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Abstract

This paper proposes a method to build a bone-cartilage
atlas of the knee and to use it to automatically segment
femoral and tibial cartilage from T1 weighted magnetic res-
onance (MR) images. Anisotropic spatial regularization is
incorporated into a three-label segmentation framework to
improve segmentation results for the thin cartilage layers.
We jointly use the atlas information and the output of a
probabilistic k nearest neighbor classifier within the seg-
mentation method. The resulting cartilage segmentation
method is fully automatic. Validation results on 18 knee
MR images against manual expert segmentations from a
dataset acquired for osteoarthritis research show good per-
formance for the segmentation of femoral and tibial carti-
lage (mean Dice similarity coefficient of 78.2% and 82.6%
respectively).

1. Introduction

Osteoarthritis (OA) is the most common form of joint
disease and characterized by cartilage loss. An accurate
cartilage segmentation from magnetic resonance (MR) knee
images is crucial to study OA. Due to the size of image
databases acquired for OA studies, a fully automatic seg-
mentation is needed.

Recently, several automatic methods have been proposed
for cartilage segmentation. Folkesson et al. [2] proposed
a hierarchical classification scheme for cartilage segmen-
tation. Fripp et al. [3] used active shape models for bone
segmentation in order to extract the bone-cartilage interface
followed by tissue classification. A simultaneous segmen-
tation of interacting bone and cartilage was developed by

Yin et al. [10]. To allow for localized analysis and the sup-
pression of unlikely voxels in a segmentation, introducing
a spatial prior is desirable. This can be achieved through
an atlas-based analysis method. While such methods have
been successfully used in brain imaging, they are typically
not used for cartilage segmentation in the knee. Presum-
ably, one of the reasons is that atlas-building in the knee is
significantly more challenging (due to the articulated sys-
tem with different tissue properties) and a highly accurate
method is needed to capture the thin cartilage areas. None
of the aforementioned methods use a spatial atlas. The work
by Glocker et al. [4] is an exception, however it assumes
that a set of pre-aligned images is already available.

Instead, in this work we discuss a fully automatic atlas-
based cartilage segmentation method. The method con-
structs a bone-cartilage atlas for femur and tibia and uses
the resulting atlas as prior information to guide femoral and
tibial cartilage segmentation. We demonstrate that an atlas
of sufficient quality can indeed be constructed to help in-
crease segmentation robustness, mitigate noise effects, and
focus segmentations on desired regions of interest.

Since femoral and tibial cartilage may touch, a joint seg-
mentation using a multi-class segmentation is desirable. We
make use of a three-label segmentation approach [8] en-
suring distinct labels for touching objects. To customize
the method for cartilage segmentation, we incorporate an
anisotropic regularization term into the three-label segmen-
tation method to avoid over-regularization of the thin carti-
lage layers. We demonstrate improved robustness and qual-
ity of anisotropic over isotropic regularization for cartilage
segmentation.

Section 2 discusses the anisotropic three-label cartilage
segmentation approach. Section 3 discusses the probabilis-
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tic kNN classification used within the segmentation step.
Section 4 describes the knee atlas building method. The
overall segmentation method is described in section 5. Ex-
perimental results are given in section 6. The paper closes
with conclusions and future work.

2. Segmentation of Cartilage
To avoid the possible merging of femoral and tibial car-

tilage segmentations we make use of a three-label segmen-
tation formulation [8]. The three-label case is a specializa-
tion of a multi-label segmentation method [11] which al-
lows for a symmetric formulation with respect to the back-
ground segmentation class.

The multi-label segmentation [11] energy defined on an
image domain Ω and a labeling space L = {0, ..., L− 1} is

E(u) =

∫
D
g ‖∇xu‖+ c |∇lu| dxdl,

D = Ω× L, u(x, 0) = 0, u(x, L) = 1,

(1)

where u is a level function whose discontinuity set de-
fines labels; ∇xu is the spatial gradient of u, ∇xu =
(∂u/∂x, ∂u/∂y, ∂u/∂y)T and ∇lu is the gradient in label
direction,∇lu = ∂u/∂l; g controls the regularization and c
defines the labeling cost. This is a convex formulation and
yields a global optimal solution. For cartilage segmentation,
we use three labels (background, femoral and tibial carti-
lage). By positioning the background label (l = 1) between
the labels for femoral (l = 0) and tibial (l = 2) cartilage,
the segmentation problem becomes symmetric with respect
to the cartilage labels [8]. The labeling cost c for each label
l in {0, 1, 2} are defined by log-likelihoods for each label:

c(x, l) = −log(P (l|f(x))) = −log
(
p(f(x)|l) · P (l)

p(f(x))

)
,

(2)
where f(x) denotes a feature vector (specified in section 3)
at x. The likelihoods p(f(x)|l) are obtained from a proba-
bilistic k nearest neighbor (kNN) classifier (section 3) and
the priors P (l) from a probabilistic atlas (section 4).

To avoid a shrinking of cartilage segmentations (due to
the thin shape of femoral and tibial cartilage) while allowing
for spatial regularity, we replace the isotropic regularization
term, g in (1), by an anisotropic one

E(u) =

∫
D
‖G∇xu‖+ c|∇lu| dxdl,

D = Ω× L, u(x, 0) = 0, u(x, L) = 1,

(3)

where G is a positive-definite matrix determining the
amount of regularization. This avoids over-regularization at
the boundaries of the cartilage layers and improves segmen-
tations. Figure 1 illustrates the problem with isotropic regu-
larization which tends to shrink the segmentation boundary

by cutting thin objects short and the benefit of anisotropic
regularization. We choose G similar to [7] as

G = g
[
I + (α− 1)nnT

]
, α ∈ [0, 1], (4)

where I is the identity matrix and n is a unit vector indi-
cating the direction of less regularization (the normal direc-
tion to the cartilage surface); α determines the degree of
anisotropy (α = 1 is equivalent to isotropic). See Fig. 1
(d) for an illustration of isotropic versus anisotropic regu-
larization. The computation of the normal direction n is
described in section 6. The numerical solution method for
(3) is discussed in Appendix A.

3. Probabilistic kNN Classification
Data likelihoods for femoral and tibial cartilage,

p(f(x)|l), of (2) are estimated by probabilistic kNN classifi-
cation [1]. Compared to [2] this allows to integrate the kNN
classification results into the overall three-label segmen-
tation framework, ensuring spatial regularity. Compared
to [2] we choose a reduced set of 15 features: intensities
on three scales, first-order derivatives in three directions on
three scales and second-order derivatives in axial direction
on three scales. The three different scales are obtained by
convolving with Gaussian kernels of σ = 0.3 mm, 0.6 mm
and 1.0 mm. All features are normalized to be centered
at 0 and to have unit standard deviation. We use a one-
versus-other classification strategy and expert segmenta-
tions of femoral and tibial cartilage to build the kNN clas-
sifier. Specifically, let f denote the femoral cartilage class,
t the tibial cartilage and b the background class. The train-
ing samples of class f and class t are the voxels labeled as
femoral and tibial cartilage respectively. The training sam-
ples of class b are the voxels surrounding the femoral and
tibial cartilage within a specified distance. The outputs of
the probabilistic kNN classifier given a query voxel x with
its feature vector f(x) are:

p(f(x)|l = 0) = nf (f(x))/k,

p(f(x)|l = 2) = nt(f(x))/k,

p(f(x)|l = 1) = nb(f(x))/k.

(5)

Here nf , nt, nb denote the number of votes for the femur,
tibia, and background class respectively; k is the number of
nearest neighbors of concern. Since kNN is sensitive to the
number of training samples, we scale the outputs according
to the training class sizes to balance the three classes.

4. Atlas Building
A probabilistic atlas provides the spatially-dependent

prior, P (l), for the segmentation method. This allows to re-
strict the segmentation to regions of interest, helps minimize
noise influences and improves segmentation robustness.
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(a) (b) (c) (d)
Figure 1. Synthetic example. (a) original image to be segmented; (b/c) three-label segmentation results with isotropic and anisotropic
regularization respectively. Anisotropic regularization avoids over-regularization at the tips of the synthetic shape. (d) Difference between
isotropic and anisotropic regularization. The black curve indicates an edge in an image. The regularization is illustrated at a pixel (the
dot). The blue circle indicates the isotropic case where regularization is enforced equally in every direction. The red ellipse shows the
anisotropic situation where less regularization is applied in the normal direction and more in the tangent direction.

Bone segmentations are obtained through a three-label
segmentation [8] with background positioned in the mid-
dle. Once the segmentations for femur and tibia have been
obtained, we apply a segmentation-based alignment method
proposed in [9] to bring the knee images to a reference po-
sition. Transformation models between bone and surround-
ing tissue are typically distinct. We choose to affinely align
femurs and tibiae separately across subjects. Two separate
space transformations are combined into one globally valid
transformation, enforcing local transformations for bones
exactly, where the ambient space (to the bones) is deformed
elastically.

Given a set of aligned images, we compute a knee at-
las by local averaging. The atlas contains an average of
T1 weighted images, averages of femur and tibia segmen-
tations as well as averages for femoral and tibial cartilages.
The segmentation averages directly yield local label proba-
bilities.

5. Overall Segmentation Method
Given a new query image, we first perform the bone seg-

mentation [8] followed by the segmentation-based align-
ment step [9] to align the atlas to the query image in order to
obtain local priors for femoral and tibial cartilage. Then we
extract features from the region covered by the propagated
atlas of femoral and tibial cartilage and import these feature
vectors into the probabilistic kNN classifier. The soft clas-
sification yields the data likelihoods of being femoral and
tibial cartilage. Once the data likelihoods and atlas priors
are obtained we perform the cartilage segmentation using
the three-label segmentation method of section 2.

6. Experimental Results
We test the proposed approach on a set of 18 MR im-

ages (T1 weighted SPGR images acquired coronally at a
resolution of 1.00 × 0.31 × 0.31mm3; as well as match-
ing sagittal T1 and T2* weighted images) from different

(a)

(b)
Figure 2. Atlas. (a) shows a slice of the probabilistic atlas (pink)
of femoral and tibial cartilage overlaid onto the atlas of the T1
weighted image (coronal view). Brightness denotes probability.
(b) is a 3-dimensional rendering of the thresholded atlas of fe-
mur(green), tibia (purple), femoral (red) and tibial cartilage (yel-
low).

subjects. Expert cartilage segmentations are available coro-
nally for all images. The femoral cartilage segmentation
is drawn only on the weight-bearing part while the tibial
cartilage segmentation covers the entire region. Therefore,
we expect partial femoral cartilage segmentations and full
tibial cartilage segmentations. The 18 images have differ-
ent Kellgren-Lawrence grades (KLG) [6]: 12 images have
KLG = 0, 3 have KLG = 2, and 3 have KLG = 3.

Expert segmentations are provided in coronal space. We
therefore perform also all segmentations in coronal space.
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Table 1. Improvement of mean DSC (standard deviation) by in-
cluding the probabilistic atlas for the leave-one-out experiment
with 18 datasets (only 17 are tested, the reference image for at-
las building not tested). An isotropic regularization with g = 0.5
is used.

Without atlas With atlas
Femoral cartilage 69.2%(6.7%) 77.3%(5.2%)
Tibial cartilage 77.3%(5.2%) 82.2%(3.8%)

Both T1 and T2* weighted images are needed to estimate
the bone likelihoods [8]. Since T2* weighted images are
not available coronally for our data, we register the coronal
and sagittal T1 weighted images affinely (within subject, ac-
quired in the same session) to create “virtual” coronal T2*
weighted images. We choose one KLG = 0 image as a ref-
erence to align all other images. An atlas is built for each of
the 17 test images (except for the one chosen as the refer-
ence) in a leave-one-out fashion. Classification results are
also computed in a leave-one-out fashion. Each of the 17
data sets (except for the reference image in the atlas build-
ing step) is tested using the remaining 17 data sets as train-
ing samples and k for the kNN classifier is chosen to be 30
through all our experiments. The reference image is used
in training but not tested. In our experiment, the normal di-
rection n in Fig. 1 (d) is computed by taking the gradient of
the diffusion smoothed three-label bone segmentation result
in-between the joint area. We find α = 0.2, which controls
the degree of anisotropy, produces good results and use this
setting in all anisotropic experiments.

Figure 2 shows an atlas constructed from 17 images
which provides the priors for the segmentation method. Im-
age features and averaged labelmaps are crisp, which indi-
cates a good quality of knee image alignment.

Figure 3 illustrates the beneficial behavior of our three-
label segmentation method compared to a binary segmen-
tation which treats femoral and tibial cartilage as one ob-
ject. While the three-label method is able to keep femoral
and tibial cartilage separated (due to the joint estimation of
the segmentation) the binary segmentation approach cannot
guarantee this separation.

Figure 4 demonstrates the benefit of incorporating the
probabilistic atlas. Prior knowledge of the cartilage location
can reduce misclassified regions. Table 1 shows the signif-
icant improvement in segmentation quality as measured by
the Dice similarity coefficient (DSC) by including the prob-
abilistic atlas.

Figure 5 shows the advantage of anisotropic regulariza-
tion. Isotropic regularization has a tendency to cut long
and thin objects short as shown in Fig. 5 (a) at the medial
femoral cartilage. Anisotropic regularization, on the other
hand, avoids this problem (see Fig. 5 (b)) resulting in a bet-
ter segmentation of the medial femoral cartilage.

Besides avoiding unrealistic segmentation results,
anisotropic regularization is also less sensitive to parame-

ter settings than isotropic regularization. This is illustrated
in Fig. 6 (a) and (b). Note that the anisotropic regularizer is
parametrized in such a way that its regularization is reduced
in the normal direction, but equal to the isotropic regulariza-
tion in the plane orthogonal to the normal and the results are
therefore comparable (see Fig. 1 (d)). The faster drop-off in
the isotropic case indicates a stronger dependency on the pa-
rameter settings for isotropic regularization. An anisotropic
regularization does not only yield an improvement in DSC,
but also increases sensitivity notably with little sacrifice in
specificity (see Fig. 6 (c) and (d)).

Different methods are not directly comparable as test-
ing is performed on different datasets. However, Table 2
gives a rough idea of the good performance of our method in
comparison to other approaches. Our method achieves the
highest DSC together with the lowest standard deviation for
tibial cartilage. It fares slightly worse for the femoral car-
tilage. Note however, that our experiments are based only
on the weight-bearing region of the femoral cartilage and
hence will be much more sensitive to slight missegmenta-
tions. Our method is designed for the data from the Pfizer
longitudinal study for which T1 and T2* weighted images
are available (the datasets of the osteoarthritis initiative are
multi-spectral also). Hence, we use both images to obtain
bone segmentations for robust alignment. Unfortunately,
this precludes testing our method on the dataset of the car-
tilage segmentation challenge (SKI10) [5], since it only in-
cludes T1 weighted images.

7. Conclusion and Future Work
We propose an automatic atlas-based three-label carti-

lage segmentation approach. The method is based on a
knee atlas which provides spatial priors for the segmenta-
tion method. Data likelihoods are obtained through a prob-
abilistic kNN classifier. By introducing anisotropic regu-
larization into the three-label segmentation framework, we
improve overall segmentation accuracy. Validation of the
proposed method shows good performance (a mean DSC of
78.2% for femoral cartilage and 82.6% for tibial cartilage)
and demonstrates the feasibility of atlas-based analysis for
cartilage segmentations.

A number of improvements over the current approach are
conceivable. While kNN is a sensible classification choice,
a more advanced classifier could potentially improve the
classification accuracy. The normal direction n is purely ge-
ometrically determined for anisotropic regularization. An
image-based anisotropic regularizer will be more suitable
for images with cartilage lesions. We will also develop
a new bone segmentation pipeline which requires only T1
weighted images to test our method on SKI10 [5] dataset.
Most crucially, our current test is performed on a limited
number of images with different stages of OA. We will test
our method on a large set of images and evaluate it for dif-
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(a) (b) (c)
Figure 3. Example comparing binary and three-label segmentation methods. (a) is the binary segmentation result. (b) is the three-label
segmentation result in which femoral and tibial cartilage have distinct labels. (d) is the expert segmentation. In (a), as the red circle
indicates, the lateral (right) femoral cartilage and tibial cartilage are segmented as one object and the joint boundary is not well captured.
The three-label segmentation (b) keeps the femoral and tibial cartilage separate and is therefore superior to binary segmentation.

(a) Without atlas (b) With atlas (c) Expert segmentation
Figure 4. Segmentation results with and without the atlas. All are coronal views and all use an isotropic regularization with g = 0.5. Only
joint region is shown. (a) is the segmentation without the atlas. (b) is the segmentation with the atlas. (c) is the expert segmentation. The
atlas eliminates the spurious region.

(a) Isotropic (b) Anisotropic (c) Expert segmentation
Figure 5. Improvement by anisotropic regularization. (a) uses isotropic regularization and misses circled region. (b) uses anisotropic
regularization and captures the missing region in (a). (c) is the expert segmentation.

(a) DSC for femoral cartilage (b) DSC for tibial cartilage

(c) Sensitivity (d) Specificity
Figure 6. Change of mean DSC, sensitivity and specificity of femoral and tibial cartilage with isotropic and anisotropic regularization over
the amount of regularization g (abscissa) from our leave-one-out experiment with 18 cases (only 17 tested, the reference image for atlas
building not tested). The parameter α is set to be 0.2 for all anisotropic tests.
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Table 2. Comparison of different methods for automatic cartilage segmentation according to mean (standard deviation) of validation results
reported in the respective manuscripts. Best result is in bold.

Cartilage DSC Sensitivity Specificity
Folkesson et al. [2] Femoral cartilage 77%(8.0%) 80.3%(11.6%) 99.91%(0.03%)

Tibial cartilage 81%(6.0%) 86.8%(7.7%) 99.96%(0.01%)
Glocker et al. [4] Patellar cartilage 84%(6%) 94.06% 99.92%

Fripp et al. [3] Femoral cartilage 84.8%(7.6%) 83.7%(16.2%) 99.9%(0.0%)
Tibial cartilage 82.6%(8.3%) 82.9%(20.7%) 99.9%(0.0%)
Patella cartilage 83.3%(13.5%) 82.1%(13.5%) 100.0%(0.0%)

Yin et al. [10] Femoral cartilage 84%(4%) 80%(7%) 100%(0%)
Tibial cartilage 80%(4%) 75%(8%) 100%(0%)

Patellar cartilage 80%(4%) 76%(8%) 100%(0%)
Our method Femoral cartilage 78.2%(5.2%) 84.3%(6.9%) 99.8%(0.06%)

Tibial cartilage 82.6%(3.8%) 83.9%(4.0%) 99.8%(0.06%)

ferent stages of OA separately.

A. Numerical solution
This section discusses an iterative scheme to optimize

(3). We introduce two dual variables p and q and rewrite
(3) as

E(u,p, q) =

∫
D
〈p,G∇xu〉+ q∇lu dxdl,

subject to ‖p‖ ≤ 1, |q| ≤ c,
(6)

in which 〈·, ·〉 represents inner products. Minimizing (3)
with respect to u is equivalent to minimizing (6) with re-
spect to u and maximizing it with respect to p and q. The
gradient descent/ascent update scheme of (6) is

pt = −G∇xu, ‖p‖ ≤ 1, (7)
qt = −∇lu, |q| ≤ c, (8)
ut = −divx(Gp)−∇lq. (9)
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