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Abstract

Osteoarthritis (OA) is the most common form of joint disease and often characterized by cartilage changes. Accurate
quantitative methods are needed to rapidly screen large image databases to assess changes in cartilage morphology. We
therefore propose a new automatic atlas-based cartilage segmentation method for future automatic OA studies.

Atlas-based segmentation methods have been demonstrated to be robust and accurate in brain imaging and therefore
also hold high promise to allow for reliable and high-quality segmentations of cartilage. Nevertheless, atlas-based methods
have not been well explored for cartilage segmentation. A particular challenge is the thinness of cartilage, its relatively
small volume in comparison to surrounding tissue and the difficulty to locate cartilage interfaces – for example the
interface between femoral and tibial cartilage.

This paper focuses on the segmentation of femoral and tibial cartilage, proposing a multi-atlas segmentation strategy
with non-local patch-based label fusion which can robustly identify candidate regions of cartilage. This method is
combined with a novel three-label segmentation method which guarantees the spatial separation of femoral and tibial
cartilage, and ensures spatial regularity while preserving the thin cartilage shape through anisotropic regularization.
Our segmentation energy is convex and therefore guarantees globally optimal solutions.

We perform an extensive validation of the proposed method on 706 images of the Pfizer Longitudinal Study. Our
validation includes comparisons of different atlas segmentation strategies, different local classifiers, and different types
of regularizers. To compare to other cartilage segmentation approaches we validate based on the 50 images of the SKI10
dataset.
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1. Introduction

Osteoarthritis (OA) is the most common form of joint
disease and a major cause of long-term disability in the
United States of America [29]. Cartilage loss is believed
to be the dominating factor in OA. As magnetic resonance
imaging (MRI) is able to evaluate cartilage volume and
thickness and allows reproducible quantification of carti-
lage morphology [10, 9] it is increasingly accepted as a
primary method to evaluate progression of OA. An accu-
rate cartilage segmentation from magnetic resonance (MR)
knee images is crucial to study OA and would be of partic-
ular use for future clinical trials to test so far non-existing
disease-modifying OA drugs. Already today, large image
databases exist for OA studies which are well suited to de-
sign and test automatic cartilage segmentation algorithms
capable of processing thousands of images. For example,
the Pfizer Longitudinal Study (PLS) dataset contains 158
subjects, each with five time points. The Osteoarthritis
Initiative (OAI) dataset includes 4,796 subjects with mul-
tiple time points. Due to the large size of image databases,
a fully automatic segmentation and analysis method is es-

sential. In this paper, we therefore propose a new carti-
lage segmentation method from knee MR images, which
requires no user interaction (besides quality control). The
method is a step towards automatic analysis of large OA
image databases.

Recently, several automatic methods have been pro-
posed for cartilage segmentation. Folkesson et al. [11]
proposed a voxel-based hierarchical classification scheme
for cartilage segmentation. Fripp et al. [12] used active
shape models for bone segmentation in order to extract
the bone-cartilage interface followed by tissue classifica-
tion. A graph-based simultaneous segmentation of bone
and cartilage was developed by Yin et al [32]. Vincent et
al. [27] applied multi-start and hierarchical active appear-
ance modeling to segment cartilage. Texture analysis [7]
has also been employed in cartilage segmentation. Seim et
al. [20] utilized prior knowledge on the variation of carti-
lage thickness. Voxel-based classification approaches have
been investigated for segmenting multi-contrast MR data
in [17, 34].

To allow for localized analysis and the suppression of un-
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likely voxels in a segmentation, introducing a spatial prior
is desirable. This can be achieved through an atlas-based
analysis method. In particular, multi-atlas segmentation
strategies [18] have shown to be robust and reliable image
segmentation methods. While such methods have been
successfully used in brain imaging, they have so far rarely
been used for cartilage segmentation. The work by Glocker
et al. [13], which used a statistical shape atlas from a set
of pre-aligned knee images, and the work by Tamez-Peña
et al. [26] using a multi-atlas-based method, are two ex-
ceptions. Our work in this paper is most closely related
to [26] as both methods make use of multi-atlas segmenta-
tion strategies. However, we significantly extend the prior
work by [26]. In particular:

1) We propose a convex three-label segmentation
method which allows for anisotropic spatial regular-
ization. This is a generally applicable segmentation
method. Applied to the segmentation of femoral and
tibial cartilage, it guarantees their spatial separation
while ensuring spatially smooth solutions accounting
for the cartilage thinness through anisotropic regular-
ization. We incorporate spatial priors via atlas in-
formation (see 2) and local segmentation label like-
lihoods through appearance classification comparing
both k nearest neighbors (kNN) classification and
classification by a support vector machine (SVM).

2) We compare different atlas-based segmentation meth-
ods: using a single average-shape atlas as well as mul-
tiple atlases with various label fusion strategies as seg-
mentation priors.

3) We perform an extensive validation on over 700 im-
ages with varying levels of OA disease progression
using data from both the Pfizer Longitudinal Study
(PLS) and from SKI10 [14] to compare to existing
methods.

These contributions are significant as:

1) Due to its convexity our segmentation method al-
lows the efficient computation of globally optimal so-
lutions for three segmentation labels. Furthermore,
we demonstrate that anisotropic regularization within
this segmentation model is less sensitive to parameter
settings than isotropic regularization and yields more
accurate segmentations.

2) We show that using non-local patch-based label fusion
from multiple atlases to obtain segmentation priors
improves segmentation results significantly over using
a single atlas or a local label fusion strategy.

3) Our validation dataset (with more than 700 images)
is at least one order of magnitude larger than most
prior cartilage segmentation validation studies, hence
demonstrating the ability of our proposed segmenta-
tion method to automatically achieve accurate car-
tilage segmentations for large imaging studies. The

Figure 1: Cartilage segmentation pipeline.

required robustness of the segmentation method is
achieved by using a multi-atlas segmentation strat-
egy. The obtained accuracy can be attributed to the
combination of local classification, multi-atlas label
fusion, three-label segmentation and anisotropic reg-
ularization.

Figure 1 illustrates the proposed cartilage segmenta-
tion method. The method starts with multi-atlas-based
bone segmentation to guide the cartilage atlas registra-
tion. The cartilage spatial prior is then obtained from
either multi-atlas or average-shape-atlas registration. A
probabilistic classification is performed to compute local
likelihoods. The three-label segmentation makes the final
decision from the spatial priors and the local likelihoods
jointly, allowing for anisotropic spatial regularization. The
method described in this paper is an extension of the pre-
liminary ideas we presented in recent conference papers
[24, 22, 23]. This paper offers more details, additional ex-
periments, and a much larger validation study.

The remainder of this paper is organized as follows: Sec-
tion 2 clarifies the atlas terminology and briefly reviews the
atlas-based segmentation approaches. Section 3 presents
the three-label segmentation framework with isotropic and
anisotropic regularization. Section 4 describes the multi-
atlas-based bone segmentation method. The probabilistic
cartilage classification is explained in section 5. Sections
6 and 7 discuss the average-shape-atlas-based and multi-
atlas-based cartilage segmentation, respectively. Experi-
mental results on the PLS dataset are shown in section
9. We compare the proposed method to other methods in
section 10 by making use of the SKI10 dataset. The paper
closes with conclusions and future work.

2. Atlas Terminology

An atlas [1], in the context of atlas-based segmentation,
is defined as the pairing of an original structural image
and the corresponding segmentation. Atlas-based segmen-
tation methods can be categorized into three groups [15],
namely single-atlas-based, average-shape atlas-based and
multi-atlas-based methods. The work by Glocker et al. [13]
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falls into the second group. The work by Tamez-Peña et
al. [26] belongs to the multi-atlas category.

In the single-atlas-based method, a single labeled image
is chosen as the atlas and registered to the query image.
The atlas label is propagated following the same trans-
form to generate the segmentation for the query image.
The drawbacks of the single-atlas-based segmentation in-
clude the possibility that the atlas used is anatomically
unrepresentative of the query image and occasional reg-
istration failures because the method critically depends
on the success of only one registration. To alleviate the
problem of being non-representative, average-shape-atlas-
based methods have been proposed, where a reference im-
age is selected to build the atlas from a set of labeled
images. However, here success still depends on the success
of a single registration. Furthermore, the choice of ref-
erence image is important for segmentation accuracy and
frequently addressed by building an average atlas-image
through registration – which in itself is not a trivial task.
Alternatively, in multi-atlas-based segmentation, multiple
labeled images are registered to the query image indepen-
dently, hereby avoiding reliance on one registration while
allowing to represent anatomical variations. The downside
of multi-atlas-based segmentation is high computation cost
as multiple registrations are required. In spite of the ex-
pensive computation, multi-atlas-based segmentation has
been popular and successful in brain imaging. In partic-
ular, Rohlfing et al. [18] demonstrated that multi-atlas-
based segmentation is more accurate than the two other
atlas-based segmentation methods. We will therefore fol-
low a multi-atlas strategy in what follows.

3. Three-label segmentation method

A binary segmentation consists of only two labels, i.e.,
foreground and background, and tends to merge touch-
ing objects if spatial regularity is enforced. A multi-label
segmentation can keep objects separated and is therefore
particularly suited to segment touching objects. Since the
femoral and tibial cartilage (as well as bones for severe
OA patients) may touch each other in the MR images, we
make use of a three-label segmentation method to avoid
possible mergings. Figure 2 demonstrates the limitations
of a binary versus a three-label segmentation method for
a synthetic bone case.

The three-label case is a specialization of our previous
multi-label segmentation method [33] which allows for a
symmetric formulation with respect to the background seg-
mentation class. A multi-label segmentation is a mapping
from an image domain Ω to a label space represented by
a set of non-negative integers, i.e. L = {0, ..., L− 1}. The
labeling function Λ : Ω → L,x 7→ Λ (x) maps a pixel x
in the image domain Ω to label Λ (x) in label space. The
goal is to find a labeling function that minimizes an energy
functional of the form:

E(Λ) =

∫
c(x,Λ(x)) + V (∇Λ,∇2Λ, ...) dx (1)

(a) (b)

Figure 2: Synthetic example. (a) Binary segmentation result. Fe-
mur and tibia are segmented as one object and the boundary in the
joint region is not captured well due to regularization effects. (b)
Proposed three-label segmentation. The boundaries between bones
and background are preserved.

where c(x,Λ(x)) is the cost of assigning label Λ(x) to pixel
x and V (·) is a regularizing term. The different labelings
can be encoded through a level function u

u(x, l) =

{
1 if Λ(x) < l,
0 otherwise,

(2)

which maps the Cartesian product of the image domain Ω
and the labeling space L to {0, 1}. By definition, we have
u(x, 0) = 0 and u(x, L) = 1. Of note, u does not directly
encode labels, but instead defines them through its discon-
tinuity set. Figure 3 illustrates the relation between u and
Λ for the three-label case. This setup is in general asym-
metric with respect to the labels, since the design of the
level function implies a specific label ordering. However,
for the three-label case, the background label can be sym-
metrically positioned between the two object labels (i.e.,
femoral cartilage and tibial cartilage) hence resulting in a
method which treats the two cartilage classes symmetri-
cally.

Minimizing the segmentation energy functional

E(u) =

∫
D
g ‖∇xu‖+ c |∇lu| dxdl, D = Ω× L

u ∈ [0, 1], u(x, 0) = 0, u(x, L) = 1,

(3)

with respect to u, results in an essentially binary and
monotonically increasing level function u indicating the
multi-label image segmentation. Here, ∇xu is the spatial
gradient of u, ∇xu = (∂u/∂x, ∂u/∂y, ∂u/∂z)T and ∇lu is
the gradient in label direction, ∇lu = ∂u/∂l; g controls
the isotropic regularization and c defines the labeling cost.
In our implementation, we set g to a non-negative con-
stant. The formulation is convex and therefore a global
optimum can be computed. We apply an iterative gradi-
ent descent/accent scheme for the optimization. See Ap-
pendix A for more details on the numerical solution to
(3). The solution u is essentially binary1 and monoton-

1Since u is in [0,1], the returned solution can be fractional. An
equivalent binary optimal solution can be obtained by thresholding
u.
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(a) (b) (c)

Figure 4: Synthetic example: (a) original image to be segmented; (b) and (c) three-label segmentation results with isotropic and anisotropic
regularization respectively. Anisotropic regularization avoids over-regularization at the tips of the synthetic shape.

(a) u for Λ = 0 (b) |∇lu| for Λ = 0

(c) u for Λ = 1 (d) |∇lu| for Λ = 1

(e) u for Λ = 2 (f) |∇lu| for Λ = 2

Figure 3: Values of u and |∇lu| for different label assignments in
a three-label segmentation (abscissa l). Assuming a discretization
with forward differences. |∇lu| determines the label assignment.

ically increasing. The three-label segmentation can then
be computed from the discontinuity set of u.

The isotropic regularization in model (3) treats all di-
rections equally, which is not an ideal choice for long and
thin objects like the cartilage. To customize the segmen-
tation model (3) for cartilage segmentation, we replace the
isotropic regularization term, g, by an anisotropic one

E(u) =

∫
D
‖G∇xu‖+ c|∇lu| dxdl, D = Ω× L,

u ∈ [0, 1], u(x, 0) = 0, u(x, L) = 1,

(4)

where G is a positive-definite matrix determining the
amount of regularization. This avoids over-regularization
at the boundaries of the cartilage layers and therefore al-
lows for a more faithful segmentation. Figure 4 illustrates
the problem with isotropic regularization which tends to
shrink the segmentation boundary by cutting thin objects
short and the benefit from anisotropic regularization. We

Figure 5: Difference between isotropic and anisotropic regulariza-
tion. The black curve is an edge in an image. The regularization is
illustrated at a pixel (the dot). The blue circle indicates the isotropic
case where regularization is enforced equally in every direction. The
red ellipse shows the anisotropic situation where less regularization
is applied in the normal direction and more in the tangent direction.

choose G as

G = g
[
I + (α− 1)nnT

]
, α ∈ [0, 1], (5)

where I is the identity matrix and n is a unit vector in-
dicating the direction of less regularization (the normal
direction to the cartilage surface). See Fig. 5 for an illus-
tration of isotropic versus anisotropic regularization. Since
the normal direction to the cartilage surface is not known
a-priori, we approximate it by the normal direction to the
bone-cartilage interface which can be determined from the
segmentations of femur and tibia (see section 8). The en-
ergy functional (4) is also convex and therefore a global
optimum can also be computed. Again, we apply an itera-
tive gradient descent/accent scheme for the optimization.
See Appendix A for more details on the numerical solu-
tion to (4). The solution u is also essentially binary and
monotonically increasing.

Section 4 describes how to use the model (3) for bone
segmentation using a multi-atlas-based approach to obtain
spatial priors. Details on using model (4) for cartilage
segmentation are discussed in sections 5, 6 and 7.
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4. Multi-atlas-based Bone Segmentation

The labeling cost c in (3) for each label l in
{FB,BG,TB} (“FB”, “BG” and “TB” denote the femoral
bone, the background and the tibial bone respectively) are
defined by log-likelihoods for each label given image I at
a voxel location x:

c(x, l) = −log(P (l|I(x))) = −log
(
p(I(x)|l) · P (l)

p(I(x))

)
.

(6)
Note that the background label “BG” is placed in the label
order between the femur label “FB” and the tibia label
“TB” in order to achieve a symmetric formulation.

The likelihood terms p(I(x)|FB) and p(I(x)|TB) are
computed from image intensities. Since bones appear dark
in T1 weighted MR images, we assume a simple model (7)
to estimate bone likelihoods,

p(I(x)|FB) = p(I(x)|TB) = exp(−βI(x)), (7)

where β is set to 0.02 in our implementation assuming
I(x) ∈ [0, 100].

To compute the prior terms p(FB) and p(TB) in (6),
we employ a multi-atlas registration approach followed by
label fusion. Suppose we have N atlases Ai and their bone
segmentations SFB

i and STB
i (i = 1, 2, ..., N). Registration

from an atlas Ai to a query image I is an affine registration
T affine
i followed by a B-Spline registration T bspline

i . Aver-
aging all N propagated atlas labels yields a spatial prior
of femur and tibia for the query image:

p(FB) =
1

N

N∑
i=1

(
T bspline
i ◦ T affine

i ◦ SFB
i

)
,

p(TB) =
1

N

N∑
i=1

(
T bspline
i ◦ T affine

i ◦ STB
i

)
.

(8)

Now that we have computed the spatial priors and the
local likelihoods, we integrate them into (6) and solve (3)
to obtain the three-label bone segmentation. The bone
segmentation will help locate the cartilage in atlas-based
cartilage segmentation.

5. Probabilistic classification

We use the three-label segmentation with anisotropic
regularization for cartilage segmentation to account for
thin cartilage layers. The labeling cost c for each label l in
{FC,BG,TC} (“FC”, “BG” and “TC” denote the femoral
cartilage, the background and the tibial cartilage respec-
tively) are defined by log-likelihoods for each label:

c(x, l) = −log(P (l|f(x))) = −log
(
p(f(x)|l) · p(l)

p(f(x))

)
, (9)

where f(x) denotes a feature vector at a voxel location x.
Again the background label “BG” is placed between the

femoral cartilage label “FC” and the tibial cartilage label
“TC” in order to achieve a symmetric formulation.

We compute the spatial prior p(l) in two different ways:
using an average-shape-atlas registration and a multi-atlas
registration (see sections 6 and 7). We compare the per-
formance of both approaches in section 9. The local likeli-
hood term p(f(x)|l) is obtained from a probabilistic clas-
sification based on local image appearance. We investi-
gate classification based on a probabilistic k nearest neigh-
bors (kNN) [8] as well as by a support vector machine
(SVM) [4]. For classification we use a reduced set of fea-
tures compared to [11]: intensities on three scales, first-
order derivatives in three directions on three scales and
second-order derivatives in the axial direction on three
scales. The three different scales are obtained by convolv-
ing with Gaussian kernels of σ = 0.3 mm, 0.6 mm and
1.0 mm. All features are normalized to be centered at 0
and have unit standard deviation.

An important difference from [11] and [17] is the proba-
bilistic nature of our classification which allows for an easy
incorporation of the classification result into our Bayesian
framework. Further, the final segmentations are generated
by a segmentation method with anisotropic regularization,
whereas no regularization was used in [11] nor [17]. We
demonstrate in section 9 that spatial regularization helps
improve the segmentation accuracy and anisotropic regu-
larization yields better accuracy than isotropic regulariza-
tion.

5.1. Classification using kNN
We estimate the data likelihoods for femoral and tibial

cartilage, p(f(x)|l), of (9) by probabilistic kNN classifica-
tion [8]. We use a one-versus-other classification strategy
and the expert segmentations of femoral and tibial carti-
lage to build the kNN classifier. Specifically, let “FC” de-
note the femoral cartilage class, “TC” the tibial cartilage
and “BG” the background class. The training samples of
class FC are the voxels labeled as femoral cartilage. Sim-
ilarly, the training samples of class TC are the voxels la-
beled as tibial cartilage. The training samples of class BG
are the voxels surrounding the femoral and tibial cartilage
within a specified distance. The outputs of the probabilis-
tic kNN classifier given a query voxel x with its feature
vector f(x) are:

p(f(x)|FC) =
nFC(f(x))

k
,

p(f(x)|BG) =
nBG(f(x))

k
,

p(f(x)|TC) =
nTC(f(x))

k
.

(10)

Here nFC, nTC, nBG denote the number of votes for the
femoral cartilage, tibial cartilage, and background class re-
spectively; k is the number of nearest neighbors of concern.
Since kNN is sensitive to the number of training samples,
we scale the outputs according to the training class sizes
to balance the three classes.
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5.2. Classification using an SVM

An alternative approach to compute the local likelihoods
is to use a support vector machine (SVM) [4], which con-
structs a hyperplane maximally separating classes given
a labeled training set. Koo et al. [17] proposed to use
two-class SVM to segment cartilage automatically from
multi-contrast MR images. We apply LIBSVM [3] to per-
form probabilistic three-class SVM classification with the
features described above. The results are local likelihoods
for the background, the femoral and the tibial cartilage,
i.e., p(f(x)|BG), p(f(x)|FC) and p(f(x)|TC). We compare
the SVM and the kNN probabilistic classification methods
in section 9.

6. Average-shape-atlas-based Cartilage Segmenta-
tion

This section discusses how to build a probabilistic bone
and cartilage atlas by averaging registered expert segmen-
tations and computing the cartilage spatial priors by regis-
tration of the atlas. The atlas within this section captures
the spatial relationships between the bone and the carti-
lage.

Suppose we have N images with expert segmentations.
We pick the segmentation of one image as the reference to
bring all the segmentations to the same position. Specially,
we register the femur segmentation SFB

i (i = 1, 2, ..., N)
and the tibial segmentation STB

i (i = 1, 2, ..., N) to the
reference femur and tibia segmentations with affine trans-
forms TFB

i and TTB
i respectively. The femoral and tib-

ial cartilage segmentations SFC
i and SFC

i are propagated
accordingly. The average bone and cartilage atlas Aavg

(including AFB
avg, ATB

avg, AFC
avg and ATC

avg) is computed by

AFB
avg =

1

N

N∑
i=1

(
TFB
i ◦ SFB

i

)
,

ATB
avg =

1

N

N∑
i=1

(
TTB
i ◦ STB

i

)
,

AFC
avg =

1

N

N∑
i=1

(
TFB
i ◦ SFC

i

)
,

ATC
avg =

1

N

N∑
i=1

(
TTB
i ◦ STC

i

)
.

(11)

Given a query image I, we have computed the bone seg-
mentation SFB and STB from section 4. The atlas femur
AFB and tibia AFB are registered to the segmentation of
femur SFB and tibia STB with affine transforms TFB and
TTB. The spatial prior for each cartilage is then computed
by propagating each cartilage atlas with the corresponding
transform,

p(FC) = TFB ◦AFC
avg,

p(TC) = TTB ◦ATC
avg,

p(BG) = 1− p(FC)− p(TC).

(12)

These spatial priors and the local likelihoods from section
5 are integrated into (9) and the cartilage segmentation is
obtained by optimizing the three-label segmentation en-
ergy with anisotropic regularization (4).

7. Multi-atlas-based Cartilage Segmentation

This section presents an alternative approach to com-
puting the spatial prior for cartilage. We make use of
multi-atlas registration, rather than average-shape-atlas
registration as described in section 6. Each atlas is an
individual expert bone and cartilage segmentation in this
section. Three popular label fusion methods are discussed
in this section, i.e., majority voting, locally-weighted and
non-local patch-based fusion.

We have N atlases Ai including their femur segmen-
tations SFB

i , tibia segmentations STB
i , femoral cartilage

segmentations SFC
i and tibial cartilage segmentations STC

i

(i = 1, 2, ..., N). For a query image I, we have the bone
segmentation SFB and STB from section 4.

The atlas bone segmentations SFB
i and STB

i are regis-
tered to the bone segmentations SFB and STB of the query
image separately by affine transforms TFB

i and TTB
i .

We can simply take the average of the registered car-
tilage atlas segmentations to compute the spatial priors,
which is majority voting [18] label fusion:

p(FC) =
1

N

N∑
i=1

(
TFB
i ◦ SFC

i

)
,

p(TC) =
1

N

N∑
i=1

(
TTB
i ◦ STC

i

)
.

(13)

We can also apply a locally-weighted label fusion strat-
egy [15], which was shown to yield a better segmentation
accuracy than a majority voting strategy. In this case, we
choose to favor the atlases which locally agree better with
the cartilage likelihoods p(f(x)|FC) and p(f(x)|TC) from
the probabilistic classification in section 5. The spatially
varying weighting functions λFC

i for the femoral cartilage
and λTC

i for the tibial cartilage are calculated as

λFC
i (x) =

1

α
∣∣TFB

i ◦ SFC
i − p(f(x)|FC)

∣∣+ ε
,

λTC
i (x) =

1

α
∣∣TTB

i ◦ STC
i − p(f(x)|TC)

∣∣+ ε
,

(14)

followed by a small amount of diffusion smoothing. We
choose α = 0.2 and ε = 0.001 in our implementation. The
spatial prior for each cartilage is then the weighted average
of the propagated atlas cartilage segmentations

p(FC) =

N∑
i=1

λFC
i∑N

i=1 λ
FC
i

(
TFB
i ◦ SFC

i

)
,

p(TC) =

N∑
i=1

λTC
i∑N

i=1 λ
TC
i

(
TTB
i ◦ STC

i

)
.

(15)
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Recently, non-local patch-based label fusion techniques
have been proposed [5, 19]. Instead of deciding the la-
bel from the same voxel location in each propagated at-
las, these methods obtain a label using the surrounding
patches in a predefined neighborhood across the training
atlases. Weights are assigned to these patches according
to the distances between the target patch and the selected
patches. This allows local robustness to registrations er-
ror.

Let pFC(x) and pTC(x), respectively, denote the spa-
tial prior of femoral cartilage (i.e. p(FC)) and tibial car-
tilage, (i.e. p(TC)) at voxel x. We calculate the prob-
abilities by weighted averages of the propagated labels
in a pre-specified search neighborhood N (x) across N
warped atlases. The weights are determined by local patch
similarities. For simplicity, let S̃FC

i = TFB
i ◦ SFC

i and
ĨFC
i = TFB

i ◦ Ii. Here, i is the atlas index, running from 1
to N , SFC

i refers to the femoral cartilage segmentation of
the i-th atlas, and Ii is the i-th atlas appearance. For the
femoral cartilage, we have

pFC(x) =

N∑
i=1

∑
y∈N (x)

wFC(x,y)S̃FC
i (y)

N∑
i=1

∑
y∈N (x)

wFC(x,y)

, (16)

wFC(x,y) = exp


∑

x′∈P(x) y′∈P(y)

(
I(x′)− ĨFC

i (y′)
)2

hFC(x)

 ,

(17)
where x′ is a voxel in the patch P(x) centered at x (sim-
ilarly y′ a voxel in the patch P(y) centered at y) and
hFC(x) is defined by

hFC(x) = min
1≤i≤N
y∈N (x)

∑
x′∈P(x)
y′∈P(y)

(
I(x′)− ĨFC

i (y′)
)2

+ ε. (18)

Substitute “FB” with “TB” and “FC” with “TC” in
superscripts of the equations above for the calculation of
pTC(x).

The three label fusion strategies, namely majority vot-
ing, locally-weighted and non-local patch-based fusion, are
compared in section 9. The non-local patch-based method
is shown to result in the best average segmentation accu-
racy.

These spatial priors and the local likelihoods from sec-
tion 5 are integrated into (9) and the cartilage segmenta-
tion is obtained by optimizing the three-label segmentation
energy with anisotropic regularization (4).

8. Overall segmentation pipeline

The automatic cartilage segmentation requires expert
segmentations of femur, tibia, femoral and tibial cartilage

on a set of training images. Given a query knee image, we
first correct the MRI bias field [25], scale image intensi-
ties to a common range, and then perform edge-preserving
smoothing using curvature flow [21].

In the multi-atlas-based bone segmentation, the atlases
are registered to the query images with an affine transform
followed by a B-spline transform based on mutual infor-
mation. We compute the average of the propagated atlas
bone segmentations as the bone spatial priors. The bone
likelihoods are then calculated from the image intensities
using (7). The priors and the likelihoods are combined
in (6) and then integrated in the three-label segmentation
(3), the global optimal solution of which produces the bone
segmentation.

Once we have the bone segmentation, we perform the
probabilistic classification (kNN or SVM) of knee carti-
lage in the joint region. The spatial priors for the cartilage
can be obtained through registration of an average bone
and cartilage atlas, which requires only one registration, or
through a multi-atlas registration of cartilage, which needs
a number of registrations. If a multi-atlas-based method is
chosen, propagated atlas labels are fused (using majority
voting, locally-weighted or non-local patch-based label fu-
sion) to obtain the spatial priors. The normal direction n
in (5) is computed by taking the gradient of the diffusion
smoothed three-label bone segmentation result in-between
the joint area. Finally, the local likelihoods and the spatial
priors are integrated into the three-label segmentation to
generate the cartilage segmentation.

9. Experimental results

9.1. Data description

Our main dataset is a subset of the PLS dataset, con-
taining 706 T1-weighted (3D SPGR) images for 155 sub-
jects, imaged at baseline, 3, 6, 12, and 24 months at a
resolution of 1.00× 0.31× 0.31 mm3. Some subjects have
missing scans. The Kellgren-Lawrence grades (KLG) [16]
were determined for all subjects from the baseline scans,
classifying 82 as normal control subjects (KLG0), 40 as
KLG2 and 33 as KLG3.

Expert cartilage segmentations (drawn by a domain ex-
pert, Dr. Felix Eckstein) are available for all images.
The femoral cartilage segmentation is drawn only on the
weight-bearing part while the tibial cartilage segmenta-
tion covers the entire region. Therefore, we expect partial
femoral cartilage and full tibial cartilage segmentation re-
sults.

9.2. Bone validation

Bone segmentation is validated on 18 images because
expert segmentations for bones are only available for the
baseline images of 18 subjects. We validate our multi-
atlas-based bone segmentation method in a leave-one-out
manner. Each test image is segmented using the other 17
images as atlases. The segmentation accuracy is evaluated
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Table 1: Statistics (mean and standard deviation (STD)) of DSC
of bone segmentation on 18 test images with and without spatial
regularization.

g = 0 g = 0.5 g = 1.0

Femur
Mean 0.969 0.970 0.969
STD 0.011 0.011 0.011

Tibia
Mean 0.966 0.967 0.966
STD 0.013 0.012 0.012

g = 0.0 g = 0.5 g = 1.00.93

0.94

0.95

0.96

0.97

0.98

0.99

g = 0.0 g = 0.5 g = 1.00.93

0.94

0.95

0.96

0.97

0.98

(a) Femur (b) Tibia

Figure 6: Box plots of DSC for femur and tibia with different amount
of regularization on 18 test images. The center red line is the me-
dian and the edges of the box are the 25th and 75th percentiles,
the whiskers extend to the most extreme data points not considered
outliers, and outliers are plotted individually.

with respect to the expert segmentations using the Dice
similarity coefficient (DSC) [6] defined as

DSC =
2 |S ∩R|
|S|+ |R| , (19)

where S and R represent two segmentations. Table 1 and
Fig. 6 show the validation results of the bone segmen-
tation with and without regularization (corresponding to
g > 0 and g = 0 in model (3) respectively). No significant
improvement is observed by introducing spatial regular-
ization to the bone segmentation, because the multi-atlas-
based spatial prior nicely locates the bones. We can see
from Fig. 7 that the multi-atlas-based prior captures the
bone very well and our segmentation result is very close
to the expert segmentation especially in the joint region.
We use the bone segmentation with spatial regularization
g = 0.5 to compute the cartilage segmentations for the
remaining experiments in this section.

9.3. Cartilage validation

Figure 8 illustrates the beneficial behavior of our three-
label segmentation method compared to a binary segmen-
tation which treats femoral and tibial cartilage as one ob-
ject. While the three-label method is able to keep femoral
and tibial cartilage separated due to the joint estimation of
the segmentation, the binary segmentation approach can-
not guarantee this separation.

We build an average shape atlas of bone and cartilage
from the expert bone and cartilage segmentations of the
18 images. Figure 9 shows an example slice of the av-
erage probabilistic bone and cartilage atlas and the 3-
dimensional rendering. The cartilage is well located on
top of the bone.

(a)

(b)

Figure 9: Atlas built from 18 images. (a) is a slice of the probabilistic
atlas of femoral and tibial bone and cartilage (red) overlaid on the
bone in coronal view. Saturated red denotes high probability. (b) is
a 3-dimensional rendering of the thresholded atlas of femur (green),
tibia (purple), femoral (red) and tibial cartilage (yellow).

In the average-shape-atlas-based cartilage segmentation,
we use the atlas built from 18 images (each from a dif-
ferent subject) to segment cartilage of the remaining 137
subjects. Within the 18 subjects, we test in a leave-one-
out manner where each subject is segmented using the
atlas built from the other 17 subjects. The same strategy
is applied in the multi-atlas-based cartilage segmentation.
We use all 18 images as atlases to segment cartilage of
the other 137 subjects. The 18 subjects are tested in a
leave-one-out fashion. Each subject is segmented using
the other 17 images as atlases. The training images for
kNN and SVM are chosen in the same way.

In the non-local patch-based label fusion, we upsam-
ple the images to approximately isotropic resolution and
search for similar 5 × 5 × 5 patches within a 9 × 9 × 9
neighborhood.
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(a) Original image (b) Multi-atlas-based spatial prior (c) Segmentation result (d) Expert segmentation

Figure 7: Bone segmentation of one example slice in coronal view.

(a) Binary segmentation (b) Three-label segmentation (c) Expert segmentation

Figure 8: Example comparing binary and three-label segmentation methods. (a) is the binary segmentation result. (b) is the three-label
segmentation result in which femoral and tibial cartilage have distinct labels. (c) is the expert segmentation. In (a), as the red circle
indicates, the lateral (right) femoral cartilage and tibial cartilage are segmented as one object and the joint boundary is not well captured.
The three-label segmentation (b) keeps the femoral and tibial cartilage separate and is therefore superior to binary segmentation.

(a) Original image (b) Multi-atlas-based spatial prior

(c) Segmentation result (d) Expert segmentation

Figure 10: Cartilage segmentation of one example slice in coronal view. Only joint region is shown.
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(a) Average-atlas (b) Multi-atlas with
majority voting
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(c) Multi-atlas with (d) Multi-atlas with
locally-weighted fusion non-local patch-based fusion

Figure 11: Comparison of kNN and SVM based on the mean DSC
(ordinate) with varying amount of isotropic regularization (abscissa
g) under different atlas choices for the femoral cartilage. The black
downarrows (⇓) indicate statistically significant differences between
the two methods at corresponding spatial regularization settings via
paired t-tests at a significance level of 0.05.

Figures 11 and 12 compare the two local classification
methods, i.e., kNN versus SVM, for the femoral and the
tibial cartilage, under different atlas choices with varying
amount of isotropic spatial regularizations. Note that the
femoral cartilage is only segmented in the weight-bearing
region and hence the DSC for the femoral cartilage is more
sensitive to mis-segmentations than the tibial cartilage.
For the femoral cartilage, kNN and SVM generate similar
mean DSC. The SVM improves the mean DSC by a con-
siderable amount over the kNN for the tibial cartilage. A
possible reason for the similar performance for the femoral
cartilage might be that the main disagreement between
the automatic and the expert segmentation is along the
anterior-posterior direction delineating the weight-bearing
region, which may overwhelm any improvement obtained
by SVM over kNN. SVM performs better than kNN for
tibial cartilage which is segmented in its entirety.

Figure 13 compares the different atlas choices, includ-
ing the average-shape atlas, multiple atlases with majority
voting, locally-weighted and non-local patch-based label
fusion, under the different parameter settings of isotropic
regularization. The former three yield very similar mean
DSC. Non-local patch-based label fusion outperforms the
other three considerably. Figure 14 compare the four
atlas choices under the different parameter settings of
anisotropic regularization. Again, non-local patch-based
label fusion outperforms the other three considerably.

Figure 15 shows the advantage of anisotropic regulariza-
tion. The isotropic regularization has a tendency to cut
long and thin objects short as shown in Fig. 15 (a) at the
medial femoral cartilage. Anisotropic regularization, on

0.0 0.2 0.4 0.6 0.8 1.0 1.2
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kNN
SVM

0.0 0.2 0.4 0.6 0.8 1.0 1.2
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(a) Average-atlas (b) Multi-atlas with
majority voting
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0.812

0.816
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0.824
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0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.824

0.828

0.832

0.836

0.840

kNN
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(c) Multi-atlas with (d) Multi-atlas with
locally-weighted fusion non-local patch-based fusion

Figure 12: Comparison of kNN and SVM based on the mean DSC
(ordinate) with varying amount of isotropic regularization (abscissa
g) under different atlas choices for the tibial cartilage. The black
downarrows (⇓) indicate statistically significant superiority of SVM
to kNN at corresponding spatial regularization settings via paired
t-tests at a significance level of 0.05.
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(a) Femoral cartilage kNN (b) Femoral cartilage SVM
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(a) Tibial cartilage kNN (b) Tibial cartilage SVM

Figure 13: Comparisons of mean DSC (ordinate) from different atlas
choices for different amount of isotropic regularization (abscissa
g). AA average-shape-atlas. MV multi-atlas with majority voting.
LW multi-atlas with locally-weighted fusion. PB multi-atlas with
non-local patch-based fusion. The black downarrows (⇓) indicate
statistically significant superiority of PB to the other three methods
at corresponding spatial regularization settings via paired t-tests at
a significance level of 0.05.

the other hand, avoids this problem (see Fig. 15 (b)) re-
sulting in a better segmentation of the medial femoral car-
tilage. Besides avoiding unrealistic segmentation results,
anisotropic regularization is also less sensitive to param-
eter settings than isotropic regularization. This is illus-
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(a) Tibial cartilage kNN (b) Tibial cartilage SVM

Figure 14: Comparisons of mean DSC (ordinate) from different at-
las choices for different amount of anisotropic regularization (ab-
scissa g). The parameter α controlling the anisotropy is set to be
0.2. AA average-shape-atlas. MV multi-atlas with majority voting.
LW multi-atlas with locally-weighted fusion. PB multi-atlas with
non-local patch-based fusion. The black downarrows (⇓) indicate
statistically significant superiority of PB to the other three methods
at corresponding spatial regularization settings via paired t-tests at
a significance level of 0.05.

trated in Fig. 16 (a) and (b). Note that the anisotropic
regularizer is parametrized in such a way that its regu-
larization is reduced in the normal direction, but equal
to the isotropic regularization in the plane orthogonal to
the normal and the results are therefore comparable (see
Fig. 5). The faster drop-off in the isotropic case indi-
cates a stronger dependency on the parameter settings for
isotropic regularization.

For anisotropic regularization, to select the “optimal”
parameter g for the PLS dataset, we tried different values
of g ∈ [0, 2.0] and found that g = 1.4 yields the best aver-
age DSC (0.764 and 0.840 for femoral and tibial cartilage
respectively) for the 18 training subjects. We apply this
“optimal” parameter setting to the test data (the remain-
ing 137 subjects). This setting yields an average DSC of
0.760 for femoral cartilage and 0.841 for tibial cartilage.
We use the same parameter setting for a completely inde-
pendent data set, SKI10 [14], and obtain an average DSC
of 0.856 and 0.859 for femoral and tibial cartilage respec-
tively. Even though the “optimal” g could be different for
different datasets, the choice of g = 1.4 appeared to be a
good candidate for cartilage segmentation.

As anisotropic regularization is less sensitive to parame-
ter settings, the choice of g does not have a strong impact
on segmentation results. Parameter α is set to be 0.2 in
our experiments but other values (α ∈ [0, 1]) can also be
used. The influence of α will be studied in the future.

To further illustrate segmentation behavior, we show the
box plots of the DSC for different progression levels (i.e.,
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(a) Femoral cartilage (b) Tibial cartilage

Figure 16: Change of mean DSC for femoral and tibial cartilage
with isotropic and anisotropic regularization over the amount of reg-
ularization g (abscissa). The parameter α is set to be 0.2 for all
anisotropic tests. All tests use SVM and non-local patch-based label
fusion. The black downarrows (⇓) indicate statistically significant
differences between the two methods at corresponding spatial regu-
larization settings via paired t-tests at a significance level of 0.05.
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Figure 17: Boxplots of DSC’s for different KLG’s. We choose the best
strategy combination, SVM and non-local patch-based label fusion
with an anisotropic regularization with g = 1.4 and α = 0.2.

Table 2: Statistics summary (mean, median and standard deviation)
of DSC under the best strategy combination: SVM and non-local
patch-based label fusion with an anisotropic regularization with g =
1.4 and α = 0.2 from the PLS dataset.

Mean Median STD
Femoral cartilage 0.760 0.768 0.048
Tibial cartilage 0.841 0.847 0.037

KLGs) for femoral and tibial cartilage in Fig.17. As ex-
pected, we observe a slight deterioration in segmentation
accuracy for larger KL grades as it is more challenging to
segment pathological knee cartilage.

Figure 18 shows scatter plots of segmentation volumes
of the proposed method versus the expert segmentation.
The correlation between the volume measured from the
expert segmentation and the automatic algorithm achieves
a Pearson’s correlation coefficient of 0.77 for all subjects
(KLG0: 0.85, KLG2: 0.68, KLG3: 0.74) for the femoral
cartilage. For the tibial cartilage, the Pearson’s correlation
coefficient is 0.87 for all subjects (KLG0: 0.89, KLG2:
0.80, KLG3: 0.89).

The local cartilage thickness is computed from the carti-
lage segmentation using a Laplace-equation approach [30].
We compute the correlation coefficient of local thickness
maps from the expert and the proposed segmentations for
each image. Figure 19 shows box plots of Pearson’s corre-
lation coefficients for different KLG’s. Thicknesses of the
automatic and the expert segmentations are strongly cor-
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(a) Isotropic (b) Anisotropic (c) Expert segmentation

Figure 15: Improvement by anisotropic regularization. (a) uses isotropic regularization and misses circled region. (b) uses anisotropic
regularization and captures the missing region in (a). (c) is the expert segmentation.
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Figure 18: Scatter plots of segmentation volumes (number of pixels).
We choose the best strategy combination, SVM and non-local patch-
based label fusion with an anisotropic regularization with g = 1.4 and
α = 0.2.
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Figure 19: Boxplots of Pearson’s correlation coefficients of local car-
tilage thickness for different KLG’s. We choose the best strategy
combination, SVM and non-local patch-based label fusion with an
anisotropic regularization with g = 1.4 and α = 0.2.

related. Note that correlations for femoral cartilage with
respect to volume and thickness are generally lower than
for the tibial cartilage due to the fact that only the weight-
bearing region of the femoral cartilage is being segmented.

9.4. Running time

The overall running time for the segmentation of an MR
image is hours. Each atlas registration takes 10 - 30 min-
utes. If registrations are done sequentially, this step takes
up to 9 hours (as there are 18 atlases). The patch-based la-
bel fusion step is completed in 10 minutes. The local tissue
classification takes about 20 minutes. The computation
time for the three-label segmentation varies from minutes
to hours. Using anisotropic regularization is slower than
isotropic. The running time also depends on the amount
of regularization. Large regularization requires more iter-
ations to converge. The segmentation step can be sped up

drastically by a GPU implementation, which will be part
of the future work.

10. Comparison to other methods

We quantitatively compare methods based on the SKI10
dataset and qualitatively discuss methods which have so
far not been tested on SKI10.

10.1. Comparisons based on the SKI10 dataset

To compare to other algorithms we use the data from
the cartilage segmentation challenge SKI10 [14]. We ran-
domly pick 15 images from the provided 60 training images
as atlases to limit computational cost (in principle all 60
images could be used as atlases). SKI10 uses a combined
score based on volume difference and volume overlap error
for cartilage and bone to score different methods. At time
of writing, SKI10 included results for 16 different meth-
ods. We restrict ourselves to comparisons between the
top 8 methods. The proposed method ranks 5/16 overall.
However, as we will discuss below our proposed method
performs as well as the top method on volume overlap
error for cartilage segmentation (or equivalently Dice co-
efficient) which as we argue is the most important of the
performance measures. For simplicity we denote the meth-
ods as Rank 1 to Rank 8 to simplify readability. Tables 3
and 4 contains references and names of the methods as
available.

Note that the SKI10 dataset is very challenging as its
data was collected from pre-surgery cases, which exhibit
severe cartilage damage. It should therefore be regarded as
complementing the OAI and the PLS data for validation
which cover a much broader range of cartilage degener-
ation and damage. In particular, the performance of an
algorithm on the PLS or OAI data may be more informa-
tive for future clinical drug trials aimed at showing small
changes in cartilage in relation to therapy.

Figure 20 shows different measures for femoral and tibial
cartilage from the top 8 methods . The volumetric differ-
ence and volumetric overlap error (VOE) are defined as
follows, given a segmentation S and a reference segmenta-
tion R.

VOE = 100

(
1− |S ∩R||S ∪R|

)
, (20)

VD = 100
|S| − |R|
|R| . (21)
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The challenge defined a scoring system based on inter-
observer variations of VD and VOE. On a range from 0
to 100 (meaning a perfect segmentation), a second rater’s
outcome corresponds to 75, a result with error twice as
high gets 50 and so on. The Dice coefficient can be com-
puted from the VOE as follows

DSC =
200− 2×VOE

200−VOE
. (22)

Our method achieves excellent performance on VOE and
DSC. The VD is best at zero: our method performs well
on the femoral cartilage but not as well on the tibial car-
tilage compared to other methods. Note that a low VD,
which only compares the segmentation volumes, may not
indicate a good segmentation since a good score may be
achieved for a similar volume at incorrect locations. As
VOE and DSC measure local differences we regard them
as more informative than VD for the assessment of carti-
lage segmentation differences.

Table 3 compares our method to other methods based on
the different SKI10 validation measures. Specifically, we
test if scores of competing methods are significantly bet-
ter than for our method. Our method achieves statistically
significantly better accuracy than most of the other meth-
ods regarding VOE and DSC before and after multiple
comparison correction. Table 4 shows that the proposed
method has the second best DSC values for femoral and
tibial cartilage, which are only marginally lower than for
the first ranked method. In particular, we do not observe
statistically significant performance difference in VOE and
DSC for femoral and tibial cartilage with respect to the top
two ranked methods after correction for multiple compar-
isons. Before multiple comparison correction also no sta-
tistically significant differences were found expect for an
improved performance of our method for femoral cartilage
segmentation with respect to the second ranked method
by Seim et al. [20]. This suggests that our method can be
regarded as one of the top-performing methods for femoral
and cartilage segmentation on the SKI10 dataset.

Interestingly, the top-performing method is based on an
active appearance model [27]. While this puts the method
at an advantage for producing segmentations which are
within the trained shape and appearance spaces. Varia-
tion outside these spaces cannot be properly captured if
no subsequent relaxation step is used. Our method can be
regarded as softly constraining the space of plausible seg-
mentations through the use of multiple atlases and non-
local patch-based label fusion. However, given that atlas
information is only included as a prior into our overall seg-
mentation method, our method remains flexible enough to
also capture cartilage variations not strictly contained in
the atlas set.

Note that the SKI10 [14] images were acquired for knee
surgery planning and therefore most images exhibit serious
cartilage loss. As the cartilage segmentations for SKI10
were performed semi-automatically, they mostly capture
cartilage well, but occasionally tend towards oversegmen-
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Figure 20: Box plots of segmentation measures for femoral and tibial
cartilage from top 8 ranking methods on SKI10 website. The center
red line is the median and the edges of the box are the 25th and 75th
percentiles, the whiskers extend to the most extreme data points not
considered outliers, and outliers are plotted individually.

tation at pathological regions; e.g., segmenting across re-
gions of total cartilage loss or segmenting osteophytes.
Figure 21 shows an example illustrating total cartilage
loss and the challenge to define a reliable gold standard
segmentation.
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Table 3: Results of statistical tests (paired t tests for score, VOE and DSC, Wilcoxon signed-rank tests for VD) between different methods.
Our method is compared to the other top ranking methods in terms of different measures. Symbol “+” denotes statistically significant
superiority of our method; “−” denotes inferiority; “NS” denotes a statistically insignificant difference (p > 0.05). Each table entry consists
of two symbols, before and after the correction for multiple comparisons. Rank 7 was also submitted by the authors but using a slightly
different combination, i.e., probabilistic kNN and locally-weighted label fusion.

Rank Team
Femoral cartilage Tibial cartilage

Score VD VOE DSC Score VD VOE DSC
1 Imorphics [27] NS/NS +/+ NS/NS NS/NS NS/NS −/− NS/NS NS/NS
2 ZIB [20] NS/NS +/NS +/NS +/NS NS/NS −/− NS/NS NS/NS
3 UPMC IBML NS/NS +/+ +/NS +/NS NS/NS −/− +/+ +/+
4 SNU SPL NS/NS NS/NS +/+ +/+ NS/NS NS/NS +/+ +/+
6 UIiibiKnee [31] NS/NS −/− +/+ +/+ NS/NS −/− +/+ +/+
7 shan unc NS/NS +/+ +/+ +/+ NS/NS −/− +/+ +/+
8 BioMedIA [28] NS/NS +/+ +/+ +/+ NS/NS −/− +/+ +/+

Table 4: Statistics summary (mean, median and standard deviation) of DSC from the top ranking methods. Rank 7 was also submitted by
the authors but using a slightly different combination, i.e., probabilistic kNN and locally-weighted label fusion.

Rank Team
Femoral cartilage Tibial cartilage

Mean Median STD Mean Median STD
1 Imorphics [27] 0.861 0.869 0.065 0.865 0.888 0.054
2 ZIB [20] 0.845 0.856 0.058 0.850 0.858 0.049
3 UPMC IBML 0.836 0.838 0.028 0.805 0.807 0.057
4 SNU SPL 0.821 0.838 0.059 0.824 0.841 0.058
5 shan unc (proposed) 0.856 0.862 0.057 0.859 0.861 0.047
6 UIiibiKnee [31] 0.824 0.842 0.067 0.825 0.834 0.056
7 shan unc 0.828 0.836 0.060 0.820 0.826 0.051
8 BioMedIA [28] 0.840 0.854 0.062 0.836 0.841 0.048

(a) Original image (b) Automatic segmentation (c) Expert segmentation

Figure 21: An example slice from SKI10 [14] training dataset. (a) is the original image. (b) and (c) are automatic and expert segmentations,
respectively. Femur: dark blue, tibia: light grey, femoral cartilage: pink, tibial cartilage: light blue. Yellow contour: validation region for the
femoral cartilage. Green contour: validation for the tibial cartilage. Red contour: validation region for both cartilage. A cartilage lesion is
present in the femoral cartilage shown in the weight-bearing region (touching region) in the original image. Our segmentation successfully
delineates it, but the expert segmentation fails to do so.
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10.2. Qualitative Comparison to Other Methods

The methods that have not been tested on SKI10 [14]
dataset are not directly comparable to our method because
of different datasets. Note that our method compares fa-
vorably to other methods, however, none of the competing
methods was validated on datasets as large as ours (with
more than 700 images for the PLS data alone). For exam-
ple, Folkesson et al. [11] tested on 139 images, Fripp et al.
[12] 20 images, Tamez-Peña et al. used [26] 12 images and
Yin et al. [32] 60 images. Hence, our validation dataset is
an order of magnitude larger than for most other existing
studies.

11. Conclusion and Future Work

In this paper, we proposed a fully-automatic cartilage
segmentation approach. We used a multi-atlas-based bone
segmentation to guide the registration of a cartilage at-
las. We investigated cartilage segmentation using an aver-
age shape atlas or multiple atlases with various label fu-
sion techniques to obtain spatial cartilage priors within a
novel three-label segmentation framework which incorpo-
rates anisotropic regularization to improve segmentation
performance for the thin femoral and tibial cartilage lay-
ers.

We demonstrated that the multi-atlas-based segmenta-
tion strategy is appropriate for cartilage segmentation and
performs as well as the top-ranking methods on the SKI10
dataset. The proposed method is robust, because multi-
atlas-based methods can overcome occasional registration
failures. This is a critical aspect when moving toward the
analysis of larger datasets, such as the OAI dataset. We
also demonstrated that the multi-atlas-based segmentation
with non-local patch-based label fusion performs better
than other label fusion strategies for cartilage segmenta-
tion.

The proposed three-label segmentation framework is
novel, general and guarantees separation of the cartilage
layers. The anisotropic regularization is a customization
for cartilage segmentation but has general applicability for
the segmentation of thin objects. An important advantage
of the segmentation framework is its convexity which guar-
antees that a globally optimal solution can be computed
for given segmentation parameters.

The major drawback of our method is a typical disad-
vantage of multi-atlas-based methods, namely their high
computational cost. To alleviate this problem, atlas selec-
tion heuristics have been proposed. These heuristics se-
lect only a subset of promising training subjects for atlas
registration and label fusion [1]. Such a selection strat-
egy can be integrated into our segmentation method and
is expected to further increase segmentation performance.
We will explore atlas selection for cartilage segmentation
in our future work.

Most crucially, our future work will focus on studying
cartilage thickness changes longitudinally.

Appendix A. Numerical solution of (4)

This section discusses an iterative scheme to optimize
(4). Solving (3) is a special case with G = gI (I is the
identity matrix). We introduce two dual variables p (vec-
tor field) and q (scalar field) and rewrite (4) as

E(u,p, q) =

∫
D
〈p,G∇xu〉+ q∇lu dxdl,

subject to ‖p‖ ≤ 1, |q| ≤ c,
(A.1)

in which 〈·, ·〉 represents inner products. Minimizing (4)
with respect to u is equivalent to minimizing (A.1) with
respect to u and maximizing it with respect to p and q.
The gradient descent/ascent update scheme of (A.1) is

pt = −G∇xu, ‖p‖ ≤ 1 (A.2)

qt = −∇lu, |q| ≤ c (A.3)

ut = − divx(Gp)−∇lq (A.4)

The iterative scheme will lead to a global optimum upon
convergence [2] because of the convexity of (4). Let S and
T denote the source and sink sets: S = Ω × {0}, T =
Ω × {3}. The region without sources or sinks is denoted

as
◦
D = D \ (S ∪ T ) = Ω× {1, 2}. The dual energy is

E∗(u) =

∫
S

div(Gp) +∇lq dxdl

+

∫
◦
D

min(0,div(Gp) +∇lq) dxdl (A.5)

We terminate the iterations when the duality gap between
the primal energy (4) and the dual energy (A.5) is suf-
ficiently small. After convergence, the solution u is es-
sentially binary and monotonically increasing. The three-
label segmentation can be easily recovered from the dis-
continuity set of u.
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