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ABSTRACT

We propose a novel fully automatic three-label bone seg-
mentation approach applied to knee segmentation (femur and
tibia) from T1 and T2* magnetic resonance (MR) images.
The three-label segmentation approach guarantees separate
segmentations of femur and tibia which cannot be assured
by general binary segmentation methods. The proposed ap-
proach is based on a convex optimization problem by embed-
ding label assignment into higher dimensions . Appearance
information is used in the segmentation to favor the segmen-
tation of the cortical bone. We validate the proposed three-
label segmentation method on nine knee MR images against
manual segmentations for femur and tibia.

Index Terms— three-label segmentation, shape, appear-
ance, convex optimization, globally optimal

1. INTRODUCTION

Osteoarthritis (OA) is one of the major causes of long-term
disability affecting millions of people. With no cure avail-
able further research into potential treatments is necessary.
To this end large longitudinal image databases have been ac-
quired for example by the Osteoarthritis Initiative. However,
a comprehensive analysis of this imaging data is hindered by
a lack of fully-automatic analysis methods. Cartilage loss [1]
is believed to be the dominating factor in OA and hip and
knee involvement are most common. With magnetic reso-
nance imaging (MRI) becoming increasingly accepted for the
assessment of OA, we propose a new method for the segmen-
tation of femur and tibia from MR images. Our segmenta-
tion method is designed for three-label segmentation prob-
lems and is therefore particularly well suited for the simulta-
neous segmentation of bones within a joint, because it guar-
antees (unlike binary segmentation approaches) that bones are
segmented as separate entities even if they touch. The seg-
mentation framework is general and should therefore also be
applicable to segmentation problems where touching struc-
tures are frequent, such as the segmentation of femoral and
tibial cartilage.
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Many methods have been applied to bone and cartilage
segmentation, e.g., region growing approaches [2], medial
models, active shape models [3], general deformable mod-
els (such as live-wire, active contour or active surface mod-
els) [4], clustering methods [5], and graph-based approaches
[6]. Most of these methods require user interaction to place
seeds or identify landmarks or are not designed for the simul-
taneous segmentation of potentially touching objects. Further,
they are frequently based on non-convex optimization prob-
lems which are difficult to solve. Graph cuts and their recently
proposed continuous formulations [7, 8] allow for the compu-
tation of globally optimal solutions: the three-label segmen-
tation method described in this paper falls into the same class
of approaches. We make use of a formulation for depth-map
computations proposed in [9] and use it to extend our pre-
viously proposed (binary) bone segmentation method [10].
This results in a fully-automatic bone segmentation method,
which is easy to compute and allows for reliable segmenta-
tions. Sec. 2 introduces the three-label approach, results are
given in Sec. 3. The paper concludes with a summary and
future work.

2. THREE-LABEL BONE SEGMENTATION

The energy minimized for a general binary segmentation
problem proposed in [10] is

E(w) =
∫

Ω

g‖∇w‖+ rw + F · ∇w dΩ, w ∈ [0, 1]. (1)

This is a convex optimization problem (for which a globally
optimal solution can be obtained), where Ω is the image do-
main, w the indicator function (0 for background and 1 fore-
ground), g is regularization weight, r is a regional bias, and
F a vector field which can be used to incorporate orientation-
dependent appearance information. In [10] we proposed an
automatic bone segmentation method based on this frame-
work. For OA, clear separation of bones may not always
be observed in MR images for severely pathological cases.
Consequentially, a binary segmentation cannot guarantee a
separation of femur and tibia. We therefore propose a three-
label segmentation method, which guarantees this separation.
Fig. 1 illustrates the limitations of a binary versus a three-label
segmentation method for a synthetic case.
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Fig. 1. Synthetic example. (a) Binary segmentation result.
Femur and tibia are segmented as one object and the boundary
in the joint region is not captured well due to regularization
effects. (b) Proposed three-label segmentation. The bound-
aries between bones and background are preserved.

Zach et al.[9] formulated the associated multi-label seg-
mentation problem by expressing the labels through a sepa-
rate spatial dimension. A multi-label segmentation is a map-
ping from an image domain Ω to a label space represented by
a set of non-negative integers, i.e. L = {0, ..., L− 1}. The
labeling function Λ : Ω → L,x 7→ Λ (x) maps a pixel x in
the image domain Ω to label Λ (x) in label space. The goal is
to find a labeling function that minimizes an energy functional
of the form:

E(Λ) =
∫

c(x,Λ(x)) + V (∇Λ,∇2Λ, ...) dΩ, (2)

where c(x,Λ(x)) is the cost of assigning label Λ(x) to pixel
x and V (·) is a regularizing term. The different labellings can
be encoded through a level function u

u(x, l) = 1 if Λ(x) < l, 0 otherwise, (3)

which maps the Cartesian product of the image domain Ω
and the labeling space L to {0, 1}. By definition, we have
u(x, 0) = 0 and u(x, L) = 1. Of note, unlike the indicator
function w in Eq.(1), u does not directly encode labels, but
instead defines them through its discontinuity set. Fig.(2) il-
lustrates the relation between u and Λ for the three-label case.
This setup is in general asymmetric with respect to the labels,
since the design of the level function implies a specific label
ordering. However, for the three-label case, the background
label (1) can be symmetrically positioned between the two
object labels (i.e., femur (0) and tibia (2) ). The three-label
segmentation energy becomes

E(u) =
∫
D

g‖∇xu‖+ c |∇lu| dxdl, D = Ω× L, (4)

where, ∇xu denotes the spatial gradient of u, ∇xu =
(∂u/∂x, ∂u/∂y, ∂u/∂y)T and similarly ∇lu the gradient
in the label direction, ∇lu = ∂u/∂l. Functions g, u and c
are four-dimensional scalar fields. In our implementation,
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(c) Λ = 1 (d) Λ = 1

(e) Λ = 2 (f) Λ = 2

Fig. 2. Values of u and ∇lu for different label assignments
in a three-label segmentation. Assuming a discretization with
forward differences. ∇lu determines the label assignment.

we set g to a positive constant. The data-costs are defined
by the log-likelihoods of femur (l = 0), tibia (l = 2), and
background (l = 1)

c(x, l) = −log(P (l|I(x))) = −log

(
P (I(x)|l) · P (l)

P (I(x))

)
,

where P (I(x)|l) are obtained given a reference segmentation
through the joint histogram for I = {IT1, IT2} by Parzen
windowing. Initially, P (l) = 1

3 . The prior probabilities are
updated by the alignment of a shape model [10]. Shape model
alignment (to the likelihood image in the first iteration and to
the following segmentations in the following iterations) and
segmentation are iterated to convergence. In practice, sat-
isfying segmentations are typically obtained after two itera-
tions. For the binary segmentation [10], appearance infor-
mation F = β(∇IT1 + ∇IT2), β ∈ R+ can be introduced
to capture the outer boundary of the cortical bone which ap-
pears dark in both T1 and T2* images. This information can
be incorporated into the three-label segmentation through the
modified energy

E(u) =
∫
D

g ‖∇xu‖+ c |∇lu|+ F · ∇x(|∇lu|) dxdl, (5)

where F is a four-dimensional vector field, representing the
appearance information. Since u is a level function the design
of F depends on |∇lu|, which is illustrated in Fig.3. In our
bone segmentation task, we choose F as (Femur is labeled 0,
background 1 and tibia 2)

F (x, l) =

 β(∇IT1(x) +∇IT2(x)), β ∈ R+, if l = 0,
0, if l = 1,
β(∇IT1(x) +∇IT2(x)), β ∈ R+, if l = 2.

(6)
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Fig. 3. |∇lu| for different labels (femur is labeled 0, background 1 and tibia 2) to justify the choice for F in Eq. (6). Black is 0
and white is 1. Boundaries of femur and tibia in (a) and (c) are shown in gray for visualization only and correspond to 0.

We rewrite Eq. (5) as

E(u) =
∫
D

g ‖∇xu‖+ (c− div(F )) |∇lu| dxdl, (7)

and shift c− div(F ) to non-negative range by adding a com-
mon offset, which does not change the global minimizer.
Then we introduce the two dual variables p and q and obtain

E(u,p, q) =
∫
D
−p · ∇xu− q · ∇lu dxdl, (8)

subject to ‖p‖ ≤ g, |q| ≤ c− div(F ),

which is minimized with respect to u and maximized with
respect to p and q to obtain a minimizer for Eq. (5). Here, p
is a 4-dimensional vector field and q is a 4-dimensional scalar
field. The solution can be computed by the following gradient
descent/ascent

pt = −∇xu, ‖p‖ ≤ g, (9)

qt = −∇lu, |q| ≤ c− div(F ), (10)

ut = −(div(p) +∇lq), u ∈ [0, 1]. (11)

Because of the convexity of the optimization problem the iter-
ative scheme yields a global optimum. The dual energy to (5)
is given [9] by

E∗(u) =
∫

S

div(p) +∇lq dxdl

+
∫
◦
D

min(0,div(p) +∇lq) dxdl, (12)

where S = Ω × {3} is the source set (where u = 1 is en-
forced), T = Ω×{0} is the sink set (where u = 0 is enforced)

and
◦
D = D \ (S ∪ T ) = Ω× {1, 2}. The dual energy can be

used to terminate iterations once a sufficiently small duality
gap (difference between primal and dual energy) is reached.
After convergence, the solution u is essentially binary and
monotonically increasing. The three-label segmentation can
be recovered from the discontinuity set of u.

3. RESULTS AND VALIDATION

We demonstrate the behavior of the three-label segmentation
on a synthetic case and of the complete proposed segmenta-
tion algorithm on a set of nine real MR images (T1 weighted
3D SPGR and T2* 3D GRE images acquired sagittally at a
resolution of 0.29 × 0.29 × 1.5 mm3 at 3T). Preliminary re-
sults were obtained on images downsampled to an approxi-
mately isotropic resolution of 1.17×1.17×1.5 mm3. Fig. (1)
shows the beneficial behavior of the three-label segmenta-
tion method compared to binary segmentation for the syn-
thetic test case. Fig. 4 shows an exemplary three-label bone
segmentation overlaid onto the original T1 and T2* images.
Femur and tibia are segmented simultaneously and the outer
boundary of the cortical is captured as desired (see (c) and
(d)). We validated the obtained segmentation results against
manual segmentations of femur and tibia. Each of the nine
cases was segmented eight times using shape models gener-
ated from the manual segmentations for femur and tibia of
the remaining eight cases. Three axial slices of the manual
and three-label segmentations were cropped at the superior
and inferior image boundaries. We obtained a median Dice
coefficient of 0.953 for femur and 0.938 tibia (see Table 1).

AVDP ASD MSD DC
Median 2.14% 0.61 5.19 95.3%

Femur Mean 2.46% 0.65 5.45 95.1%
SD 2.15% 0.16 2.22 1.23%

Median 6.60% 0.78 6.04 93.8%
Tibia Mean 6.02% 0.84 7.79 93.4%

SD 3.77% 0.23 4.37 1.49%

Table 1. Statistics of validation results. SD is standard devia-
tion. AVDP is absolute volume difference percentage, ASD is
average surface distance, MSD is maximum surface distance
and DC is Dice coefficient. All distances in mm.



(a) original T1 image (b) original T2* image

(c) three-label segmentation (d) three-label segmentation
overlaid onto the original T1 image overlaid onto the original T2* image

Fig. 4. Three-label segmentation overlaid onto original images.

4. CONCLUSION AND FUTURE WORK

In this paper, we proposed a fully automatic three-label seg-
mentation method for bone segmentation and applied it to the
segmentation of femur and tibia. Unlike binary segmentation,
the three-label segmentation approach guarantees the separa-
tion of bones even if they touch. We formulated the segmen-
tation approach as a convex optimization problem in four di-
mensions assuring (given an aligned shape model) a globally
optimal solution. We further proposed a method to integrate
simple appearance information to allow for segmentations of
the outside of the cortical bone in MR images. Validation re-
sults confirm the performance of the proposed algorithm. The
obtained bone segmentations may subsequently be used [10]
to automatically transform MR images of the knee to a refer-
ence configuration. Further, the three-label segmentation al-
gorithm should be particularly well suited for knee cartilage
segmentations (to disambiguate the touching femoral and tib-
ial cartilage) which we will explore in future work.
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