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ABSTRACT

Automatic accurate segmentation methods are needed to as-
sess longitudinal cartilage changes in osteoarthritis (OA). We
propose a novel general spatio-temporal three-label segmen-
tation method to encourage segmentation consistency across
time in longitudinal image data. The segmentation is for-
mulated as a convex optimization problem which allows for
the computation of globally optimal solutions. The longitu-
dinal segmentation is applied within an automatic knee carti-
lage segmentation pipeline. Experimental results demonstrate
that the longitudinal segmentation improves the segmentation
consistency in comparison to the temporally-independent seg-
mentation.

Index Terms— longitudinal, three-label, segmentation,
cartilage

1. INTRODUCTION

Osteoarthritis (OA) is the most common form of joint disease
and a major cause of long-term disability in the US. Since
cartilage loss is believed to be the dominating factor in OA,
an automatic accurate cartilage segmentation from magnetic
resonance (MR) knee images is crucial to study longitudinal
cartilage changes for OA based on large image databases.

Several automatic cartilage methods have been proposed
recently, e.g., based on a voxel-based classification [1], an
active shape model [2], graph-cuts [3], an active appearance
model [4], texture analysis [5] and the variation of cartilage
thickness [6].

Since subtle changes of cartilage might be indicative of
early OA, it is desirable to study the longitudinal cartilage
changes from a temporally-consistent segmentation which
can mitigate image noise effects. However, the aforemen-
tioned methods treat each image volume separately without
exploring the temporal consistency within the same subject.
For brain segmentation, Xue et al. [7] proposed a longitudi-
nal segmentation method by adding a temporal consistency
constraint term to a fuzzy clustering segmentation.
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We propose a novel general longitudinal three-label seg-
mentation approach and apply it to the cartilage segmentation
problem. The longitudinal three-label segmentation is formu-
lated as a convex optimization problem. A temporal consis-
tency term is added to the existing three-label segmentation
[8]. We make use of temporally-independent bone and carti-
lage segmentations to transform the longitudinal image data
from native image space to the common longitudinal image
space for each subject.

The contributions of this paper include a novel general
longitudinal three-label segmentation method, the application
of the proposed method to achieve a fully automatic longitu-
dinal cartilage segmentation and the evaluation of longitudi-
nal segmentation on a sizable longitudinal dataset consisting
of more than 700 images against temporally-independent seg-
mentation.

The remainder of the paper is organized as follows: Sec-
tion 2 briefly introduces the existing three-label segmentation
method and its application to obtain temporally-independent
cartilage segmentation. Section 3 describes the proposed lon-
gitudinal three-label segmentation. The transformation from
the native image space to the longitudinal image space is ex-
plained in section 4. Experimental results are presented in
section 5. The paper closes with conclusion and future work.

2. TEMPORALLY-INDEPENDENT THREE-LABEL
SEGMENTATION

A three-label segmentation [8] has been proposed to over-
come the limitation of the binary segmentation on touching
objects. The segmentation energy is formulated by minimiz-
ing

E(u) =

∫
D
g ‖∇xu‖+ c |∇lu| dxdl,

D = Ω× L, u(x, 0) = 0, u(x, L) = 1.

(1)

The energy is defined on an image domain Ω and a labeling
space L = {0, ..., L− 1}; u is a level function whose dis-
continuity set defines labels; ∇xu is the spatial gradient of
u, ∇xu = (∂u/∂x, ∂u/∂y, ∂u/∂z)T ; ∇lu is the gradient in
label direction, ∇lu = ∂u/∂l; g > 0 controls spatial reg-
ularization and c defines the labeling cost. This is a convex



formulation and guarantees the separation of the femoral and
the tibial cartilage for which a globally optimal solution can
be computed.

To obtain temporally-independent cartilage segmenta-
tion, the labeling cost c for each label l in {FC,BG,TC}
(“FC”, “BG” and “TC” denote the femoral cartilage, the
background and the tibial cartilage respectively) are defined
by log-likelihoods for each label:

c(x, l) = −log(p(l|f(x))) = −log
(
p(f(x)|l) · p(l)

p(f(x))

)
, (2)

where f(x) denotes a feature vector at x. The background la-
bel “BG” is placed between the femoral cartilage label “FC”
and the tibial cartilage label “TC” in order to achieve a sym-
metric setting.

The local likelihood term p(f(x)|l) is computed from a
probabilistic classification based on the local image appear-
ance [9]. We compute the spatial prior p(l) using propagated
labels for femoral and tibial cartilage from multi-atlas regis-
tration [9]. The likelihoods and priors are integrated into (2)
to solve (1) and we obtain the temporally-independent three-
label cartilage segmentation.

3. LONGITUDINAL THREE-LABEL
SEGMENTATION

Rather than treating each image separately, we can make use
of the temporal consistency of longitudinal image data from
the same subject to improve the segmentation. We propose
a novel longitudinal three-label segmentation method to miti-
gate possible noise effect and encourage segmentation consis-
tency across time points. The method is general and capable
of solving other segmentation problems with two objects.

Assuming the longitudinal image data for a given subject
has been registered into a common space, we formulate the
longitudinal three-label segmentation energy as

E(u) =

∫
D
g ‖∇xu‖+ c |∇lu|+ h |∇tu| dxdldt,

D = Ω× L× T , u(x, 0, t) = 0, u(x, L, t) = 1,

(3)

where T is the time domain; ∇tu is the gradient in time di-
mension,∇tu = ∂u/∂t; h > 0 controls the temporal regular-
ization. This is a convex formulation and yields a global op-
timal solution. As the cartilage is a thin structure this energy
(defined over a 5-dimensional space) can still be efficiently
optimized. Figure 1 demonstrates the benefit of the longitudi-
nal segmentation which is more resistant to image noise than
the temporally-independent segmentation.

4. REGISTRATION OF LONGITUDINAL IMAGES

The longitudinal segmentation model (3) requires registered
longitudinal data. However the images at different time points

are not aligned. Therefore we need to register the longitudi-
nal images of a given subject into a common space (longi-
tudinal space) before performing longitudinal segmentation.
Here we use the temporally-independent bone segmentation
obtained through a multi-atlas-based approach [9] and the car-
tilage segmentation discussed in section 2.

Specifically we use independent rigid transformations
based on the femur and tibia segmentations to initialize rigid
transformations between the temporally-independent femoral
and tibial cartilage segmentations (for improved registration
robustness). The labeling cost for (3) can then be computed
as

c(x, l, t) = −log(pt(l|f(x))) = −log
(
pt(f(x)|l) · pt(l)

pt(f(x))

)
,

(4)
where the subscript t represent the likelihoods at the t-th time
point which are propagated from the native image space:

pt(f(x)|FC) = RFC
t ◦RFB

t ◦ p(f(x)|FC),

pt(f(x)|TC) = RTC
t ◦RTB

t ◦ p(f(x)|TC),

pt(FC) = RFC
t ◦RFB

t ◦ p(FC),

pt(TC) = RTC
t ◦RTB

t ◦ p(TC).

(5)

Here, Rt denotes a rigid transform for the t-th timepoint. Su-
perscripts specify the registration (“FC”: femoral cartilage,
“TC”: tibial cartilage, “FB”: femoral bone, “TB”: tibial bone).
The choice of the common space is important. To avoid over-
lap of femoral and tibial cartilage after registration, we choose
the first time-point (baseline image) as the common space be-
cause it is expected to have the thickest cartilage. The longi-
tudinal segmentation of each cartilage can then obtained by
optimizing (3) with labeling cost defined by (4).

5. EXPERIMENTAL RESULTS

This section compares the proposed longitudinal segmen-
tation against the temporally-independent segmentation on
a knee MR image dataset acquired for an OA study. We
make use of the Pfizer Longitudinal Dataset (PLS-A9001140)
which contains T1-weighted (3D SPGR) images for 155 sub-
jects, imaged at baseline, 3, 6, 12, and 24 months at a res-
olution of 1.00 × 0.31 × 0.31 mm3. Some subjects have
missing scans and we have 706 MR images in total. The
Kellgren-Lawrence grades (KLG) [10] were determined for
all subjects from the baseline scan, classifying 81 as normal
control subjects (KLG0), 1 as KLG1 (mild OA), 40 as KLG2
(severe OA) and 33 as KLG3 (server OA).

Expert cartilage segmentations are available for all images
in the native image space. The femoral cartilage segmenta-
tion is drawn only on the weight-bearing part while the tibial
cartilage segmentation covers the entire region. We use im-
ages from 18 subjects (13 KLG0s, 2 KLG2s and 3 KLGs) as
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Fig. 1. Synthetic example demonstrating the benefit of longitudinal segmentation. (a), (b) and (c) are longitudinal images and
(b) has image noise. (d), (e) and (f) are the corresponding segmentation from the longitudinal segmentation model (3). The
segmentation result is resistant to image noise (red object) and still captures the atrophy of the blue object.

training atlases (for multi-atlas registration and local classifi-
cation) to segment the remaining 137 subjects. Within these
18 subjects, each subject is tested using the other 17 images
for training.

Figure 2 compares the mean Dice similarity coefficient
(DSC) of the longitudinal segmentation of each cartilage with
increasing amount of temporal regularization. The DSCs are
computed in both the longitudinal image space and the native
image space. The mean DSC increases with an appropriate
amount of temporal regularization, which demonstrates the
advantage of the longitudinal segmentation model. The dif-
ference of the mean DSC in the two spaces is due to the rigid
transformations and interpolations.

Table 1 compares the validation statistics in the native im-
age space from the longitudinal segmentation and temporally-
independent segmentation. Since we only have one expert
segmentation which is drawn timepoint-by-timepoint (and
therefore not expected to be longitudinally consistent) we
cannot directly assess improvements in segmentation accu-
racy of the longitudinal method with respect to the individual
segmentations. Table 1 indicates that the temporal smoothing
inherent in the longitudinal model does not greatly affect the
result with respect to temporally-independent manual seg-
mentations. However, a more temporally consistent is more
biologically plausible, which is achieved by the longitudinal
segmentation.

To evaluate the improvement of temporal consistency, we
use the weighted sum of number of label changes over time
as the temporal consistency measure (TCM) defined by

TCM =

n−1∑
i=1

∑
x∈Ω

|Si+1(x)− Si(x)|
ti+1 − ti

, (6)

where n is number of time points (n > 1), x is a voxel in
the image domain Ω, Si is the segmentation and ti is the time
at i-th time point. The weighting is based on the assump-
tion that label changes are more likely to occur over a longer
time period. For those patients who have only one scan avail-
able (n = 1), the measure is set to 0. We compare the TCM
of temporally-independent, longitudinal and expert segmenta-

Table 1. Mean (standard deviation) of DSC, sensitivity and
specificity with g = 0.2 and h = 3.0 computed in the na-
tive image space. FC: Femoral cartilage. TC: Tibial car-
tilage. Lon: Longitudinal segmentation. Ind: Temporally-
independent segmentation.

DSC Sensitivity Specificity
Lon-FC 75.0% (4.6%) 78.0% (7.1%) 99.9% (0.04%)
Ind-FC 74.3% (4.8%) 82.2% (7.7%) 99.8% (0.05%)
Lon-TC 80.8% (3.4%) 80.5% (6.2%) 99.8% (0.06%)
Ind-TC 81.8% (3.5%) 84.2% (6.3%) 99.8% (0.07%)

tions of the femoral cartilage for all the subjects in Fig 3. The
longitudinal segmentation achieves the best temporal consis-
tency. Note that the expert segmentations are drawn indepen-
dently in each native image space which explains the high
TCM. The same comparison result is also observed for the
tibial cartilage.

The temporally-independent cartilage segmentation is
tested on the cartilage segmentation challenge SKI10 [11]
dataset and ranks 5th out of 11 participants. However, the
longitudinal cartilage segmentation is not applicable to the
SKI10 data because it is not a longitudinal dataset.

6. CONCLUSION AND FUTURE WORK

A novel longitudinal three-label segmentation approach is
proposed to encourage the temporal consistency of the seg-
mentation of longitudinal data . The approach is general and
can be applied to other longitudinal segmentation problems
with two objects. Experimental results on cartilage segmen-
tation demonstrate the improvement in temporal consistency
using the proposed longitudinal segmentation against the
temporally-independent segmentation.

In the future, we will evaluate the performance of the
temporally-independent and the longitudinal segmentations
on different stages of OA. We will also perform statistical
analysis on cartilage thickness change over time and compare
the analysis results from different segmentation methods.
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Fig. 2. Change of mean DSC for femoral and tibial cartilage
over the amount of temporal regularization h (abscissa). Set-
ting h = 0 is equivalent to temporally-independent segmen-
tation in the longitudinal image space. The parameter g is set
to be 0.2 for all the tests. The computation of DSC is done in
the longitudinal image space (red) by transforming the expert
segmentations to the longitudinal image space. The DSCs are
also computed in the native image space (blue) by transform-
ing the longitudinal segmentations back into the native image
space. Improvement of the mean DSC by including temporal
regularization is observed in both spaces. Paired t-tests be-
tween two successive settings of h with respect to the mean
DSC show statistically significant performance improvement
of including temporal regularization for all the four curves
with the for a significance level of α = 0.05.

Fig. 3. Boxplots of temporal consistency measure (TCM) of
femoral cartilage from expert, temporally-independent (g =
0.2) and longitudinal (g = 0.2 and h = 3.0) segmentations.
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