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ABSTRACT

In this paper, we propose a multi-atlas-based method to au-
tomatically segment the femoral and tibial cartilage from T1
weighted magnetic resonance (MR) knee images. The seg-
mentation result is a joint decision of the spatial priors from
a multi-atlas registration and the local likelihoods within a
Bayesian framework. The cartilage likelihoods are obtained
from a probabilistic k nearest neighbor classification. Val-
idation results on 18 knee MR images against the manual
expert segmentations from a dataset acquired for osteoarthri-
tis research show good performance for the segmentation of
femoral and tibial cartilage (mean Dice similarity coefficient
of 75.2% and 81.7% respectively).

Index Terms— Multi-atlas, segmentation, registration,
probabilistic k nearest neighbor, cartilage, bone, knee, MR

1. INTRODUCTION

Osteoarthritis (OA) is the most common form of joint dis-
ease and is characterized by cartilage loss. Magnetic reso-
nance imaging is increasingly accepted as a primary method
to evaluate progression of OA. An accurate cartilage segmen-
tation from magnetic resonance (MR) knee images is crucial
to study OA. Due to the size of image databases acquired
for OA studies, a fully automatic segmentation is needed.
In this paper, we therefore propose a new cartilage segmen-
tation method from knee magnetic resonance (MR) images,
which requires no user interaction (besides quality control).
The method is a step towards automatic analysis of large OA
image databases.

Recently, several automatic methods have been proposed
for cartilage segmentation. Folkesson et al. [1] proposed a
hierarchical classification scheme for cartilage segmentation.
Fripp et al. [2] used active shape models for bone segmenta-
tion in order to extract the bone-cartilage interface followed
by tissue classification. A simultaneous segmentation of in-
teracting bone and cartilage was developed by Yin et al. [3].
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To allow for localized analysis and the suppression of un-
likely voxels in a segmentation, introducing a spatial prior is
desirable. This can be achieved through an atlas-based analy-
sis method. While such methods have been successfully used
in brain imaging, they are typically not used for cartilage seg-
mentation in the knee. The work by Glocker et al. [4], which
used a statistical shape atlas from a set of pre-aligned knee
images, is an exception.

Atlas-based segmentation methods can be categorized
into three groups [5], namely single-atlas-based, average-
shape atlas-based and multi-atlas-based methods. The work
by Glocker et al. [4] falls into the second group. Rohlfing
et al. [6] demonstrated that the multi-atlas-based segmenta-
tion is more accurate than the other two types of atlas-based
segmentation methods. However, little work has been done
to apply multi-atlas-based segmentation methods to knee
images.

In this work we discuss a fully automatic multi-atlas-
based cartilage segmentation method. To the best of our
knowledge, this is the first work to apply multi-atlas-based
methods to cartilage segmentation. We first perform bone
segmentation with spatial priors obtained from multi-atlas
registration and local likelihoods from image intensities.
Then we compute spatial priors for femoral and tibial carti-
lage through multi-atlas registration based on bone segmen-
tations. The spatial priors are then integrated into a Bayesian
framework where the likelihoods are provided by a proba-
bilistic k nearest neighbor (kNN) classification.

Section 2 discusses the multi-atlas-based bone segmenta-
tion method. Section 3 discusses the probabilistic kNN classi-
fication and the multi-atlas-based cartilage segmentation. Ex-
perimental results are given in section 4. The paper closes
with conclusions and future work.

2. MULTI-ATLAS BONE SEGMENTATION

Given a knee MR image I , a segmentation S can be obtained
by assigning the label with the maximum posterior probability
to each voxel x ∈ I . The bone segmentation can be modeled
as

S(x) = argmax
l∈{FB,TB,BG}

p(l|x), (1)



in which “FB”, “TB” and “BG” denote the femur, the tibia
and the background respectively. According to the Bayes’
theorem, we have

p(FB|x) = p(x|FB) · p(FB)/p(x),
p(TB|x) = p(x|TB) · p(TB)/p(x),
p(BG|x) = 1− p(FB|x)− p(TB|x).

(2)

The likelihood terms p(x|FB) and p(x|TB) are com-
puted from image intensities. Since bones appear dark in
T1 weighted MR images, we assume a simple model (3) to
estimate bone likelihoods,

p(x|FB) = p(x|TB) = exp(−βI(x)), (3)

where β is set to 0.02 in our implementation.
To compute the prior terms p(FB) and p(TB) in (2), we

employ a multi-atlas registration approach followed by label
fusion. Suppose we have N atlases Ai and their bone seg-
mentations SFB

i and STB
i (i = 1, 2, ..., N ). Registration from

an atlas Ai to a query image I is an affine registration T affine
i

followed by a B-Spline registration T bspline
i based on mutual

information. Averaging all N propagated atlas labels yields a
spatial prior of femur and tibia for the query image:

p(FB) =
1

N

N∑
i=1

(
T bspline
i ◦ T affine

i ◦ SFB
i

)
,

p(TB) =
1

N

N∑
i=1

(
T bspline
i ◦ T affine

i ◦ STB
i

)
.

(4)

So far we have computed the likelihood and the prior for
femur and tibia. Choosing the label with the maximum pos-
terior probability gives us a bone segmentation SFB and STB

for the query image I .
As we are primarily interested in the femoral and tibial

cartilage, we make use of the bone segmentation to extract
a fixed-sized joint region (centered at the geometric center
between femur and tibia) out of the original image. From
now on, we work in a smaller cartilage ambient space.

3. MULTI-ATLAS CARTILAGE SEGMENTATION

We use the same segmentation framework (1) to segment car-
tilages as we use for the bone segmentation in section 2. A
probabilistic kNN classification [7] is employed to generate
the cartilage likelihoods because image intensity alone is not
sufficient for cartilage segmentation. The spatial prior for the
cartilage is obtained through a multi-atlas registration of the
bone segmentation in the joint region.

3.1. Probabilistic kNN

Folkesson et al. [1] proposed a hierarchical kNN classifica-
tion scheme for cartilage segmentation. Compared to [1],

we use a probabilistic version of kNN classification to inte-
grate the classification results into a Bayesian framework. We
choose a reduced set of 15 features compared to [1]: intensi-
ties on three scales, first-order derivatives in three directions
on three scales and second-order derivatives in axial direction
on three scales. The three different scales are obtained by con-
volving with Gaussian kernels of σ = 0.3 mm, 0.6 mm and
1.0mm. All features are normalized to be centered at 0 and to
have unit standard deviation. We use a one-versus-other clas-
sification strategy and expert segmentations of femoral and
tibial cartilage to build the kNN classifier. Specifically, let
“FC” denote the femoral cartilage, “TC” the tibial cartilage
and “BG” the background class. The training samples of the
femoral cartilage class and the tibial cartilage class are the
voxels labeled as femoral cartilage and tibial cartilage respec-
tively. The training samples of the background class are the
voxels surrounding the femoral and tibial cartilage within a
specified distance. The outputs of the probabilistic kNN clas-
sifier given a query voxel x with its feature vector f(x) are:

p(x|FC) = nFC(f(x))/k,

p(x|TC) = nTC(f(x))/k,

p(x|BG) = nBG(f(x))/k.

(5)

Here nFC, nTC, nBG denote the number of votes for the
femoral cartilage, the tibial cartilage, and the background
respectively; k is the number of nearest neighbors of concern
and chosen to be 30 in our implementation. Since kNN is
sensitive to the number of training samples, we scale the out-
puts according to the training class sizes to balance the three
classes.

3.2. Multi-atlas cartilage registration

We haveN joint atlasesAi, together with their femur segmen-
tations SFB

i , tibia segmentations STB
i , femoral cartilage seg-

mentations SFC
i and tibial cartilage segmentations STC

i (i =
1, 2, ..., N ). For a query image I , we have the bone segmen-
tation SFB and STB from section 2.

Joint atlas bone segmentations SFB
i and STB

i are registered
to the bone segmentation SFB and STB of the joint region in
the query image separately by B-Spline transforms T FB

i and
T TB
i . Rather than averaging over all propagated atlas cartilage

segmentations, we apply a locally weighted label fusion strat-
egy [5], which was shown to yield a better segmentation accu-
racy. We choose to favor the atlases which locally agree better
with the cartilage likelihoods p(x|FC) and p(x|TC) from the
probabilistic kNN classification in section 3.1. The spatially
varying weighting functions λFC

i for the femoral cartilage and
λTC
i for the tibial cartilage are calculated as

λFC
i (x) =

1

α
∣∣T FB

i ◦ SFC
i − p(x|FC)

∣∣+ ε
,

λTC
i (x) =

1

α
∣∣T TB

i ◦ STC
i − p(x|TC)

∣∣+ ε
,

(6)



(a) Original image (b) Multi-atlas-based spatial prior (c) Segmentation result (d) Expert segmentation

Fig. 1. Bone segmentation of one example slice in coronal view.

followed by a small amount of diffusion smoothing. We
choose α = 0.2 and ε = 0.001 in our implementation. The
spatial prior for each cartilage is then the weighted average of
the propagated atlas cartilage segmentations

p(FC) =
N∑
i=1

λFC
i∑N

i=1 λ
FC
i

(
T FB
i ◦ SFC

i

)
,

p(TC) =
N∑
i=1

λTC
i∑N

i=1 λ
TC
i

(
T TB
i ◦ STC

i

)
.

(7)

Once we have computed the spatial priors and the local
likelihoods, the cartilage segmentation can be easily con-
structed by picking the label with the maximum posterior
probability. Segmentation holes and islands are eliminated as
a refinement step to improve the final result.

4. RESULTS AND VALIDATION

We test the proposed approach on a set of 18 MR images (T1
weighted SPGR images acquired coronally at a resolution of
1.00×0.31×0.31mm3) from different subjects. Expert bone
and cartilage segmentations are available for all images. Each
of the 18 images is segmented using the remaining 17 images
as atlases and kNN training samples. The original size of the
images is 116 × 512 × 512. The extracted joint region has a
size of 60× 128× 256.

The primary goal of this work is to segment cartilage from
knee images. An accurate bone segmentation is of great im-
portance to achieve a satisfactory cartilage segmentation since
the multi-atlas registration of cartilage is based on bone seg-
mentations in the joint region. We can see from Fig. 1 that
the multi-atlas prior captures the bone very well and our seg-
mentation result is very close to the expert segmentation espe-
cially in the joint region. Figure. 2 shows the good quality of
the cartilage segmentation result achieved by the multi-atlas
prior.

Table 1 shows the accuracy of the bone and cartilage seg-
mentation, which is comparable to those reported in the exist-

Table 1. Statistics (mean and standard deviation (STD)) of
cartilage segmentation validation results. DSC is Dice simi-
larity coefficient. SENS is sensitivity and SPEC is specificity.
Note that we only segment the weight-bearing region of the
femoral cartilage which makes the segmentation harder be-
cause of the smaller volume.

DSC SENS SPEC
Femur Mean 97.3% 97.1% 99.2%

STD 0.8% 1.2% 0.3%
Tibia Mean 96.5% 97.3% 98.8%

STD 1.1% 1.1% 0.6%
Femoral Mean 75.2% 80.7% 99.8%
cartilage STD 4.9% 7.8% 0.06%

Tibial Mean 81.7% 83.3% 99.8%
cartilage STD 2.6% 6.2% 0.06%

ing literature (e.g., [1, 2, 3])1. Our method is easy to imple-
ment (the major components are affine registration, B-Spline
registration and kNN). Note that the femoral cartilage seg-
mentation is drawn only on the weight-bearing part while the
tibial cartilage segmentation covers the entire region. There-
fore, we expect partial femoral cartilage segmentations and
full tibial cartilage segmentations.The Dice similarity coeffi-
cient (DSC) for the femoral cartilage is lower than tibial car-
tilage because of the smaller volume.

5. CONCLUSION AND FUTURE WORK

We propose an automatic multi-atlas-based cartilage segmen-
tation approach. Bones are first segmented from the knee im-
ages based on the multi-atlas registration and the local bone
likelihoods which are computed from image intensities. The
spatial prior for the cartilage is obtained by locally weighted
fusion of propagated cartilage segmentations based on bone
segmentations in the joint region. Cartilage likelihoods are
obtained through a probabilistic kNN classifier. Validation

1The reported mean DSC for femoral and tibial cartilage: 77% and 81%
in [1], 84.8% and 82.6% in [2], 84% and 80% in [3].



(a) Original image (b) Multi-atlas-based sptial prior

(c) Segmentation result (d) Expert segmentation

Fig. 2. Cartilage segmentation of one example slice in coronal view. Only joint region is shown.

of the proposed method on 18 cases in a leave-one-out man-
ner shows good performance (a mean DSC of 75.2% for the
femoral cartilage and 81.7% for the tibial cartilage).

A number of improvements over the current approach are
conceivable. While kNN is a sensible classification choice, a
more advanced classifier could potentially improve the clas-
sification accuracy. Integrating the probabilities into a seg-
mentation framework with spatial regularization, e.g., a three-
label segmentation [8] could conceivably lead to a perfor-
mance improvement. An atlas selection method and a better
label fusion strategy for the cartilage will be explored in the
future. We will also test our method on the SKI10 [9] dataset
to compare with other methods. Most crucially, our current
test is performed on a limited number of images. We will
test our method on a large set of images and evaluate it for
different stages of OA separately.
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