com-
pletely, since some non-isometric manifolds with the
same spectrum exist (for example see [15]). Neverthe-
less these artificially constructed cases appear to be
very rare cf. [37] (e.g., in the plane they have to be
concave with corners and until now only isospectral
pairs could be found).

(v) A substantial amount of geometrical and topological
information is known to be contained in the spectrum
[21] (Dirichlet as well as Neumann). Even though we
cannot crop a spectrum without losing information,
we showed in [34] that it is possible to extract im-
portant information just from the first few Dirichlet
eigenvalues (approx. 500).

(vi) The nodal lines (or nodal surfaces in 3D) are the zero
level sets of the eigenfunctions. When the eigenfunc-
tions are ordered by the size of their eigenvalues, then
the nodes of the nth eigenfunction divide the domain
into maximal n sub-domains, called the nodal do-
mains [8]. Usually the number of nodal domains stays
far below n.

(vii) The spectra have more discrimination power than
simple measures like surface area, volume or the shape
index (the normalized ratio between surface area and
volume, SI = A3/(36πV 2) − 1) [18]. See Fig. 2 for
simple shapes with identical shape index, that can be
distinguished by their Laplace-Beltrami spectrum 2 .
Furthermore, as opposed to the spectrum, a moment-
based method did not detect significant shape differ-
ences in the medical application presented in Section
5. The discrimination power of the spectra can be in-
creased when employing both the spectra of the 2D
boundary surface and the 3D solid body (cf. isospec-
tral GWW prisms in [37]).

For more properties see [37,34].

2.3. Variational Formulation

For the numerical computation, the first step is to trans-
late the Helmholtz equation into a variational formulation.

2 In fact, Riemannian volume and volume of the boundary are spec-

trally determined (see also [37] where these values were numerically
extracted from the beginning sequence of the spectrum in several

2D and 3D cases).

Fig. 2. Objects with same shape index but different spectra

This is accomplished using Green’s formula∫ ∫
ϕ∆fdσ = −

∮
ϕ
∂f

∂n
ds−

∫ ∫
∇(f, ϕ)dσ (9)

(Blaschke [4] p.227) with the Nabla operator defined as

∇(f, ϕ) := Df G−1 (Dϕ)T =
∑

(∂if g
ij ∂jϕ) (10)

with the vector Df = (∂1f, ∂2f, ...). Employing the Dirich-
let (f, ϕ ≡ 0) or the Neumann ( ∂f

∂n ≡ 0) boundary condi-
tion (Eq. (9)) simplifies to∫ ∫

ϕ∆fdσ = −
∫ ∫
∇(f, ϕ)dσ. (11)

The Helmholtz equation (8) is multiplied with test func-
tions ϕ ∈ C2, complying with the boundary condition. By
integrating over the area and using (11) one obtains:

ϕ∆f = −λϕf

⇔
∫∫
ϕ∆f dσ = −λ

∫∫
ϕf dσ

⇔
∫∫
∇(ϕ, f) dσ = λ

∫∫
ϕf dσ

⇔
∫∫
Df G−1 (Dϕ)T dσ = λ

∫∫
ϕf dσ

(12)

(with dσ = W du dv being the surface element in the 2D
case or the volume element dσ = W du dv dw in the 3D
case). Every function f ∈ C2 on the open domain and con-
tinuous on the boundary solving the variational equation
for all test functions ϕ is a solution to the Laplace eigen-
value problem (Braess [6], p.35). This variational formula-
tion is used to obtain a system of equations constructing
an approximation of the solution.

2.4. Implementation

To solve the Helmholtz equation on any Riemannian
manifold the Finite Element Method (FEM) [45] can be em-
ployed. We choose a tessellation of the manifold into the
so-called elements (e.g., triangles or cuboid voxel). Then
linearly independent test functions with up to cubic degree
(the form functions Fi) can be defined on the triangles or
cuboid voxel elements (explained in the next section). The
high degree functions lead to a better approximation and
consequently to better results, but because of their higher
degree of freedom more node points have to be inserted
into the elements. See [34] or [37] for a detailed description
of the discretization used in FEM that finally leads to the
following general eigenvalue problem

AU = λBU (13)

4



with the matrices

A = (alm) :=
(∫∫

DFl G
−1 (DFm)T dσ

)
,

B = (blm) :=
(∫∫

FlFmdσ
)
.

(14)

whereFl is a piecewise polynomial form function with value
one at node l and zero at all other nodes. Here U is the
vector (U1, . . . , Un) containing the unknown values of the
solution at each node and A, B are sparse positive (semi-)
definite symmetric matrices. The solution vectors U (eigen-
vectors) with corresponding eigenvalues λ can then be cal-
culated. The eigenfunctions are approximated by

∑
UiFi.

In the case of the Dirichlet boundary condition, the bound-
ary nodes do not get a number assigned to them and do not
show up in this system. In the case of a Neumann boundary
condition, every node is treated exactly the same, no mat-
ter if it is a boundary node or an inner node. Since only a
small number of eigenvalues is needed, a Lanczos algorithm
[16] can be employed to solve this large symmetric eigen-
value problem much faster than with a direct method. In
this work we use the ARPACK package [2] together with
SuperLU [9] and a shift-invert method, to compute the
eigenfunctions and eigenvalues starting from the smallest
eigenvalue in increasing eigenvalue order. The sparse solver
implemented in Matlab uses a very similar indirect method.

It should be noted that the integrals mentioned above are
independent of the mesh (as long as the mesh fulfills some
refinement and condition standards). Since the solution of
the sparse generalized eigenvalue problem can be done ef-
ficiently with external libraries, we will now focus on the
construction of the matrices A and B.

2.5. Form Functions

In order to compute the entries of the two matrices A
and B (Eq. ( 14)) we need the form functions Fi and their
partial derivatives (∂kFi) in addition to the metric values
from Eq. (3). The form functions are a basis of functions
representing the solution space.

Any piecewise polynomial function F of degree d can
easily be linearly combined by a base of global form func-
tions Fi (of same degree d) having the value one at a spe-
cific node i and zero at the others. For linear functions it
is sufficient to use only the vertices of the triangle mesh
as nodes. In the case of a voxel the values at the 8 ver-
tices are sufficient to define a trilinear function in the inside
c1 + c2u + c3v + c4w + c5uv + c6uw + c7vw + c8uvw. For
higher degree approximations further nodes have to be in-
serted. When applying a Dirichlet boundary condition with
zero values at the boundary, we only need a form function
for each node in the interior of the domain. If we look at a
2D example (a single triangle of a triangulation), a linear
function above the triangle can be linearly combined by the
three form functions at the corners. These local functions
can be defined on the unit triangle (leg length one) and
mapped to an arbitrary triangle. Fig. 3 shows examples of

Fig. 3. A linear and a quadratic form function and location of 32

nodes for cubic serendipity FEM voxel.

a linear and a quadratic local form function for triangles. It
can be seen that the form function has the value 1 at exactly
one node and 0 at all the others. Note that in the case of
the quadratic form function new nodes were introduced at
the midpoint of each edge, because quadratic functions in
two variables have six degrees of freedom. On each element
containing n nodes exactly n local form functions will be
constructed this way. The form functions and their deriva-
tives can be defined explicitly on the unit triangle or unit
cube. Since high order approximations lead to much better
results, we mainly use cubic form functions of the serendip-
ity family for the computation of the spectra in this paper.
To set up these functions over a cuboid domain new nodes
have to be inserted (two nodes along each edge makes 32
nodes together with the vertices, see Fig. 3). A cubic func-
tion of the serendipity family with three variables has 32
degrees of freedom, that can be fixed by giving the function
values at these 32 locations. A full tricubic approach of the
Lagrange family needs 64 nodes (32 along the edges, 24 in-
side the faces, and 8 inside the cuboid) and increases the
total degree of freedom tremendously without adding much
accuracy to the solution. More details on the construction
of these local functions can be found in most FEM books
(e.g. Zienkiewicz [45]). For each element the results of the
integrals (14) are calculated for every combination m, l of
nodes in the element and added to the corresponding entry
in the matrix A or B. Since this entry differs only from 0
when the associated global form functions Fi overlap (i.e.
the associated nodes share the same element) the matrices
A and B will be sparse.

2.6. Cuboid Voxel Elements

For piecewise flat objects the computation described
above can be simplified, thus speeding up the construction
of the two matrices A and B significantly. If the local ge-
ometry is flat we do not need to integrate numerically on
the manifold since the metric G (see Eq. (3)) is constant
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throughout each element. The integrals can be computed
once for the unit element explicitly and then mapped lin-
early to the corresponding element. This makes the time
consuming numerical integration process needed for curved
surfaces or solids completely unnecessary.

As opposed to the case of a surface triangulation with a
piecewise flat triangle mesh (with possibly different types
of triangles), the uniform decomposition of a 3D solid
into cuboid voxels leads to even simpler finite elements. A
parametrization over the unit cube of a cuboid with side
length s1, s2, s3 (and volume V ) yields a diagonal first
fundamental matrix G:

G= diag
(
(s1)2, (s2)2, (s3)2

)
(15)

W =
√
det(G) = (s1)2(s2)2(s3)2 = V (16)

G−1 = diag

(
1

(s1)2
,

1
(s2)2

,
1

(s3)2

)
. (17)

These values are not only constant for an entire voxel, they
are identical for each voxel (since the voxels are identical).
Therefore we can pre-compute the contribution of every
voxel to the matrices A and B once for the whole problem
after setting up the form functions Fl as described above:

al(i),m(j) + = V
∫ 1∫
0

∫
(

3∑
k=1

∂kFi ∂kFj

(sk)2 ) du dv dw

bl(i),m(j) + = V
∫ 1∫
0

∫
FiFj du dv dw.

(18)

The local indices i, j label the (e.g. 32) nodes of the cuboid
voxel element and thus the corresponding local form func-
tions and their partial derivatives. These integrals can be
pre-computed for every combination i, j. In order to add
(+ =) these local results into the large matrices A and
B only a lookup of the global vertex indices l(i),m(j) for
each voxel is necessary. Therefore the construction of the
matrices A and B can be accomplished in O(n) time for n
elements.

2.7. Normalizing the Spectrum

As mentioned above, the Laplace-Beltrami spectrum is a
diverging sequence. Analytic solutions for the spectrum and
the eigenfunctions are only known for a limited number of
shapes (e.g., the sphere, the cuboid, the cylinder, the solid
ball). The eigenvalues for the unit 2-sphere for example are
λi = i(i + 1), i ∈ N0 with multiplicity 2i + 1. In general
the eigenvalues asymptotically tend to a line with a slope
dependent on the surface area of the 2D manifold M

λn ∼
4πn

area(M)
, as n ↑ ∞. (19)

Therefore a difference in surface area manifests itself in dif-
ferent slopes of the eigenvalue asymptotes. Fig. 4 shows the
behavior of the spectra of a population of spheres and a
population of ellipsoids respectively. The sphere population
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Fig. 4. Spectral behavior from top to bottom: (a) unnormalized,

(b) Area normalized, (c) unnormalized (zoom), (d) Area normalized
(zoom).

is based on a unit sphere where Gaussian noise is added in
the direction normal to the surface of the noise-free sphere.
Gaussian noise is added in the same way to the ellipsoid
population. Since the two basic shapes (sphere and ellip-
soid) differ in surface area, their unnormalized spectra di-
verge (Fig. 4a), so larger eigenvalues lead to a better dis-
crimination of groups. Surface area normalization greatly
improves the spectral alignment (Fig. 4b). Fig.s 4c and d
show zoom-ins of the spectra for small eigenvalues. Even
for the surface area normalized case, the spectra of the two
populations clearly differ. Therefore the spectra can be used
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Fig. 5. Unnormalized exact spectra of cube, cuboid, ball.

to pick up the difference in shape in addition to the size
differences.

A similar analysis can be done for 3D solids. The eigen-
values for the cuboid (3D solid) with side length s1, s2 and
s3 for example are

λM,N,O = π2

(
M2

(s1)2
+

N2

(s2)2
+

O2

(s3)2

)
with M,N,O ∈ N+ for the Dirichlet case and M,N,O ∈ N
for the Neumann case. In general the Dirichlet and Neu-
mann eigenvalues of a 3D solid asymptotically tend to a
curve dependent on the volume of the 3D manifold M :

λn ∼
(

6π2n

vol(M)

) 2
3

, as n ↑ ∞. (20)

Fig. 5 shows the discrete Dirichlet spectra of a unit cube
(V = 1), a cuboid with side length 1, 1.5, 2 (V = 3) and
a unit ball (V = 4

3π). It can be seen how the difference in
volume manifests itself in different scalings of the eigenvalue
asymptotes.

A statistical method able to distinguish shapes needs
to account for this diverging behavior so not to limit the
analysis to an analysis of surface area or volume. Therefore
the Laplace-Beltrami spectra should be normalized. Fig. 6
shows the spectra of the volume normalized solids. The
zoom-in shows that shape differences are preserved in the
spectra after volume normalization.

2.8. Exactness of the Spectrum

When using an FEM with p-order form functions, the
order of convergence is known. For decreasing mesh size h it
is p+1 for eigenfunctions and 2p for eigenvalues [40]. This is
the reason, why it makes sense to use higher order elements
(we use up to cubic) instead of a global mesh refinement.

To verify the accuracy of the numerically computed spec-
tra, we compare the eigenvalues of a cuboid with side length
(1, 1.5, 2) and of a ball with radius one to the known ex-
act values. In the case of the cuboid we computed the first
200 eigenvalues. The maximum absolute difference occur-
ring in the Dirichlet spectra is less than 0.044 (which is less
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Fig. 6. Volume normalized spectra and zoom-in.

than 0.015 % relative error). This is due to the fact that
the voxels represent the cuboid exactly without any ap-
proximation error at the boundary. The Neumann spectra
have only a maximum absolute difference of less than 0.01
(which is less than 0.005% relative error), due to the higher
resolution at the boundary.

In the case of the ball an exact voxel representation is
not possible, therefore the numerical results differ more
strongly from the analytical ones especially for high eigen-
values (up to 6% relative error for the first 100 Dirichlet
eigenvalues). Since the exact values of the object repre-
sented by the voxelization are unknown, a fair analysis of
the accuracy of the computation is difficult. Nevertheless,
it is interesting to see that the numerical values closely ap-
proximate the exact ones of the ball the more voxels are
used (see Fig. 7, the value r describes the number of voxels
used in the direction of the radius).

2.9. Neumann Spectrum

To demonstrate that Neumann spectra can be used to
pick up significant geometric features much faster than
Dirichlet spectra the eigenvalues of the cube with a tail
(see Fig. 8, left) were computed for the Neumann and the
Dirichlet boundary condition and compared to the values
of the cube. Fig. 8 (right) shows the differences of the first
150 eigenvalues for the two different boundary conditions.
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Fig. 8. The first 150 eigenvalues of the cube with tail subtracted from
the eigenvalues of the cube for the Dirichlet and Neumann case.

Since the cube with tail has a larger volume, its eigenvalues
are expected to be smaller than the values of the cube (see
Section 2.2(ii)). This fact is reflected in the graph (Fig. 8,
right) where the differences are always positive. It can be
clearly seen that the Neumann spectrum picks up the dif-
ferences much earlier than the Dirichlet spectrum. This is
due to the fact that the Neumann boundary condition al-
lows the solutions to oscillate at the boundary whereas the
Dirichlet condition forces them to be zero on the boundary,
strongly reducing their freedom especially in the region of
the tail.

A 2D example of a square with a tail (ST ) illustrates
the different behaviors of Neumann and Dirichlet bound-
ary conditions. Figs. 9 and 10 depict a comparison of a few
eigenfunctions of the square with tail (ST ) and of the unit
square (S1) for both the Dirichlet and the Neumann case.
For the Dirichlet case (Fig. 9), the lower eigenfunctions do
not detect the attached tail (Fig. 9 a,e and b,f). For higher
frequencies the nodal domains shrink (Fig. 9 c,g) until they
are finally able to slip into the smaller features. Because of
the restrictive Dirichlet boundary condition, this only oc-
curs around the 18th eigenfunction. From a signal process-
ing point of view it is sensible that functions with higher
frequencies can be used to analyze smaller features.

The Neumann spectrum behaves differently (Fig. 10).
Because of the higher degree of freedom (with respect to the
free vibration of the eigenfunctions at the boundary), small
features like the tail influence the eigenfunctions already
very early. It is unnecessary to compare the smallest eigen-

value which is always zero with constant eigenfunctions.
But already the first non-constant eigenfunction (Fig. 10
d) is very different from the first non-constant eigenfunc-
tions of the square (Fig. 10 a) since the extremum is shifted
into the tail. This is reflected in a change of more than
50% of the corresponding eigenvalue. The next eigenfunc-
tion (Fig. 10 e) of ST on the other hand is zero in the tail
region and therefore almost identical with (Fig. 10 a). The
corresponding eigenvalues are almost the same. Also the
next few eigenfunctions (Fig. 10 b ↔ f and c ↔ g) corre-
spond with each other on the square region.

2.10. Influence of Noise

As demonstrated in Section 2.7, volume normalizations
can lead to good spectral alignments. Nevertheless, having
identical noise levels for the shape populations under inves-
tigation is essential, since different noise levels will affect
surface areas differently (high noise levels yield highly ir-
regular bounding surfaces especially if the voxel resolution
is low). Because surface area is contained in the spectrum
this has an influence on the eigenvalues. Violating the as-
sumption of similar noise levels therefore leads to the de-
tection of noise level differences as opposed to shape dif-
ferences, as demonstrated in Fig. 11 for noisy spheres (sur-
faces) and Fig. 12 where the spectra of the ball (solid) are
depicted with different levels of added noise. A fixed proba-
bility for adding a voxel to or removing a voxel from the ob-
ject boundary was chosen for each experiment. Only voxels
maintaining 6-connectivity were added or removed, guar-
anteeing a single 6-connected solid component. Increasing
the noise level moves the corresponding spectra further
apart. It can be seen in Fig. 12 that the ball cannot be ac-
curately represented with only a low voxel resolution, es-
pecially with high noise levels, the spectra move far apart.
Such a noisy ball could also be seen as a noisy cube. For the
analysis of identically acquired and processed shapes – e.g.,
obtained through manual segmentations of MRI (magnetic
resonance image) data – a similar noise level is a reason-
able assumption; we also assume the accuracy of the spec-
tra calculations to stay the same for the whole population.

2.11. Influence of the Discretization

Domain discretizations can significantly affect computa-
tional results. Fig. 13 shows a 2D example for a domain
consisting of a small and a large square connected by a
thin rectangle. Insufficient degrees of freedom, due to a
coarse discretization, can lead to insufficiently resolved vi-
brational modes. In particular, thin structures may simply
be overlooked if not enough nodes are contained in them.
The Neumann spectra are not influenced as strongly by the
discretization, as they allow free nodes on the boundary.
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(a) Eigenfunction 1. (b) Eigenfunction 4. (c) Eigenfunction 12. (d) Eigenfunction 18.

(e) Eigenfunction 1. (f) Eigenfunction 4. (g) Eigenfunction 12. (h) Eigenfunction 18.

 

 

0

Fig. 9. Eigenfunctions for Dirichlet boundary conditions for a square (top) and a square with tail (bottom). Low frequency (low eigenvalue)
eigenfunctions do not probe the tail region due to the restrictive Dirichlet boundary conditions. Differences are picked up for high frequencies

only where the higher spatial frequencies of the eigenfunctions allow for a probing of the tail region.

(a) Eigenfunction 1. (b) Eigenfunction 2. (c) Eigenfunction 3.

(d) Eigenfunction 1. (e) Eigenfunction 2. (f) Eigenfunction 3. (g) Eigenfunction 4.

 

 

0

Fig. 10. Eigenfunctions for Neumann boundary conditions for a square (top) and a square with a tail (bottom). Differences between the
shapes are picked up already for small eigenvalues, since the Neumann boundary conditions allow the tail to swing freely for low frequencies.
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Fig. 11. Spectra of a sphere with different noise levels. The noise-free case on the left demonstrates the accuracy of the numerical eigenvalue
computations. Spectra were normalized to unit surface area. Black horizontal lines: analytic spectrum of the noise-free sphere. Increasing

levels of noise from left to right.
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Fig. 12. Influence of noise on the ball spectrum (Dirichlet). Noise

levels influence the spectral signature of a shape.

3. Topological Analysis of Eigenfunctions

Eigenfunctions are real-valued functions defined on the
whole manifold. They are more difficult to deal with than
eigenvalues but can be studied with topological methods,
for example analyzing level sets and critical points. For the
topological analysis of eigenfunctions we will construct the
Morse-Smale (MS) complex on 2D surface representations
and the Reeb graph inside the 3D voxel volume.

The MS complex [39,22] splits the domain of a function
h into regions of uniform gradient flow. Its edges are spe-
cific integral lines (maximal paths on the surface and whose
tangent vectors agree with the gradient of h) that run from
the saddles to the extrema. For the construction of the MS
complex for piecewise linear functions on triangulated sur-
faces see [11], where the concept of persistence is also de-

Fig. 13. Eigenmode 19 for Dirichlet boundary conditions for different

mesh refinements. Eigenmode contributions may be overlooked for
coarse discretizations (left) in comparison to a fine discretization

(right). In particular, thin structures may not get sufficiently probed
for coarse discretizations.

scribed. It can be used, for example, to remove topologi-
cal noise from the complex by pairing and canceling sad-
dle/extrema combinations.

The MS complex is closely related to the Reeb graph
[33], that captures the evolution of the level set components
of the function and is often used in shape analysis appli-
cations. A level set is the pre-image h−1(x) for a specific
level x ∈ R. The Reeb graph of a function h is obtained by
contracting the connected components of the level sets to
points. Thus the branching points and leaves (end points)
in a Reeb graph correspond to level set components that
contain a critical point of h. The leaves are the extrema
while the branching points are saddles, where one edge is
split into two (or more) or where edges are merged. The
other points can be considered to lie on the edges between
leaves and branching points. Note that the Reeb graph is a
1D topological structure (a graph) with no preferred way
of drawing it in the plane or space or attaching it to M (as
opposed to the MS complex). Its edges are often manually
attached to the shape by selecting the center of the repre-
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sented level set.
Both the MS complex and the Reeb graph have been ex-

tensively used for shape processing and topological simpli-
fication. E.g. the MS complex has been constructed for a
user selected eigenfunction of the mesh Laplacian for the
purpose of meshing in [10].

So why is it of interest to study the eigenfunctions at all?
In fact in addition to their relation to the corresponding
eigenvalue (as demonstrated in the examples) they have
some interesting properties. They are also isometry invari-
ant and change continuously when the shape is deformed
(although when ordered according to the magnitude of
their eigenvalues, the ordering might switch). The func-
tions with the smallest eigenvalues are more robust against
shape change or noise, as they present the lower frequency
modes. Another feature is their optimal embedding prop-
erty used in manifold learning (see [3]). For example the
first non-constant eigenfunction gives the smoothest em-
bedding of the shape to the real line (of course complying
with the boundary condition).

We will employ the eigenfunctions to give an indirect reg-
istration of similar shapes. As the (lower) eigenfunctions
are stable across the shapes, they have similar values in sim-
ilar location. Thus, we can measure local shape differences
by analyzing landmarks such as lengths of level sets or in-
tegral lines, or areas of level surfaces in 3D. A simple exam-
ple is given in Fig. 14 where two planar domains are shown
together with their first eigenfunctions (color shaded) and
level sets. The two domains were modeled with the me-
dial modeler by adjusting the medial axis and the thickness
function and then processed (meshed, FEM computation
...) as described in [44]. It can be seen how the extrema
and level sets are at similar locations for both shapes, even
though bending and thickness changes are involved. The
length of the level sets can be used to do a thickness com-
parison. We will demonstrate similar comparisons later for
3D solids. The Reeb graph is a line from the minimum to
the maximum running through the midpoints of each level
set and can be used to measure length. For the simple ex-
ample in Fig. 14 the MS complex cannot be constructed
as no saddles are involved. However, the MS complex will
be helpful for studying higher eigenfunctions on surfaces,
where additional interesting features such as saddles and
multiple extrema exist.

4. Statistical Analysis of Groups of LB Spectra

The (possibly normalized) beginning sequence of the
Laplace-Beltrami spectrum (called Shape-DNA) can be
interpreted as a point v ∈ Rn

≥0 in the n-dimensional pos-
itive Euclidean space. Given the Shape-DNA vi of many
individual objects divided into two populations A and B
we use permutation tests to compare group features to
each other (200,000 permutations were used for all tests).
We call a set of objects the object population. Permutation
testing is a nonparametric, computationally simple way

Fig. 14. First non-constant eigenmode for two similar shapes. Red

and blue dots at the tips denote the extrema, the green curves
are some level sets. The Reeb graph (gray curve) approximates the

medial axis.

of establishing group differences by randomly permuting
group labels. Let SA = {vi} and SB = {vj} denote two
sets of Shape-DNA associated to individuals for group A
and for group B respectively. Assume for example that
we want to investigate if elements in SA have on average
a larger Euclidean norm than the elements in SB (due to
some external influences). A possible test statistic stat
would be the sum of the lengths of the elements in SA

(stat :=
∑

vi∈SA
‖vi‖). For the permutation test we then

randomly distribute the subjects into groups A and B,
keeping the number of elements per group fixed. We define
the p-value to be the fraction of these permutations having
a greater or equal sum stat than the original set SA (in
other words the relative frequency of occasions where the
random label outperforms the original labeling). The val-
ues of SA will be considered significantly larger than the
ones of SB at a prespecified significance level α if p ≤ α
(taken as α = 5% here). Note, that rejecting the null hy-
pothesis of two populations being equal given a significance
level α only implies that the probability of making a type I
error (i.e., the probability of detecting false positives; “de-
tecting a difference when there is none in reality”) is α, but
does not exclude the possibility of making such an error.

Confidence intervals for the estimated p-values p̂ may be
computed following Nettleton et al. [26] for 100(1 − γ)%
confidence as(

p̂−Ψ−1(1− γ

2
)
√
p̂(1− p̂)/N,

p̂+ Ψ−1(1− γ

2
)
√
p̂(1− p̂)/N

)
where

Ψ−1(x) =
√

2 erf−1(2x− 1)

is the inverse of the cumulative distribution function of the
standard normal distribution, erf−1(·) is the inverse error
function, N denotes the number of samples (200,000 in our
case). The approximation is based on the binomial distri-
bution and holds for Np ≥ 5. Fig. 15 shows the confidence
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Fig. 15. Confidence intervals for p ∈ {0.0001, 0.05} with N = 200, 000

permutations

intervals for a confidence range of [90%, 99%] for p-values
p ∈ {0.0001, 0.05}. Note, that the plots are the same, except
for scaling, which depends only on the different p-values.
While these are just probabilistic characterizations of the
confidence in the estimated p-value they demonstrate that
using 200, 000 permutations will give good estimations up
to the first or even the second non-zero decimal place.

We use three different kinds of statistical analyses (all
shapes are initially corrected for brain volume differences,
also see [14] for details on permutation testing):

(1) A nonparametric, permutation test to analyze the scalar
quantities: volume and surface area.

(2) A nonparametric, multivariate permutation test based
on the maximum t-statistic to analyze the high-
dimensional spectral feature vectors (Shape-DNA in 2D
and 3D cases).

(3) Independent permutation tests of the spectral feature
vector components across groups (as in (2)), followed by
a false discovery rate (FDR) approach to correct for mul-
tiple comparisons, to analyze the significance of individ-
ual vector components.
To test scalar values the absolute mean difference is used

as the test statistic s = |µa−µb|, where the µi indicates the
group means. The maximum t-statistic is chosen due to the
usually small number of available samples in medical im-
age analysis, compared to the dimensionality of the Shape-
DNA feature vectors (preventing the use of the Hotelling
T 2 statistic [17]). It is defined as

stat = tmax := max
1≤j≤N

|v̄A,j − v̄B,j |
SEj

. (21)

Here, N is the vector dimension, v̄A,j indicates the mean
of the jth vector component of group A, and SEj is the
pooled standard error estimate of the jth vector compo-
nent, defined as

SEj =

√
(nA − 1)σ2

A,j + (nB − 1)σ2
B,j√

1
nA

+ 1
nB

, (22)

where ni is the number of subjects in group i (with i ∈
A,B) and σi,j is the standard deviation of vector compo-
nent j of group i. The maximum t-statistic is particularly
sensitive to differences in at least one of the components of
the feature vector [5]. It is a summary statistic, which al-
lows for the detection of differences between feature vectors

across populations. However, it does not determine which
components show statistically significant differences.

Nevertheless, testing the individual statistical signifi-
cance of vector components is possible. Such testing needs
to be performed over a whole set of components, since it
is usually not known beforehand which component of a
Shape-DNA vector will be a good candidate for statistical
testing. (I.e., we can in general not simply pick one individ-
ual vector component (eigenvalue) for statistical testing.)
To account for multiple comparisons when testing over
a whole set of vector components, the significance level
needs to be adjusted (since “the chance of finding differ-
ences that are purely random in nature increases with the
number of tests performed”). See [12,14] for background
on schemes for multiple comparison corrections.

5. Results

Volume measurements are the simplest means of mor-
phometric analysis. While volume analysis results are easy
to interpret, they only characterize one morphometric as-
pect of a structure. The following Sections describe the
Laplace-Beltrami and the volumetric Laplace spectrum as
a method for a more complete global structural description
using the analysis of a caudate as an exemplary brain struc-
ture. Note, that it makes sense to look at the 2D surface
and at the 3D solid as the spectra of the surfaces contain
other information than the solid spectra. In [37] examples
of isospectral 3D solids (orthogonal “GWW” prism) were
presented, where the spectral analysis of their 2D bound-
ary shells was capable of distinguishing the shapes.

For brevity all results are presented for the right caudate
only.

5.1. Populations and pre-processing

Magnetic Resonance Images (MRI) of the brains of
thirty-two neuroleptic-näıve female subjects diagnosed
with Schizotypal Personality Disorder (SPD) and of 29
female normal control subjects were acquired on a 1.5-T
General Electric MR scanner. Spoiled-gradient recalled
acquisition (SPGR) images (voxel dimensions 0.9375 x
0.9375 x 1.5 mm) were obtained coronally. The images
were used to delineate the caudate nucleus (see Fig. 16)
and to estimate the intracranial content (ICC) used for
volume normalization to adjust for different head sizes.
For details see [23].

The caudate nucleus was delineated manually by an ex-
pert [23]. For the 2D surface analysis the isosurfaces sepa-
rating the binary labelmaps of the caudate shapes from the
background were extracted using marching cubes (while
assuring spherical topology). Analysis was then performed
on the resulting triangulated surface directly (referred to
as unsmoothed surfaces in what follows) as well as on the
same set of surfaces smoothed and resampled using spher-
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Fig. 16. Example of a caudate shape consisting of cuboid voxels (left).

Exemplary caudate surface shape unsmoothed and with spherical
harmonics smoothing (right).

ical harmonics 3 (referred to as smoothed surfaces in what
follows). The unsmoothed surfaces are used as a benchmark
dataset subject to only minimal pre-processing, whereas
the smoothed surfaces are used to demonstrate the influ-
ence of additional pre-processing. See Fig. 16(right) for an
example of a smoothed and an unsmoothed caudate.

5.2. Volume and Area Analysis

For comparison, results for a volume and a surface area
analysis are shown in Fig. 17. As has been previously re-
ported for this dataset [23], subjects with schizotypal per-
sonality disorder exhibit a statistically significant volume
reduction compared to the normal control subjects. While
smoothing plays a negligible role for the volume results
(smoothed: p = 0.008, volume loss 7.0%, i.e., there is a
chance of p = 0.008 that the volume loss is a random effect;
unsmoothed: p = 0.013, volume loss 6.7%), the absolute
values of the surface area are affected more, since smooth-
ing impacts surface area more than volume. The results for
the female caudates show the same trend for the surface
areas in the smoothed and the unsmoothed cases.

5.3. Laplace-Beltrami Spectrum Results (2D Surface)

The LB spectrum was computed for the female caudate
population (on the surfaces) using the two different nor-
malizations:

(i) The shapes were volume normalized to unit intracra-
nial content (UIC) (using the ICC measurements) to
account for different head sizes.

(ii) The shapes were normalized to unit caudate surface
area (UCA) to analyze shape differences indepen-
dently of size.

A maximum t-statistic permutation test on a 100D spectral
shape descriptor shows significant shape differences (see
Table 1) for caudate surface area normalization for the un-
smoothed surfaces, but not for the smoothed ones. Surface
area normalization is the strictest normalization in terms of
spectral alignment. Testing for surface area independently
yields statistically significant results, listed in Table 1.

3 We used the spherical harmonics surfaces as generated by the UNC

shape analysis package [41].
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Fig. 17. Group comparisons for volume differences (top) and surface

area differences (bottom). Smoothed results prefix ’s’, unsmoothed
results prefix ’us’. Volume and surface area reductions are observed

for the SPD population in comparison to the normal control popu-

lation.

Fig. 18 indicates that using too many eigenvalues has a
slightly detrimental effect on the observed statistical sig-
nificance. This is sensible, since higher order modes corre-
spond to higher frequencies and are thus more likely noise,
which can overwhelm the statistical testing. It is thus sen-
sible to restrict oneself only to a subset of the spectrum
(e.g., the first twenty). However, this subset needs to be
agreed upon before the testing and cannot be selected after
the fact. Note, that the Laplace-Beltrami-Spectrum results
of Table 1 show statistically significant shape differences
even when the strong influence of surface area is removed,
which suggests that the Laplace-Beltrami Spectrum indeed
picks up shape differences that complement area and vol-
ume findings. The Laplace-Beltrami Spectrum can detect
surface area differences (since the surface areas may be
extracted from the spectrum) and can distinguish objects
with identical surface area or volume based on their shape.

It should be noted that tests with the twelve invariant
moments (invariant with respect to similarity group ac-
tions) as proposed in [20] did not yield statistically signif-
icant shape differences for the caudate shape population,
showing that the spectrum has more discrimination power
here (as the first few eigenvalues are sufficient to detect dif-
ferences between the groups).
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norm p-value (US) p-value (S)

LBS (N=20) UIC 0.0026 0.0013

UCA 0.005 0.63

LBS (N=100) UIC 0.0003 0.0009

UCA 0.026 0.84

Volume UIC 0.013 0.0078

UCA 0.0011 0.011

Area UIC 0.0001 0.0002

UCV 0.001 0.011

Table 1
Shape comparison results for the maximum t-statistic permutation

test for the unsmoothed (US) and smoothed (S) dataset. Volume

and area results for comparison. The used normalizations are: unit
intracranial content (UIC), unit caudate surface area (UCA) and

unit caudate volume (UCV).
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Fig. 18. Maximum t-statistic results of area normalized case (top)

for the first n eigenvalues, i.e. shape-DNA’s of different length, (solid

line: unsmoothed, dashed line: smoothed) and (bottom) for individ-
ual eigenvalues (unsmoothed case) with FDR multiple comparison

correction. The black horizontal lines correspond to the 5% signifi-
cance level and the 5% FDR corrected significance level respectively.
Since the statistically most significant eigenvalue cannot be selected

after the statistical analysis, a shape-DNA-based analysis with pre-
specified length is useful.

5.4. Laplace-Beltrami Eigenfunctions (2D Surface)

To explore why some of the eigenvalues are statistically
significant, we investigate their associated eigenfunctions.
This will also guide our search for new shape descriptors
based on the eigenfunctions of the Laplace-Betrami oper-

Fig. 19. Left and middle: Eigenfunction (EF) 2 with maxima at tips

(red), minimum at outer rim (blue, middle) and saddle at inner rim
(green, left), the integral lines (red and blue curves) run from the

saddle to the extrema. Right: EF 1 with extrema at the tips and no

saddle. The closed green curves denote the zero level sets (two for
EF 2 and only one for EF 1).

ator. In Fig. 18 (bottom) the eigenvalue λ2 has a low p-
value of 0.0003. Since the caudate shapes are rather long
and thin, not only the gradients of the first non-zero eigen-
function, but also of the second are aligned with the general
direction of the caudate shape.

It can be seen in Fig. 19 that the first non-constant eigen-
function (right) has extrema at the two ends of the shape.
Due to its simplicity it is not very descriptive, but maps the
shapes nicely to the real line along its main direction, thus
giving an implicit registration along their main trend. The
second eigenfunction (left and middle) has two maxima at
the tips of the shape, one minimum at the outer rim and
a saddle in the middle of the inner rim. The green curves
denote the nodal lines (zero level sets) and the blue and
red curves are constructed by following the gradient from
the saddle up to the maxima (red) and down to the min-
imum (blue), thus constructing the Morse-Smale complex
(see Section 3).

The second eigenfunction captures the main direction of
the shape, which can be seen nicely at the green nodal lines
and the blue curve being orthogonal to the main direction
and spread well apart. Additionally, the second eigenfunc-
tion captures the thickness as the minimum and the max-
ima are located at opposing rims of the shape. As all the
caudates in this population are of similar shapes, this be-
havior is true for all of them. In some cases we have an
additional saddle-minimum pair at the outer rim that can
be identified as topological noise induced by the mesh (see
Fig. 20). Such noisy pairs can be detected and canceled
using the concept of persistence [11] pairing related ex-
trema/saddle combinations according to their significance.

To analyze the shapes we performed the statistical test
on the following descriptors:
– (hc) the head circumference (long green curve)
– (wc) the waist circumference (blue curve)
– (tc) the tail circumference (short green curve)
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Fig. 20. Noisy Morse-Smale complex of the second non-constant

eigenfunction on the outer rim (left) and close-up (middle). After
canceling the saddle with the closest minimum, only one minimum

remains and the red integral lines from the saddle to the two maxima

at the head and tail disappear.

– (l) the length (red curve).
We obtained the following p-values for the unit intracranial
content (UIC) and the unit caudate surface area (UCA)
normalized cases:

UIC UCA

hc p = 0.0015 p = 0.45

wc p = 0.0016 p = 0.053

tc p = 0.007 p = 0.039

l p = 0.21 p = 0.0003

The statistically significant cases are printed in bold. For
the intracranial content normalized case significant differ-
ences are detected in all the three circumferences, but not
in the lengths of the shape. The caudate surface area nor-
malization principally reverses the results. This could be
expected as the main surface area lies in the shells of these
cylindrical shapes and not at the cylinder caps. Therefore
a surface area normalization seems to adjust the circum-
ferences and changes the lengths instead. Nevertheless, we
still pick up statistically significant differences in the tail
region of the shapes (which can also be expected as the
head has more surface area than the tail).

The intracranial content normalized results suggest that
shape differences are mainly in shape thickness as opposed
to shape length. Fig. 21 shows a group comparison of the
waist circumferences (top) of the ICC normalized shapes,
as well as the differences in length after caudate area nor-
malization (bottom). Note also that in the unit caudate
area case, the length indicates an increase in mean distance
between the nodal lines. This explains why the correspond-
ing eigenvalue is also significantly smaller for the SPD pop-
ulation (as it is related to the frequency of the oscillation,
which is related to the size of the oscillating domains).

Similar to Fig. 14 it is possible to wrap more level sets
around the caudate shapes (see Fig. 22), with the differ-
ence that now we get closed curves. Again the level sets
yield an indirect registration of the shapes and present a
method to detect local circumference differences. Note that
we could actually construct a common parametrization
(e.g. on the sphere) by taking the level and the position on
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Fig. 21. Group comparisons for waist circumference differences (left)

and length differences (right) after caudate area normalization. A
waist length reduction can be observed for the SPD population in

comparison to the normal controls (unit ICC). After caudate area

normalization, an increase in length can be seen.

Fig. 22. 100 level sets wrapped around two exemplary caudate shapes
using the first eigenfunction. The absence of any saddles guarantees

that each level set has only one component.
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Fig. 23. Lengths of level sets (mapped onto the unit interval) of 8

exemplary shapes (sampling at 200 levels). Red curves: SPD subjects,
green curves: normal controls.

the closed level set as the two parameters, but this explicit
parametrization is not needed. Fig. 23 shows a plot of the
level set lengths of a few caudate shapes. The p-value for
the whole population can be found in Fig. 24 and indicate
that not only the thinner regions in the tail (level 0.2) are
significantly different, but also the region at the beginning
of the head (level 0.7) shows highly significant differences.

5.5. Laplace Spectrum Results (3D Solid)

As we deal with 3D solid objects it makes sense to also
look at the solid instead of analyzing the surface only. The
Laplace spectrum of the 3D voxel data was computed for
two different normalizations:

(i) The shapes were volume normalized to unit intracra-
nial content (using the ICC measurements) to ac-
count for different head sizes.

(ii) The shapes were normalized to unit caudate volume
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Fig. 24. p-value for the whole population on each level set (sampling

at 200 levels). The red line marks the significance level corrected for

multiple comparisons (FDR).

Fig. 25. Regular pixel domain (left) and its dual (right).

to analyze shape differences independently.
In order to get more inner nodes especially into the very

thin tail region of the caudate shapes we additionally em-
ployed the dual of the voxel graph. The dual voxel graph
is the voxel image where each voxel of the original image
(regular voxel image) is considered to be a vertex of the
dual graph. Voxels inside the domain become inner ver-
tices while voxel just outside the domain’s boundary now
become boundary vertices. Fig. 25 depicts a 2D case (us-
ing pixels) with the original regular domain on the left and
the dual on the right. The dual graph enlarges the domain
by half a layer thus creating new inner nodes needed espe-
cially inside the thinner features (tail). The use of the dual
graph is helpful since a global refinement of the voxels leads
to large FEM models that may cause memory problems on
some standard PC’s. Note that in 3D the number of voxels
increases by the factor 8 for each refinement step, this will
quickly get large, especially if a higher order FEM is used,
needing many nodes per voxel. The main difficulty lies in
solving the large eigenvalue problem as the LU decompo-
sition (SuperLU libary) might require a lot of additional
memory if a large amount of fill-ins is generated 4 .

Since the two populations show significant differences in
volume, surface area, local shape thickness and in their 2D
surface spectra (see above), we expect to find significant
differences also in their 3D volume spectra. The following
paragraphs present first the Dirichlet, then at the Neumann
spectrum results for both the regular and dual voxel graph.

4 The examples in this paper were run on computers with up to

3GB memory without any problems.
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Fig. 26. Accumulative maximum t-statistic results (unit intracranial

content, Dirichlet) for the regular (left) and the dual (right) voxel
graphs. Employing the dual graph yields lower p-values. This may

be attributed to the better suitability of the dual graph for probing

the thin tail regions of the caudate shapes. However, there is no
statistical difference at a significance level of α = 5%.

5.5.1. Dirichlet Spectra
Fig. 26 shows the statistical results for the regular voxel

graph and its dual for the caudate populations. The graph
shows the corresponding p-value (see Section 4) when us-
ing the first N eigenvalues of the spectra for the statistical
analysis (unit intracranial content). Recall that not just a
single eigenvalue is used but the whole beginning sequence
of the first N values (therefore we call these plots accumu-
lated statistic plots). A p-value below the 5% horizontal line
is considered to be statistically significant. In such a case
the beginning sequence of the spectrum is considered to be
able to distinguish between the two caudate populations
(NC and SPD). Fig. 26 shows that the beginning sequence
of the Dirichlet spectrum does not yield any statistically
significant results. Employing the dual graph yields lower
p-values when higher eigenvalues get involved. This obser-
vation is sensible, considering the fact that especially in the
thin tail part of the caudates only very few inner nodes ex-
ist (see Section 2.11 for the effects of low resolution). The
dual graph has more degrees of freedom, introducing inner
nodes in the thin tail area, and therefore improves the re-
sult. In unit caudate volume case we did not find any sig-
nificant differences either. For a detailed analysis employ-
ing the Dirichlet spectrum higher voxel resolutions would
be necessary. Due to the low voxel resolution the computed
eigenfunctions do not seem to accurately represent the real
eigenfunctions of the caudate shapes.

5.5.2. Neumann Spectra
As demonstrated in section 2.9, the Neumann spectrum

can help to identify shape differences much earlier than the
Dirichlet spectrum. Fig. 27 shows the accumulated statis-
tics plots for different normalizations of the Neumann spec-
tra for the regular and the dual case. In both cases (regu-
lar and dual) the intracranial content normalized spectra
show very similar behavior (27 a,b): already very early, sig-
nificant differences are detected. Because these differences
might simply reflect the different caudate volumes (known
to be significant) a normalization to unit caudate volume
(27 c,d) is applied to reveal volume independent shape dif-
ferences. The eigenvalues in the regular case (27 c) do not
show statistically significant shape differences until about
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(a) Regular, unit intracranial con-
tent.
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(b) Dual, unit intracranial con-
tent.
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(c) Regular, unit caudate volume.
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(d) Dual, unit caudate volume.

Fig. 27. Accumulated statistic, Neumann boundary conditions. Sta-
tistically significant shape differences are detected as expected for the

unit intracranial content cases (a and b) (due to the caudate volume

differences between the SPD and the NC populations). After caudate
volume normalization (c and d), differences are first detected for the

dual graph analysis (d), presumably because the additional degrees

of freedom enable a proper probing of the caudate tail regions.

150 eigenvalues are involved, however, the dual case (27 d)
shows a significant p-value already for 50 or more eigen-
values used. The reason seems to be that the higher fre-
quency eigenfunctions have smaller nodal domains and can
thus better detect the smaller features, presumably in the
tail region. This assumption aligns with the Dirichlet case
(Fig. 26 dual) where better p-values are obtained when em-
ploying higher frequencies.

The accumulated results in Fig. 27 can be partially ex-
plained by analyzing the p-values of the individual eigen-
values (see Fig. 28). It can be seen that the p-value of the
eigenvalue λ5 is very low in both the regular and the dual
voxel graphs (marked in red). This leads to significant re-
sults very early in the accumulated plots. Furthermore, the
low p-values around the 50th eigenvalue (the 52nd in par-
ticular, also marked in red) in the dual case seem to produce
the significant results in the accumulated plots above.

5.6. Laplace Eigenfunctions (3D Solid)

Similar to the analysis of interesting eigenfunctions in the
2D surface case it makes sense to analyze the eigenfunctions
in 3D. By looking at the nodal surfaces (zero level sets) of
the eigenfunctions λ5 and λ52 (Fig. 29) it can be noticed
that these eigenfunctions, whose gradient field is always or-
thogonal to the nodal surfaces, again follow the main trend
of the shape (for the 52nd function only in the tail region).
We focus on the 5th eigenfunction (due to its simplicity)
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Fig. 28. p-values for the individual eigenvalues with Neumann bound-

ary condition for the regular (top) and dual (bottom) voxel graph.

Fig. 29. Nodal surfaces of eigenfunction 52 (top) and 5 (bottom),

where the centroids are connected.

and analyze its nodal surfaces with respect to two hypothe-
ses. As can be seen in the example in Fig. 29, the nodal
surfaces of the 5th eigenfunction are usually 4 separated
components (true in all except for 3 cases). First we want
to relate the eigenfunction to the significant eigenvalue. As
the eigenvalues are the square roots of the frequencies of
the oscillation, the size of the nodal domains and therefore
the distances of the nodal surfaces (green lines in Fig. 29
bottom) should yield significant results after the caudate
volume normalization. Furthermore, we know from the 2D
analysis that significant changes in thickness (before cau-
date area normalization) are present mainly in the tail re-
gion of the shapes. Therefore, we will test the hypotheses
that

(i) the mean distance of the nodal surfaces (l1) on the
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Fig. 30. Group comparison for the eigenvalue 5 (left) and mean
distance of the nodal surfaces (right) for the unit intracranial content.

A reduction of the eigenvalue and a corresponding increase of the

distances can be observed for the SPD population in comparison to
the normal controls.

unit volume caudates are larger for the SPD popula-
tion (leading to a smaller eigenvalue EV5).

(ii) the mean boundary length (l2) and the mean surface
area (l3) of the small nodal surface components in
the tail region (removing the large component in the
head) are smaller for the SPD population.

For the first experiment, we compute the barycenter of
the vertices of each nodal surface component and use it as a
representation of that component. We then connect neigh-
boring components with each other (green line in Fig. 29
bottom) and compute the mean distance between neigh-
boring components. Note that the green line is a skeletal
representation of the shape. In fact, it is the Reeb graph
[33], as each level set component is represented by a node
(red dot) which is connected to its neighbors by the green
edges. Thus, this skeletal model represents the topological
structure of the analyzed eigenfunction EV5 which yields
an interesting shape descriptor, that could be used for other
application, such as non-rigid registration. For both exper-
iments we obtained the following p-values for the unit in-
tracranial content (UIC) and unit caudate volume (UCV)
cases:

UIC UCV

l1 p = 0.21 p = 0.0099

l2 p = 0.0001 p = 0.0003

l3 p = 0.0019 p = 0.015

For the first experiment we have significant values for the
mean distances of the nodal surfaces after caudate volume
normalization. We detect an increase in length for the SPD
population, which goes in line with the significant decrease
of the 5th eigenvalue, related to the size of the nodal do-
mains (see Fig. 30). All the values for l2 and l3 are sta-
tistically significant, where especially the mean boundary
lengths (similar to the waist and tail circumferences in 2D)
are highly significant (see also Fig. 31 for the direct com-
parison of the boundary lengths in the UIC case).
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1.6
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2

Fig. 31. Group comparison for the boundary length of the small

nodal surfaces for the unit intracranial content. A reduction can
be observed for the SPD population in comparison to the normal

controls.

6. Conclusion

This paper describes methods for global and local shape
analysis using the Laplace-Beltrami eigenvalues and eigen-
functions with Dirichlet and Neumann boundary condi-
tions for 2D surfaces (triangle meshes) and 3D volumetric
solids (voxel data). The eigenvalues and eigenfunctions in-
cluding their geometric and topological features are defined
invariantly wrt. mesh, location, parametrization and de-
pend on the isometry type only. Our experiments corrobo-
rate their robustness wrt. noise. We demonstrated their dis-
crimination power successfully at a real application in med-
ical imaging to distinguish populations of similar shapes.

The Laplace-Beltrami eigenvalues are well suited as a
global shape descriptor, without the need to register the
shapes. They could successfully be employed to detect true
shape differences of the two populations (using the maxi-
mum t-statistic) even after normalization hinting at cau-
date shape differences in Schizotypal Personality Disorder.
It could be demonstrated that the volumetric Neumann
spectra can detect statistically significant shape differences
when applied directly to the voxel data. These computa-
tions are feasible on a standard desktop computer. The
Neumann spectra are of interest, since they recognize shape
differences much earlier than the Dirichlet spectra and also
work much better if the voxel resolution is very low. Espe-
cially the higher eigenvalues yield statistically significant
results, indicating true shape differences mainly in areas
with smaller features.

Additionally, we proposed a novel method to employ the
eigenfunctions on surfaces for the detection and registra-
tion of features across shapes. We introduced a topolog-
ical analysis (Morse-Smale complex and nodal curves) of
selected eigenfunctions to define geometric features and to
localize shape differences (here the local thickness of the
caudate shapes). Also the topological analysis of eigenfunc-
tions in 3D data is new and yields interesting geometric en-
tities (distance, boundary length and surface areas of nodal
surfaces) which underline the shape differences in the pre-
sented application (thickness differences and length differ-
ences for the unit volume caudates). These geometric prop-
erties also contribute towards an interpretation of the cor-
responding eigenvalues.
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The presented results are promising and show that the
spectra (eigenfunctions and eigenvalues) of the Laplace-
Beltrami operator are capable shape descriptors, especially
when combined with a topological analysis, such as loca-
tions of extrema, behavior of the level sets and the con-
struction of the Morse-Smale complex (or Reeb graph). The
presented methods are expected to be applicable in other
settings. Future work will focus on the possibility to com-
pare shape based on a specific size of the features of inter-
est (multiresolution shape matching), founded on the fre-
quency analysis delivered by the Laplace spectra. Another
direction of research will be the non-rigid registration of
shapes employing eigenfunctions and their topological fea-
tures. Furthermore, it is of interest to construct general-
ized feature vectors consisting of 2D and 3D (geometric and
topological, global and local) features for the fast compar-
ison of shapes or the retrieval of objects from large shape
databases.
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