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Abstract

This paper proposes to use the volumetric Laplace
spectrum as a global shape descriptor for medical
shape analysis. The approach allows for shape com-
parisons using minimal shape preprocessing. In partic-
ular, no registration, mapping, or remeshing is neces-
sary. All computations can be performed directly on the
voxel representations of the shapes. The discriminatory
power of the method is tested on a population of female
caudate shapes (brain structure) of normal control
subjects and of subjects with schizotypal personality
disorder. The behavior and properties of the volumetric
Laplace spectrum are discussed extensively for both
the Dirichlet and Neumann boundary condition show-
ing advantages of the Neumann spectra. Both, the
computations of spectra on 3D voxel data for shape
matching as well as the use of the Neumann spectrum
for shape analysis are completely new.

1. Introduction

Morphometric studies of brain structures have clas-
sically been based on volume measurements. More
recently, shape studies of gray matter brain struc-
tures have become popular. Methodologies for shape
comparison may be divided into global and local
shape analysis approaches. While local shape compar-
isons [1], [2], [3] yield powerful, spatially localized
results that are relatively straightforward to interpret,
they usually rely on a number of preprocessing steps.
In particular, one-to-one correspondences between sur-
faces need to be established, shapes need to be
registered and resampled, possibly influencing shape
comparisons. While global shape comparison cannot
spatially localize shape changes, global approaches
may be formulated with a significantly reduced number
of assumptions and preprocessing steps, staying as true
as possible to the original data.

This paper describes a methodology for global
shape comparison based on the Laplace-Beltrami
spectrum [4], [5], [6], [7]. In particular, the paper
focuses on the volumetric Laplace spectrum of
three-dimensional solids. Previous approaches for
global shape analysis in medical imaging include the
use of invariant moments [8], the shape index [9],
and global shape descriptors based on spherical
harmonics [10]. The proposed methodology based on
the Laplace-Beltrami spectrum differs in the following
ways from these previous approaches:

- It works directly for any Riemannian manifold,
whereas spherical harmonics based methods require
spherical representations, and invariant moments
do not easily generalize to arbitrary Riemannian
manifolds. It may be used to analyze surface, solids,
non-spherical objects, etc. in different representations.

- Only minimal preprocessing of the data is required.
Three dimensional volume data may be represented
by its boundary surface, separating the object interior
from its exterior or by the volume itself (a volumetric,
region-based approach). In the former case, the
extraction of a surface approximation from a (possibly
manually segmented) binary image volume is the
only preprocessing step required. In the volumetric
case, which is the focus of this paper, even this
preprocessing step can be avoided and computations
may be performed directly on the voxels of a given
binary segmentation. This is in sharp contrast to
other shape comparison methods, requiring object
registration, remeshing, etc. The Laplace-Beltrami
spectrum is invariant to rigid transformations,
isometries, and to object discretization (as long as the
discretization is sufficiently accurate).

This paper supplements previous surface-based
Laplace-Beltrami shape analysis work on medical
data [11] as well as work on pixel data (images) [7].
Furthermore, it extends the computation of volumetric
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spectra (i.e., spectra of 3D solids) for the purpose
of shape analysis to voxel data (described initially
in [6] for tetrahedrizations). For the first time,
Neumann spectra are used as shape descriptors, with
powerful properties for coarse object discretizations.
Furthermore, in addition to the eigenvalues,
eigenfunction analyses are introduced using 2D
examples to shed some light on the behavior of
the spectra. A detailed implementation description
is provided based on the general concept of the
Laplace-Beltrami operator.

Section 2 describes the theoretical background of
the Laplace-Beltrami spectrum and the numerical com-
putation of the eigenvalues. Normalizations of the
spectra, properties of the Neumann spectrum as well
as the influence of noise and of the discretization are
investigated. Section 3 explains the statistical methods
used for the analysis of groups of Laplace-Beltrami
spectra. Results for two groups of female caudate
shapes are given in Section 4. The paper concludes
with a summary and outlook in Section 5.

2. Shape-DNA: The Laplace-Beltrami
Spectrum

In this section we introduce the necessary back-
ground for the computation of the Laplace-Beltrami
spectrum beginning sequence (also called ”Shape-
DNA”). The ”Shape-DNA” is a fingerprint or signature
computed only from the intrinsic geometry of an
object. More precisely: it is the beginning sequence of
the spectrum of the Laplace-Beltrami operator defined
for real valued functions on Riemannian manifolds.
It can be used to identify and compare objects like
surfaces and solids independently of their representa-
tion, position and (if desired) independently of their
size. This methodology was first introduced in [4]
though a sketchy description of basic ideas and goals
of this methodology is already contained in [12]. The
Laplace-Beltrami spectrum can be regarded as the set
of squared frequencies (the so called natural or reso-
nant frequencies) that are associated to the eigenmodes
of an oscillating membrane defined on the manifold.
Let us review the basic theory in the general case (for
more details refer to [6] and especially [5]).

2.1. Definitions

Let f be a real-valued function, with f ∈ C2,
defined on a Riemannian manifold M (differentiable
manifold with Riemannian metric). The Laplace-
Beltrami Operator ∆ is:

∆f := div(grad f) (1)

with grad f the gradient of f and div the diver-
gence on the manifold (Chavel [13]). The Laplace-
Beltrami operator is a linear differential operator. It
can be calculated in local coordinates. Given a local
parametrization ψ : Rn → Rn+k of a submanifold M
of Rn+k with

gij := 〈∂iψ, ∂jψ〉, G := (gij),

W :=
√

detG, (gij) := G−1,
(2)

(where i, j = 1, . . . , n and det denotes the determi-
nant) the Laplace-Beltrami operator becomes:

∆f = 1
W

∑
i,j ∂i(gijW∂jf). (3)

If M is a domain in the Euclidean plane M ⊂ R2, the
Laplace-Beltrami operator reduces to the well known
Laplacian:

∆f =
∂2f

(∂x)2
+

∂2f

(∂y)2
. (4)

The wave equation ∆u = utt may be decomposed into
its time-dependent and its spatially dependent parts
u(x, t) = f(x)a(t). Separating variables in the wave
equation yields [14]

∆f
f

=
att

a
= −λ, λ = const.

Thus, the vibrational modes may be obtained through
the Helmholtz equation (also known as the Laplacian
eigenvalue problem) on manifold M with or without
boundary

∆f = −λf. (5)

The solutions of this equation represent the spatial part
of the solutions of the wave equation (with an infinite
number of eigenvalue λ and eigenfunction f pairs). In
the case of M being a planar region, f(u, v) in equa-
tion (5) can be understood as the natural vibration form
(also eigenfunction) of a homogeneous membrane
with the eigenvalue λ. Any properties of the material
are ignored. The standard boundary condition of a fixed
membrane is the Dirichlet boundary condition where
f ≡ 0 on the boundary of the domain (see Figure
1 for two eigenfunctions of the disk). In this work
we also use the Neumann boundary condition where
the derivative in the normal direction of the boundary
∂f
∂n ≡ 0 is zero along the boundary. Here the normal
direction n of the boundary should not be confused
with a normal of the embedded Riemannian manifold
(e.g., surface normal). n is normal to the boundary
and tangential to the manifold. We will speak of the
Dirichlet or Neumann spectrum depending on the used
boundary condition.

The spectrum is defined to be the family of eigen-
values of the Helmholtz equation (eq. 5), consisting of
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a diverging sequence 0 ≤ λ1 ≤ λ2 ≤ · · · ↑ +∞, with
each eigenvalue repeated according to its multiplicity
and with each associated finite dimensional eigenspace.
In the case of the Neumann boundary condition the first
eigenvalue λ1 is always equal to zero, because in this
case the constant functions are non trivial solutions of
the Helmholtz equation.

Figure 1. Eigenfunction 30 and 50 of the disk.
Because of the rather simple Euclidean nature of

the voxel representations used later, the more general
definitions given above are not necessarily needed to
understand the computation and results of this paper.
Nevertheless, we described the general Riemannian
background to align this paper with previous work on
parametrized surfaces and solids and with future work.
Furthermore, this approach clarifies that the eigenval-
ues are indeed isometric invariants with respect to
the Riemannian manifold. Note that two solid bodies
embedded in R3 are isometric if and only if they
are congruent (translated, rotated and mirrored). In
the surface case (e.g., discussed in [11]) this is not
true, since non-congruent but isometric surfaces exist
resulting in a large class of non-congruent surfaces
having the same spectrum.

2.2. Properties

The following paragraphs describe well known re-
sults on the Laplace-Beltrami operator and its spec-
trum. The spectrum is an isometric invariant as it
only depends on the gradient and divergence which
in turn are defined to be dependent only on the
Riemannian structure of the manifold (eq. 3), i.e., the
intrinsic geometry. Furthermore, we know that scaling
an n-dimensional manifold by the factor a results in
eigenvalues scaled by the factor 1

a2 . Therefore, by
normalizing the eigenvalues, shape can be compared
regardless of the object’s scale (and position as men-
tioned earlier). The spectrum depends continuously
on the shape of the membrane [14]. The spectrum
does not characterize the shape completely, since
some non-isometric manifolds with the same spec-
trum exist (for example see [15]). Nevertheless these
artificially constructed cases appear to be very rare
cf. [6] (e.g., in the plane they have to be concave
with corners and until now only isospectral pairs

Figure 2. Objects with same shape index but different spectra

could be found). A substantial amount of geomet-
rical and topological information is known to be
contained in the spectrum [16] (Dirichlet as well as
Neumann). Even though we cannot crop a spectrum
without loosing information, we showed in [5] that it
is possible to extract important information just from
the first few Dirichlet eigenvalues (approx. 500). The
spectra has more discrimination power than simple
measures like surface area, volume or even the shape
index (the normalized ratio between surface area and
volume, SI = A3/(36πV 2) − 1). See Figure 2 for
simple shapes with same shape index, that the Laplace-
Beltrami spectrum can distinguish. For more properties
see [6], [5].

2.3. Variational Problem

For the numerical computation, the first step is to
translate the Helmholtz equation into a variational
problem. To accomplish this, we need Green’s formula∫ ∫

ϕ∆fdσ = −
∮
ϕ
∂f

∂n
ds−

∫ ∫
∇(f, ϕ)dσ (6)

(Blaschke [17] p.227) with the Nabla operator

∇(f, ϕ) := Df G−1 (Dϕ)T =
∑

(∂if g
ij ∂jϕ) (7)

where Df = (∂1f, ∂2f, ...). With the Dirichlet (f, ϕ ≡
0) or the Neumann ( ∂f

∂n ≡ 0) boundary condition
Green’s formula simply looses the boundary term. We
multiply the Helmholtz equation with test functions
ϕ ∈ C2, complying with the boundary condition. By
integrating over the area and using Green’s formula we
obtain:

ϕ∆f = −λϕf
⇔

∫∫
Df G−1 (Dϕ)T dσ = λ

∫∫
ϕf dσ

(8)
(with dσ = W du dv being the surface element in the
2D case or the volume element dσ = W du dv dw
in the 3D case). Every function f ∈ C2 on the open
domain and continuous on the boundary solving the
variational equation for all test functions ϕ is a solution
to the Laplace eigenvalue problem (Braess [18], p.35).
We will use the variational formulation to obtain a
system of equations to construct an approximation of
the solution.
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2.4. Implementation

To solve the Helmholtz equation on any Riemannian
manifold we employ the Finite Element Method [19].
We choose a tessellation of the manifold into so called
elements (e.g., triangles or in this work cuboid voxel).
We then choose linearly independent test functions
with up to cubic degree (the so called form functions
Fi) defined on the cuboid voxel elements. These high
degree functions lead to a better approximation and
consequently to better results, but because of their
higher degree of freedom more node points have to be
inserted into the elements. See [5] or [6] for a more
detailed description of the discretization used in the
FE method that finally leads to the following general
eigenvalue problem AU = λBU with the matrices

A = (alm) :=
(∫∫

DFl G
−1 (DFm)T dσ

)
,

B = (blm) :=
(∫∫

FlFmdσ
)
.

(9)
Where Fl is the form function being one at node
l and zero at all other nodes. Here U is the vector
(U1, . . . , Un) containing the unknown values of the
solution at each node and A, B are sparse positive
(semi-) definite symmetric matrices. The solution
vectors U (eigenvectors) with corresponding eigen-
values λ can then be calculated. The eigenfunctions
are approximated by

∑
UiFi. In case of the Dirichlet

boundary condition, the boundary nodes do not get a
number assigned to them and do not show up in this
system. In case of a Neumann boundary condition,
every node is treated exactly the same, no matter if
it is a boundary node or an inner node. Since only
a small number of eigenvalues is needed, a Lanczos
algorithm can be employed to solve this large symmet-
ric eigenvalue problem much faster than with a direct
method. In this work we use the ARPACK package to
compute the eigenfunctions and -values starting from
the smallest eigenvalue in increasing eigenvalue order.
It should be noted that the integrals mentioned above
are basically independent of the mesh (as long as the
mesh fulfills some refinement and condition standards).
Beyond that, this method is completely independent of
the given parametrization.

2.5. Form Functions

In order to compute the entries of the two matrices
A and B (equation 9) we need the form functions Fi

and their partial derivatives (∂kFi) in addition to the
metric values from equation (2). The form functions
are a basis of functions representing the solution space.

Any piecewise polynomial function F of degree
d can easily be linearly combined by a base of
global form functions Fi (of same degree d) having
the value one at a specific nodal point i and zero
at the others. For linear functions it is sufficient to
use only the vertices of the mesh as nodal points.
In case of a voxel the values at the 8 vertices are
sufficient to define a tri-linear function in the inside
c1+c2u+c3v+c4w+c5uv+c6uw+c7vw+c8uvw, for
higher degrees further nodal points have to be inserted.
If we look at a 2D example (a single triangle of a
triangulation), a linear function above the triangle can
be linearly combined by the three form functions at
the corners. These local functions can be defined on
the unit triangle (leg length one) and mapped to an
arbitrary triangle. Figure 3 shows examples of a linear
and a quadratic local form function for triangles. It

Figure 3. A linear and a quadratic form function and location
of 32 nodes for cubic serendipity FEM voxel.

can be seen that the form function has the value one at
exactly one node and zero at all the others. Note that in
the case of the quadratic form function new nodes have
to be introduced at the midpoint of each edge, because
quadratic functions in two variables have six degrees of
freedom. On each element containing n nodes exactly
n local form functions will be constructed this way.
The form functions and their derivatives can be defined
explicitly on the unit triangle or unit cube. Since high
order approximations lead to much better results, we
mainly use cubic form functions of the serendipity
family for the computation of the spectra in this paper.
To set up these functions over a cuboid domain new
nodes have to be inserted (two nodes along each edge
makes 32 nodes together with the vertices, see figure
3). A cubic function of the serendipity family with
three variables has 32 degrees of freedom, that can
be fixed by giving the function values at these 32
locations. More details on the construction of these
local functions can be found in most FEM books (e.g.
Zienkiewicz [19]). For each element the results of the
integrals (9) are calculated for every combination m, l
of nodes in the element and added to the corresponding
entry in the matrix A or B. Since this entry differs only
from zero when the associated global form functions
Fi overlap (i.e. the associated nodes share the same
element) the matrices A and B will be sparse.
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2.6. Cuboid Voxel Elements

For piecewise flat objects the computation described
above can be simplified, thus speeding up the con-
struction of the two matrices A and B significantly. If
the local geometry is flat we do not need to integrate
numerically on the manifold since the metric G (see
equation 2) is constant throughout each element. The
integrals can be computed once for the unit element
explicitly and then mapped linearly to the correspond-
ing element. This makes the time consuming numerical
integration process needed for curved surfaces or solids
completely unnecessary.

As opposed to the case of a surface triangulation
with a piecewise flat triangle mesh (with possibly
different types of triangles), the uniform decomposition
of a 3D solid into cuboid voxels leads to very simple
Finite Elements. A parametrization over the unit cube
of a cuboid with side length s1, s2, s3 (and volume
V ) yields a diagonal first fundamental matrix G =
diag

(
(s1)2, (s2)2, (s3)2

)
where W =

√
det(G) = V

and G−1 = diag
(

1
(s1)2

, 1
(s2)2

, 1
(s3)2

)
. These values

are not only constant for an entire voxel, they are
identical for every voxel (since the voxels are iden-
tical). Therefore we can pre-compute the contribution
of every voxel to the matrices A and B once for the
whole problem after setting up the form functions Fl

as described above:

al(i),m(j) + = V
∫ 1∫
0

∫
(

3∑
k=1

∂kFi ∂kFj

(sk)2 ) du dv dw

bl(i),m(j) + = V
∫ 1∫
0

∫
FiFj du dv dw.

(10)
The local indices i, j label the (e.g. 32) nodes of
the cuboid voxel element and thus the corresponding
local form functions and their partial derivatives. These
integrals can be pre-computed for every combination
i, j. In order to add (+ =) these local results into the
large matrices A and B only a lookup of the global
vertex indices l(i),m(j) for each voxel is necessary.
Therefore the construction of the matrices A and B
can be accomplished in O(n) time for n elements.

2.7. Normalizing the Spectrum

As mentioned above, the Laplace-Beltrami spectrum
is a diverging sequence. Analytic solutions for the
spectrum and the eigenfunctions are only known for
a limited number of shapes (e.g., the cuboid, the
cylinder, the solid ball). The eigenvalues for the cuboid
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Figure 4. Unnormalized and normalized (zoom-in) exact
Spectra of Cube, Cuboid, Ball.

with side length s1, s2 and s3 for example are

λM,N,O = π2

(
M2

(s1)2
+

N2

(s2)2
+

O2

(s3)2

)
with M,N,O ∈ N+ for the Dirichlet case and
M,N,O ∈ N for the Neumann case. In general the
Dirichlet and Neumann eigenvalues of a 3D solid
asymptotically tend to a curve dependent on the vol-
ume of the 3D manifold M :

λn ∼
(

6π2n

vol(M)

) 2
3

, as n ↑ ∞. (11)

Figure 4 (left) shows the discrete Dirichlet spectra of a
unit cube (V = 1), a cuboid with side length 1, 1.5, 2
(V = 3) and a unit ball (V = 4

3π). It can be seen how
the difference in volume manifests itself in different
scalings of the eigenvalue asymptotes. A statistical
method able to distinguish shapes needs to account for
this diverging behavior so not to limit the analysis to
an analysis of volume. Therefore the Laplace-Beltrami
spectra should be normalized by volume. The zoom-
in of the volume normalized spectra (Figure 4 right)
shows that shape differences are preserved in the
spectra after volume normalization.

2.8. Exactness of the Spectrum

To verify the accuracy of the numerically computed
spectra, we compare the eigenvalues of a cuboid with
side length (1, 1.5, 2) and of a ball with radius one
to the known exact values. In the case of the cuboid
we computed the first 200 eigenvalues. The maximum
absolute difference occurring in the Dirichlet spectra
was less than 0.044 (which is less than 0.015 % relative
error). This is due to the fact that the voxels represent
the cuboid exactly without any approximation error
at the boundary. The Neumann spectra have only a
maximum absolute difference of less than 0.01 (which
is less than 0.005% relative error), due to the higher
resolution.

In case of the ball an exact representation by voxels
is not possible, therefore the numerical results dif-
fer more strongly from the analytical ones especially
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Figure 6. The first 150 eigenvalues of the cube with tail
subtracted from the eigenvalues of the cube for the Dirichlet
and Neumann case.

for high eigenvalues (up to 6% relative error for
the first 100 Dirichlet eigenvalues). Since the exact
values of the object represented by the voxelization
are unknown, a fair analysis of the accuracy of the
computation is difficult. Nevertheless, it is interesting
to see that the numerical values closely approximate
the exact ones of the ball the more voxels are used (see
Figure 5, the value r describes the number of voxels
used in the direction of the radius).

2.9. Neumann Spectrum

To demonstrate that Neumann spectra can be used to
pick up significant geometric features much faster than
Dirichlet spectra the eigenvalues of the cube with a tail
(see Figure 6, left) were computed for the Neumann
and the Dirichlet boundary condition and compared
to the values of the cube. Figure 6 (right) shows the
differences of the first 150 eigenvalues for the two
different boundary conditions. Since the cube with tail
has a larger volume, its eigenvalues are expected to be
smaller than the values of the cube (see Section 2.2
2.). This fact is reflected in the graph (Figure 6 right)
where the differences are always positive. It can be
clearly seen that the Neumann spectrum picks up the
differences much earlier than the Dirichlet spectrum.
This is due to the fact that the Neumann boundary
condition allows the solutions to swing at the boundary
whereas the Dirichlet condition forces them to be

Figure 7. Dirichlet Eigenfunctions 4 (top) and 18 (bottom)

zero on the boundary, strongly reducing their freedom
especially in the region of the tail.

A 2D example of a square with a tail (ST ) illus-
trates the different behaviors of Neumann and Dirichlet
boundary conditions. Figures 7 and 8 depict a com-
parison of a few eigenfunctions of the square with
tail (ST ) and of the unit square (S1) for both the
Dirichlet and the Neumann case. For the Dirichlet
case (Figure 7), the lower eigenfunctions do not detect
the attached tail (7 top). For higher frequencies the
nodal domains shrink (7 bottom) until they are finally
able to slip into the smaller features. Because of the
strict Dirichlet boundary condition, this only happens
starting with the 18th eigenfunction. From a signal
processing point of view it is sensible that functions
with higher frequencies can be used to analyze smaller
features.
The Neumann spectrum behaves differently (Figure 8).
Because of the higher degree of freedom (with respect
to the free vibration of the eigenfunctions at the
boundary), small features like the tail influence the
eigenfunctions already very early. It is unnecessary
to compare the smallest eigenvalue which is always
zero with constant eigenfunctions. But already the
eigenfunctions with the smallest frequency above zero
(8 top) are very different from each other since one
of the extrema is shifted into the tail. This is reflected
in a change of more than 50% of the corresponding
eigenvalue. The third eigenfunction (8 bottom) of ST

on the other hand is zero in the tail region and therefore
almost identical with S. The corresponding eigenvalues
are almost the same.

2.10. Influence of Noise

As demonstrated in Section 2.7, volume normaliza-
tions can lead to good spectral alignments. Neverthe-
less, having identical noise levels for the populations
under investigation is essential, since different noise
levels will affect surface areas differently (high noise
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Figure 8. Neumann Eigenfunctions 2 (top) and 3 (bottom)

levels yield highly irregular bounding surfaces espe-
cially if the voxel resolution is low). Because surface
area is contained in the spectrum this has an influence
on the eigenvalues. Violating the assumption of similar
noise levels therefore leads to the detection of noise
level differences as opposed to shape differences, as
demonstrated in Figure 9 where the spectra of the ball
are depicted with different levels of added noise. A
fixed probability for adding a voxel to or removing a
voxel from the object boundary was chosen for each
experiment. Only voxels maintaining 6-connectivity
were added or removed. Increasing the noise level
moves the corresponding spectra further apart. (For the
analysis of identically acquired and processed shapes
– e.g., obtained through manual segmentations of MRI
data – a similar noise level is a reasonable assumption;
we also assume the accuracy of the spectra calculations
to stay the same for the whole population.)

0 20 40 60 80 1000
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Noise Level 1
Noise Level 2
Noise Level 3
Noise Level 4
Noise Level 5

Figure 9. Influence of noise on the ball spectrum (Dirichlet).
Noise-levels influence the spectral signature of a shape.

2.11. Influence of the Discretization

Domain discretizations can significantly affect com-
putational results. Figure 10 shows a two-dimensional
example for a domain consisting of a small and a
large square connected by a thin rectangle. Insufficient
degrees of freedom, due to a coarse discretization, can
lead to insufficiently resolved vibrational modes. In

Figure 10. Dirichlet Eigenmode 19 for coarse discretizations
(left) and fine (right).

particular, thin structures may simply be overlooked.
The Neumann spectra are not influenced as strongly
by the discretization.

3. Statistical analysis of LB spectra

The (possibly normalized) beginning sequence of
the Laplace-Beltrami spectrum (called ShapeDNA) can
be interpreted as a point v ∈ Rn

≥0 in the n-dimensional
positive Euclidean space. Given the ShapeDNA vi of
many individual objects divided into two populations
A and B we use permutation tests to compare group
features to each other (200,000 permutations were
used for all tests). We call a set of objects the object
population. Permutation testing is a nonparametric,
computationally simple way of establishing group dif-
ferences by randomly permuting group labels. Let
SA = {vi} and SB = {vj} denote two sets of
ShapeDNA associated to individuals for group A and
for group B respectively. Assume for example that we
want to investigate if elements in SA have on average
a larger Euclidean norm than the elements in SB (due
to some external influences). A possible test statistic
stat would be the sum of the lengths of the elements
in SA (stat :=

∑
vi∈SA

‖vi‖). We define the p-value
to be the fraction of permutations (of labels A and
B; keeping the number of elements per group fixed)
having a greater or equal sum stat than the original set
SA. The values of SA will be considered significantly
larger than the ones of SB at a prespecified significance
level α if p ≤ α (taken as α = 5% here). Note,
that rejecting the null hypothesis of two populations
being equal given a significance level α only implies
that the probability of making a type I error (i.e., the
probability of detecting false positives; “detecting a
difference when there is none in reality”) is α, but does
not exclude the possibility of making such an error.

We use a two-sided, nonparametric, multivariate
permutation test based on the maximum t-statistic to
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analyze the high-dimensional spectral feature vectors
(ShapeDNA). All shapes are initially corrected for
brain volume differences. See [20] for details on per-
mutation testing. The maximum t-statistic is chosen
due to the usually small number of available samples
in medical image analysis, compared to the dimension-
ality of the ShapeDNA feature vectors (preventing the
use of the Hotelling T 2 statistic). It is defined as

stat = tmax := max
1≤j≤N

|v̄A,j − v̄B,j |
SEj

. (12)

Here, N is the vector dimension, v̄A,j indicates the
mean of the j-th vector component of group A, and
SEj is the pooled standard error estimate of the j-th
vector component, defined as

SEj =

√
(nA − 1)σ2

A,j + (nB − 1)σ2
B,j√

1
nA

+ 1
nB

, (13)

where ni is the number of subjects in group i (with
i ∈ A,B) and σi,j is the standard deviation of vector
component j of group i. The maximum t-statistic is
particularly sensitive to differences in at least one of
the components of the feature vector [21]. It is a
summary statistic, which allows for the detection of
differences between feature vectors across populations.
However, it does not determine which components
show statistically significant differences.

Nevertheless, testing the individual statistical signif-
icance of vector components is possible. Such testing
needs to be performed over a whole set of components,
since it is usually not known beforehand which com-
ponent of a ShapeDNA vector will be a good candidate
for statistical testing. (I.e., we can in general not simply
pick one individual vector component (eigenvalue) for
statistical testing.) To account for multiple comparisons
when testing over a whole set of vector components,
the significance level needs to be adjusted (since “the
chance of finding differences that are purely random in
nature increases with the number of tests performed”).
See [22], [20] for background on schemes for multiple
comparison corrections or [11] for an application to
population studies using the ShapeDNA.

4. Results

Volume measurements are the simplest means of
morphometric analysis. While volume analysis results
are easy to interpret, they only characterize one mor-
phometric aspect of a structure. The following Sections
introduce the volumetric Laplace spectrum as a method
for a more complete global structural description using

Figure 11. Example of a caudate shape consisting of voxels.

the analysis of a caudate as an exemplary brain struc-
ture involved in memory function, emotion processing
and learning. For brevity all results are presented for
the right caudate only.

Magnetic Resonance Images (MRI) of the brains of
thirty-two neuroleptic-naı̈ve female subjects diagnosed
with Schizotypal Personality Disorder (SPD) and of
29 female normal control subjects were acquired on a
1.5-T General Electric MR scanner. Spoiled-gradient
recalled acquisition (SPGR) images (voxel dimensions
0.9375 x 0.9375 x 1.5 mm) were obtained coronally.
The images were used to delineate the caudate nucleus
(see Figure 11) and to estimate the intracranial content
(ICC). For details see [23].

4.1. Laplace-Beltrami Spectrum Results

The Laplace-Beltrami spectrum was computed for
two different shape normalizations:
(1) The shapes were volume normalized to unit brain

volume (using the ICC measurements).
(2) The shapes were normalized to unit caudate

volume.
In order to get more inner nodes especially into the
very thin tail region of the caudate shapes we use the
dual of the voxel graph. The dual voxel graph is the
voxel image where each voxel of the original image
(regular voxel image) is considered to be a vertex
of the dual graph. Voxels inside the domain become
inner vertices while voxel just outside of the domain’s
boundary now become boundary vertices. Figure 12
depicts a 2D case (using pixels) with the original
regular domain on the left and the dual on the right.
The dual graph enlarges the domain by half a layer
thus creating new inner nodes needed especially inside
the thinner features (tail). The use of the dual graph
is necessary since a global refinement of the voxel
leads to large FEM problems that may cause memory
problems on a standard computer. The two populations
show significant differences in volume, surface area
and in their 2D surface spectra [11]. We expect to find
significant differences also in their 3D volume spectra.
The following paragraphs look first at the Dirichlet,
then at the Neumann spectrum for both the regular
and dual voxel graph.
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Figure 12. Regular pixel domain (left) and its dual (right).
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Figure 13. Accumulative maximum t-statistic results (brain
volume normalized Dirichlet) for the regular (left) and the
dual (right) voxel graphs.

Dirichlet Spectra. Figure 13 shows the statistical
results for the regular voxel graph and its dual for the
caudate populations. The graph shows the correspond-
ing p value (see Section 3) when using the first N
brain volume normalized eigenvalues of the spectra for
the statistical analysis. We want to stress that not just
a single eigenvalue is used but the whole beginning
sequence of the first N values (therefore we call these
plots accumulated statistic plots1). A p value below
the 5% horizontal line is considered to be statistically
significant. In such a case the beginning sequence of
the spectrum is considered to be able to distinguish
between the two caudate populations (NC and SPD).
Figure 13 shows that the beginning sequence of the
Dirichlet spectrum does not yield any statistically
significant results. Employing the dual graph yields
lower p-values when higher eigenvalues get involved.
This observation is sensible, considering the fact that
especially in the thin tail part of the caudates only very
few inner nodes exist (see Section 2.11 for the effects
of low resolution). The dual graph has more degrees
of freedom, introducing inner nodes in the thin tail
area, and therefore improves the result. For a detailed
analysis employing the Dirichlet spectrum higher voxel
resolutions would be necessary.

Neumann Spectra. As demonstrated in section 2.9,
the Neumann spectrum can help to identify shape
differences much earlier than the Dirichlet spectrum.

1. For a statistical study, the number of used eigenvalues needs to
be chosen and fixed beforehand. The presented accumulated statistic
plots are merely meant to illustrate the behavior of population
statistics based on the Laplace-Beltrami spectrum for varying lengths
of the spectral feature vectors.
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(a) Regular, unit brain volume.
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(b) Dual, unit brain volume.
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(c) Regular, unit caudate volume.
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(d) Dual, unit caudate volume.

Figure 14. Accumulated statistic, Neumann boundary con-
ditions.

Figure 14 shows the accumulated statistics plots for
different normalizations of the Neumann spectra for
the regular and the dual case. In both cases (regular and
dual) the unit brain normalized spectra show very simi-
lar behavior (14 a,b): already very early, significant dif-
ferences are detected. Because these differences might
simply reflect the different caudate volumes (known to
be significant) a normalization to unit caudate volume
(14 c,d) is applied to reveal volume-independent shape
differences. The eigenvalues in the regular case (14 c)
do not show statistically significant shape differences
until about 150 eigenvalues are involved, however, the
dual case (14 d) shows a significant p value already
for 50 or more eigenvalues used. In this case the
frequencies become large enough (and therefore the
nodal domains small enough) to detect the smaller
features, presumably in the tail area. This assumption
aligns with the Dirichlet case (Figure 13 dual) where
better p-values are obtained when employing higher
frequencies. Finally it should be noted that computing
the twelve invariant moments (invariant with respect
to similarity group actions) proposed by Mangin et
al. [8] for the caudate shape population did not yield
statistically significant shape differences.

5. Conclusion

This paper shows the applicability and utility of
the volumetric Laplace spectrum with Dirichlet and
Neumann boundary conditions for 3D shape analysis
in medical imaging. In the context of shape matching
the use of the Neumann spectra as well as the compu-
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tations in 3D are completely new. It could be demon-
strated that the Neumann spectra can detect statistically
significant differences of the two populations (using
the maximum t-statistic) not only in size, but also in
shape, hinting at caudate shape differences in Schizo-
typal Personality Disorder. Computing the Dirichlet
and Neumann spectra directly on the 3D voxel data is
feasible on a standard desktop computer. The Neumann
spectra are of interest, since they recognize shape
differences much earlier than the Dirichlet spectra
and also work much better if the voxel resolution
is very low. Especially the higher eigenvalues yield
statistically significant results, indicating true shape
differences mainly in areas with smaller features (e.g.,
the tail area of the caudates). This result is promising
since it demonstrates the possibility to compare shape
based on a specific size of the features of interest
(multiresolution shape matching). Future work will
focus on this possibility.
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