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Abstract

This paper develops a method for higher order parametric regression on diffeomorphisms for image regression. We
present a principled way to define curves with nonzero acceleration and nonzero jerk. This work extends methods based
on geodesics which have been developed during the last decade for computational anatomy in the large deformation
diffeomorphic image analysis framework. In contrast to previously proposed methods to capture image changes over
time, such as geodesic regression, the proposed method can capture more complex spatio-temporal deformations.

We take a variational approach that is governed by an underlying energy formulation, which respects the nonflat
geometry of diffeomorphisms. Such an approach of minimal energy curve estimation also provides a physical analogy to
particle motion under a varying force field. This gives rise to the notion of the quadratic, the cubic and the piecewise cubic
splines on the manifold of diffeomorphisms. The variational formulation of splines also allows for the use of temporal
control points to control spline behavior. This necessitates the development of a shooting formulation for splines.

The initial conditions of our proposed shooting polynomial paths in diffeomorphisms are analogous to the Euclidean
polynomial coefficients. We experimentally demonstrate the effectiveness of using the parametric curves both for syn-
thesizing polynomial paths and for regression of imaging data. The performance of the method is compared to geodesic

regression.
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1. Introduction

With the now common availability of longitudinal and
time-series image data, models for their analysis are crit-
ically needed. In particular, spatial correspondences need
to be established through image registration for many
medical image analysis tasks. While this can be accom-
plished by pair-wise image registration to a template im-
age, such an approach neglects spatio-temporal data as-
pects. Instead, explicitly accounting for spatial and tem-
poral dependencies is desirable.

A common way to describe differences in geometry of
objects in images is to summarize them using transforma-
tions. Transformations are fundamental mathematical ob-
jects and have long been known to effectively represent bio-
logical changes in organisms (Thompson et al., 1942; Amit
et al., 1991). The field of computational anatomy (Miller
et al., 1997; Grenander and Miller, 1998; Thompson and
Toga, 2002; Miller, 2004) provides a rich mathematical set-
ting for statistical analysis of complex geometrical struc-
tures seen in 3D medical images. At its core, computa-
tional anatomy is based on the representation of anatom-
ical shape and its variability using smooth and invertible
transformations that are elements of the nonflat manifold
of diffeomorphisms with an associated Riemannian struc-
ture. The large deformation (LDDMM) framework of com-
putational anatomy exploits ideas from fluid mechanics
and builds maps of diffeomorphisms as flows of smooth
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velocity fields (Younes, 2010; Younes et al., 2009).
Research in the last decade provided several methods to
represent natural biological variability by modeling them
as nonlinear transformations in the manifold of diffeomor-
phisms. Their focus has primarily been on geodesic mod-
els. For example, methods of Fréchet mean (Davis, 2008),
geodesic regression (Niethammer et al., 2011) and hierar-
chical geodesic models (Singh et al., 2013a) are first order
models that rely on computing geodesics within the space
of diffeomorphisms. While such models have proven to be
effective, their use is limited to modeling only “geodesic-
like” image data. However, geodesics are not always ap-
propriate for regression modeling of time-series data. In
particular, nonmonotonous shape changes seen in time se-
quence or videos of medical images of periodic breathing,
cardiac motion, or shape changes in the human brain dur-
ing a long age range (10-90 yrs), do generally not adhere
to constraints of geodesicity. This necessitates the devel-
opment of higher order models of regression within the
space of diffeomorphic transformations. Computational
anatomy has seen very little work on higher-order models
of registrations for modeling image time series (Figure 1).

Contribution. In this article we propose:

1. an acceleration-controlled model that generalizes the
idea of cubic curves to manifold of diffeomorphisms
and is capable of modeling nonmonotonic shape
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Figure 1: Models of parametric regression to explain data on diffeo-
morphisms.

changes under the large deformation (LDDMM) set-
ting,

2. a shooting based solution to cubic curves that enables
parametrization of the full regression path using only
initial conditions,

3. a method of shooting cubic splines as smooth curves
to fit complex shape trends while keeping data-
independent (finite and few) parameters, and

4. a numerically practical algorithm for regression of
“non-geodesic” medical imaging data.

The work described in this manuscript significantly ex-
tends our work presented at MICCAI (Singh and Nietham-
mer (2014)). In particular, (1) we make use of a new
formulation directly advecting the inverse of a diffeomor-
phism, (2) we provide extended discussions of the ap-
proach, and (3) present a variety of new results to illustrate
the behavior of the approach.

1.1. Related work

Methods that generalize Euclidean parametric regres-
sion models to manifolds have proven to be effective for
modeling the dynamics of changes represented in time-
series of medical images. For instance, methods of geodesic
image regression (Niethammer et al., 2011; Singh et al.,
2013b) and longitudinal models on images (Singh et al.,
2013a) generalize linear and hierarchical linear models,
respectively. Although the idea of polynomials (Hinkle
et al., 2014) and splines (Trouvé and Vialard, 2012) on
the landmark representation of shapes have been proposed,
higher-order extensions for image regression remain defi-
cient. While Hinkle et al. (2014) develop an approach for
general polynomial regression and demonstrate it on finite-
dimensional Lie groups, infinite dimensional regression is
demonstrated only for first-order geodesic image regres-
sion.

These parametric regression models are advantageous
since their estimated parameters can be used for further
statistical analysis. For instance, initial momenta obtained
from Fréchet atlas construction of a population of images
can be treated as signature representations of shape dif-
ferences across the group and can be treated as features
to train classification and regression models (Singh et al.,
2014). Other regression methods include those by Davis
et al. (2010) that generalize notion of kernel regression to
manifolds. Kernel regression is a nonparametric approach

and hence does not provide a summary representation of
the regression fit in terms of a finite set of parameters for
further analysis.

The remainder of this article is structured as follows:
Section 2 reviews the variational approach to splines in
Euclidean space and motivate its shooting formulation for
parametric regression. Section 3 then generalizes this con-
cept of shooting splines for diffeomorphic image regression.
We discuss experimental results in Section 4, and conclude
the article with a discussion of future work in Section 5.

2. Shooting-splines in the Euclidean Case

To motivate our formulation for splines on diffeomor-
phisms it is instructive to first revisit the variational for-
mulation for splines in the Euclidean case. This facilitates
a more straightforward presentation of the fundamental
approach and allows to make direct connections to the
formulation for splines on diffeomorphisms.

2.1. Variational formulation.

An acceleration controlled curve with time-dependent
states, (1,22, x3) such that, &1 = x4 and &9 = x3, defines
a cubic curve in Euclidean spaces for a constant acceler-
ation, x3. Here, 1 denotes position and x5 velocity. In
particular, such a cubic curve minimizes an energy of the
form, F = % fol ||z3]|2dt subject to the dynamic constraints
above. The corresponding constrained optimization prob-
lem can be written as

minimize F(z3) subject to x5 = &1 and 3 = 9. (1)
Z1,L2,T3
Here x5 is referred to as the control variable that describes
the acceleration of the dynamics in this system. The un-
constrained Lagrangian for the above is,
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where p1 and ps are the time-dependent Lagrangian vari-
ables or the adjoint variables (also called duals) that en-
force the dynamic constraints. Optimality conditions on
the gradients of the above Lagrangian with respect to
the states, (z1,x2,23), result in the adjoint system of
equations, 11 = 0 and &3 = —puy (ue gets eliminated).
This allows for a relaxation solution to Eq. (1), where
the state of the system is the full time-course of states,
ie., (z1(t),x2(t),xz3(t)), and the condition z5(t) = const.
will be fulfilled at convergence. However, we may also
formulate this problem with respect to initial conditions
alone, amounting to a shooting solution as discussed in
Section 2.2.



2.2. From relazation to shooting.

A relaxation solution has originally been proposed for
diffeomorphic image registration by Beg et al. (2005).
Here, a full-spatio-temporal velocity field was the vari-
able to be estimated. Instead, a shooting reformula-
tion (Vialard et al., 2011) allowed to represent the image
registration problems by optimizing over an initial image
and an initial momentum. In the scalar-valued setting
the shooting-formulation corresponds to optimizing over
the initial y-intercept and slope of a line, thereby search-
ing over the space of straight lines instead of converging
to a straight line as in the relaxation setting. Shooting
thereby allowed the formulation of geodesic regression ap-
proaches (Niethammer et al., 2011) where one aims to de-
termine the best geodesic fitting the given data and op-
timized over the initial conditions specifying the geodesic
only. Hence, to allow for splines on diffeomorphisms we
also need a shooting formulation to be able to compactly
represent splines and to express the equivalent of piece-
wise cubic curves. In the scalar-valued case such a shoot-
ing formulation can be obtained by explicitly adding the
evolution of x3, obtained by solving the relaxation prob-
lem, as a dynamical constraint. This increases the order of
the dynamics. Denoting, x4 = —pu1, results in the classical
system of equations for shooting cubic curves,

.5.63 = $4(t), j?4 = 0 (2)

il = Iz(t), 33‘2 = xg(t),

The states, (1, %2, x3,x4), at all times, are entirely deter-
mined by their initial values (29,23, 29, 29), and in partic-
ular, z1(t) = 29 + 2%t + §t2 + %t?’. Also note that x4
is the derivative of acceleration, x3, and can therefore be
interpreted as jerk. For a cubic the jerk is constant. When
piecing together multiple cubic curves, as will be described
in Section 2.3, the jerk will be allowed to jump.

2.8. Shooting-splines with data-independent controls for
Tegression.

We now present our proposed method of regression using
cubic splines using the shooting equations. The goal is
to define a smooth curve that best fits the data in the
least-squares sense. Since a cubic polynomial by itself is
restricted to only fit “cubic-like” data, we propose to add
flexibility to the curve by piecing together piecewise cubic
polynomials. In other words, we define controls at pre-
decided locations in time where the state x4 is allowed to
jump.

Let, y;, fori =1... N, denote N measurements at time-
points, ¢t; € (0,1). Let t. € (0,1), forc=1...C, denote C
data-independent fixed control locations. For notational
convenience, we assume there are no measurements at the
end points, {0,1}, or at the control locations, {¢.}. The
control locations also implicitly define C' 4 1 intervals or
partitions in (0,1). Let us denote these intervals as Z.,
for ¢ = 1...(C +1). The constrained energy minimiza-
tion that solves the regression problem with such a data

Figure 2: Gluing together cubics to construct a piecewise cubic curve.
This example uses three partitions, Z1,Z2 and Z3 defined by placing
controls at two locations (C = 2).

configuration can be written as,
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st dq = xa(t), 2o = x3(t), 3 = x4(t), T4 =0,
(within each interval, IC), and

s.t. x1, T2, and x3 are continuous across C.

The partitioning of the domain of independent variable for
regression for the case of three partitions using two control
locations is depicted in Figure 2.

The unconstrained Lagrangian enforcing shooting and
continuity constraints using time-dependent adjoint states,
()\1, )\2, )\3, /\4), and duals, (I/l, Vo, 1/3)7 is
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The conditions of optimality on the gradients of the above
Lagrangian result in the adjoint system of equations, A =
07)'\2 = —)\1,).\3 = —)\2,).\4 = —\3. The gradients with
respect to the initial conditions for states zy forl = 1,...,4
are, (5ng = 7)\1(0), (Sng = 7)\2(0), 5ng = 7)\3(0) and
6,0E = —A4(0). The jerks at controls, zf¢, are updated
using, 0, B = —MX4(t:). The values of adjoint variables
required in these gradients are computed by integrating
backward the adjoint system. Note that A1, Ay and As
are continuous at joins, but A; jumps at the data-point
location as per, i (t]) — A1 (t;) = 25 (z1(t;) — ;). During
backward integration, A4 starts from zero at each interval
at t.41 and the accumulated value at ¢. is used for the
gradient update of x4(t.).

It is critical to note that, along the time, ¢, such a formu-
lation guarantees that: (a) x4(t) is piecewise constant, (b)
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Figure 3: States for splines regression in Euclidean space with one control at t=0.5.

x3(t) is piecewise linear, (c) xo(t) is piecewise quadratic,
and (d) z1(t) is piecewise cubic. Thus, this results in a
cubic-spline curve. Figure 3 demonstrates this shooting
spline fitting on scalar data. While it is not possible to
explain this data with a simple cubic curve alone, it suf-
fices to allow one control location to recover the meaning-
ful underlying trend. The state, x4, experiences a jump
at the control location that integrates up thrice to give a
C?-continuous evolution for the state, z.

3. Shooting-splines for Diffeomorphisms

Our goal is to generalize the variational approach to cu-
bic splines to the group of diffeomorphism to define splines
that can capture for example complex image deformations
over time. QOur approach is completely analogous to the
scalar-valued case described in earlier sections.

3.1. Notations and preliminaries.

We denote the group of diffeomorphisms by G and its
elements by g; the tangent space at g by T,G; and the
Lie algebra, T.G, by g. Let €2 be the coordinate space
of the image, I. A diffeomorphism, g(t), is constructed
by integrating an ordinary differential equation (ODE) on
Q) defined via a smooth, time-indexed velocity field, v(t).
The deformation of an image I by g is defined as the
action of the diffeomorphism, given by g-I = I o g~!.
The choice of a self-adjoint differential operator, L, de-
termines the right-invariant Riemannian structure on the
collection of velocity fields with the norm defined as,
vl = [o(Lv(x),v(z))dz. The velocity, v € g, maps to
its dual deformation momenta, m € g*, via the opera-
tor L such that m = Lv and v = K x m. The operator
K : g* — g denotes the inverse of L. For a thorough
review of the Riemannian structure on the group of diffeo-
morphisms, please refer to Younes (2010), Arnol’d (1966)
and Younes et al. (2009).

8.2. Variational formulation.

Let us introduce curves of minimal acceleration on a
general Riemannian manifold (Noakes et al., 1989; Camar-
inha et al., 1995) which are needed for the image case.
As a boundary value problem, Riemannian cubic splines
are defined as curves that minimize the following energy
E(g) = %fol ||Vg~g||%g(;dt subject to boundary constraints
9(0) = g0,9(0) = vo and g(0) = go,g(1) = v1. Here,
V denotes the Levi-Civita connection associated with the
Riemannian metric denoted by ||-||,c. The quantity, Vg,
is the generalization of the idea of acceleration to Rieman-
nian manifolds. Note that the associated Euler-Lagrange
equation is in the form

D3 D
i Ez)z =0, (3)
which involves the curvature tensor R associated with the
metric. Another way to define the spline is by defining a
time-dependent control that forces the curve g(t) to de-
viate from being a geodesic (Trouvé and Vialard, 2012).
Such a control or a forcing variable, u(t) is then integrated
using the formula V;4yg(t) = u(t). Notice, u(t) = 0 im-
plies that g(t) is a geodesic.

Taking this idea forward to the group of diffeomor-
phisms, G, we propose to include a time-dependent forc-
ing term that describes how much the ‘geodesic require-
ment’ deviates. Thus, we define the control directly
on the known momenta EPDiff evolution equation for
geodesics (Younes et al., 2009), obtained using the right
invariant metric to give the evolution in the Lie algebra
(in fact, the tangent space at the identity deformation), g,
as m + ad, m = 0. Here, the operator ad” is the adjoint
of the Jacobi-Lie bracket (Bruveris et al., 2011; Younes
et al., 2009). After adding this control, the dynamics take
the form, m + ad m = u, where u € g*. Thus we allow
the geodesic to deviate from satisfying the EPDiff con-
straints and constrain it to minimize an energy of the form,
E = %fol |u(t)||2.dt. It is important to note that such
a formulation will avoid direct computation of curvature.
We bypass it when we control the EPDiff in g instead of
controlling V4 g(t) in Ty G.

i — R(d,




The associated constrained energy minimization prob-
lem for splines is then,

1/
minimize 3 / || u(t) ||§dt (4)
v 0

1it) — u(t) + adje,n gy m(t) = 0, m(0) =mo  (5)

h(t) + (Dh)Km =0, h(0) =id  (6)

Here we use, h(t) = g—1(t) for ease of notations and id de-
notes the identity map. The constraint in (5) is the control
and (6) is a deformation advection constraint, which de-
scribes how the the inverse of the diffeomorphism evolves
over time. This equation will also play a central role for the
matching terms as it allows to match for example, images,
landmarks, surfaces, etc.

Similar to the Euclidean case, the Euler-Lagrange equa-
tions for the above optimization problem give an adjoint
system that explains the evolution of u, such that,

i — (Dh)"p — K Yadg,, Ku+adj,m=0, (7)
p+V-(poKm)=0. (8)

Here, p is the adjoint variable corresponding to the defor-
mation evolution constraint on ¢g=! in Eq. (6). The details
of the derivation of the above Euler-Lagrange equations
are presented in Appendix A. Note however that the ex-
istence of a minimizer to this variational problem is still
an open problem whereas the shooting splines solutions
introduced in the next section are well-defined.

3.3. From relazation to shooting.

Notice that the above discussion is analogous to the
discussion of the relaxation formulation for the Euclidean
case in the sense that the Euclidean states (z1,z2,23) —
(h,m,u) in diffeomorphisms. We now convert the adjoint
state, p(t) to a primal state to form a forward shooting
system. Analogous to the Euclidean case, this increases
the order of the system by one. The shooting system for
acceleration controlled motion is,

h+ (Dh)Km =0,

m—u+ adyx m =0,

@ — (Dh)"p — K~ 'adg,, Ku + adj, m =0,
P+ V-(p®Km)=0.

(9)

The image evolves (equivalently advects) as per the group
action of g on the initial image I, i.e., I(t) = I®0g~1(t) =
1Y o h(t). Here, the vector quantity, p is analogous to 4.

3.4. Shooting-splines with data-independent controls for
Tegression.

Similar to the data configuration in the Euclidean ex-
ample, in the context of regression, let, J;, fori =1... N,
denote N measured images at timepoints, ¢; € (0,1). The
goal now is to define finite and relatively fewer points than
the number of measurements in the interval, (0,1) where

p is allowed to jump. In other words, p does not jump at
every measurement but instead, is allowed to be free at
predefined time-points that are decided independently of
the data. Thus, we construct a curve g(¢), similar to the
FEuclidean case, in G, along the time, ¢, such that it guar-
antees, (a) p may jump at predefined time-points only, (b)
u is CY-continuous, (c) m is C'-continuous, and (d) g is
C?-continuous.

The unconstrained Lagrangian for spline regression for
a fixed initial image I° takes the form:

E(h,?’m’u,’p’ptc7 Aby Ams A, Ap) = (10)
1 C+1 1 1
2710

C+1 1 )
+) / (Mnes he + (Dhe) Kmye) 2dt
=170

C+1 1
+ Z / (Ames> e — e + adye,, me)p2dt
c=1"0

C+1 1
+ Z / <)\uca iLc - (Dhc)—rpc - K_1 adK'mC Kuc
=170

+ady,, me)2dt
C+1

1

+) / MpesBe + V - (pe @ Km,)) 2dt, and
=170

subject to continuity of h, m, u, and p at C joins.

Notice the second term is the relaxation energy term, |[u2,
which acts as a regularizer on the force along the full path
in diffeomorphisms.

3.5. Gradients.

The optimality conditions on the gradients of the
above energy functional show that the adjoint variables,
Ah, Am, Ay, are continuous at all C' joins. The gradients
with respect to the initial conditions are,

6o E = ~A1(0), 6,0E = ~X\1(0), 6,0 = —Ayu(0).

We compute the gradients by integrating the adjoint sys-
tem of equations within each interval backward in time,
Me = V- (pe ® Aue — Ane @ Kme) = 0
Ame — adigem, Ame + K ad},  me — K adje, K Ae
—adgcu, Mue + K (Do) pe) = K(Dhe) "Ane) =0
Aue — %Ku + Ame + K adfe,, K™ Ae

p
+Kady, m.=0

}\PC + (Dhc))‘uc + (D)\pc)KmC =0

The details of the derivation of the above Euler-Lagrange
equations are presented in Appendix B.



All variables start from zero as their initial conditions
for this backward integration. Similar to the Euclidean
case, we add jumps in A\, as,

1
Mc(tl) = Melty) = ?(IO o h(t;) — J;)VI,
I

at measurements, t = t; if we use a sum-of-squared differ-
ences similarity measure for d?(-,-) between the measured
images {J;} and the estimated images {I" o h(t;)}. More
general similarity measures could easily be used and would
only change these jump conditions. We ensure the conti-
nuity of Ape, Ame, and Ay at the joins and Ap. starts from
zero at every join. We use the accumulated A,.11 to up-
date the jerk, p.(t), at the control location with,

o

pc+1(tc)(tC)E =

_>‘pc+1 (t0)~

Note this is the ‘data independent’ control that we mo-
tivated our formulation with. This determines the initial
condition of the forward system for each interval and needs
to be estimated numerically. Also note that other regular-
izers can be added on the initial momenta, m?, initial jerk,
p{, and jerks at controls, piq_l, by restricting their Sobolev
norms. In this case, the gradient includes additional terms
of the form, Km?, Kp?, and K pZirl, respectively. The es-
timate for the force term, ug, does not need to be regu-
larized since minimizing the norm on w(t) along the path
itself acts as a regularizer.

4. Results

We evaluate our proposed model using synthetic data
and two real time-sequence imaging data sets. One of
the real imaging data examples is from cellular imaging
of snapshots acquired for a deforming cell imaged using
atomic force microscopy. The other is from the Sunny-
brook cardiac MR database (Radau et al., 2009). In these
experiments, the kernel, K, corresponds to the invertible
and self-adjoint Sobolev operator, L = —aV?—bV(V-) +c,
with a = 0.2, b = 0.2, and ¢ = 0.001. We use fourth or-
der Runge-Kutta to integrate the primal states forward
and to integrate the corresponding adjoint states back-
wards. We use a line search with gradient descent to es-
timate optimal initial states of spline curves and the con-
trols. We fix the initial image, I(0), and estimate initial
states, m(0),u(0),p(0) and p(t.) at control locations that
completely determine the spline curve g(¢t) from ¢t = 0 to
t = 1. In our validations, we first experimentally demon-
strate that the shooting equations for evolving cubic curves
in diffeomorphisms as per the set of ODE’s in Eq. (9) are
indeed analogous to the classical system of shooting cubic
curves in Euclidean as given in Eq. (2) and to the cubic
equation, y = az® + bx? + cx + d. We discuss these results
in Sec. 4.1. Next, we present our experiments for regres-
sion with splines using synthetic data, the deforming cell
imaging data and the cardiac imaging data in Sec. 4.2.

4.1. Assessment of shooting higher order curves

We first study the interpretation of the new states pro-
posed in this paper: the force denoted by w(t) and the
jerk denoted by p(t) for the evolution of curves in diffeo-
morphisms. It is informative to study the simplest case
of regression first: the image matching problem between
a set of two images, such that it solves the variational
problem in Eq. (10) in the absence of any control loca-
tions, i.e., C' = 0. Since, there are only two points, the
energy minimizing curve is a geodesic path but one that
allows changes in velocity and in acceleration. The fourth
derivative, jerk, however must conserve mass during its
transport. Also note that if we only constrain the jerk
state to be zero at all times, such that p(t) = 0, the diffeo-
morphism evolves in a “quadratic” form. Along with the
jerk, if we also constrain the force state to be zero at all
times, such that u(¢t) = 0, the diffeomorphism evolves in
the standard geodesic form.

To investigate this, we decompose our analysis into three
simpler experiments. We first solve the problem of match-
ing two images by constraining the force and the jerk states
to be zero at all times and only estimate the initial mo-
menta that describe the geodesic. We call this the mo-
menta only matching (Figure 4 top row). Images on the
left are the initial states: image, momenta, force and jerk
at ¢t = 0, and on the right are the final states: image,
momenta, force and jerk at ¢ = 1. This is simply solving
the classical image matching problem using the geodesic
shooting equations. In this case, the momenta evolution
satisfies the standard EPDiff evolution. In the view of clas-
sical mechanics and particle motion, it is also analogous to
describing the motion of a particle with constant velocity
under the absence of any external force. Next, we solve
the problem of matching the same images by constraining
the starting momenta to be zero at ¢t = 0, and the jerk
states to be zero at all times, and estimate only the ini-
tial force. We call this the force only matching (Figure 4
middle row). This is analogous to the motion of a station-
ary particle under constant force such that it starts from
zero velocity and then constantly accelerates. Finally, we
solve the problem of matching the same two images by
constraining the starting momenta and force to be zero
at ¢ = 0, and estimate only the initial jerk. We call this
the jerk only matching (Figure 4 bottom row). This is
analogous to describing the motion of a stationary parti-
cle with a continuous impulse such that it starts moving
from zero velocity, and zero acceleration and then its ac-
celeration increases constantly and its velocity increases in
second order. The simple gradient descent with line search
optimization converges for these three experiments. As ex-
pected, the momenta at the end point of the matching path
for the jerk only matching are larger than that observed
at the end point for force only matching. Also, the final
force state for jerk only matching ends up being larger in
magnitude than the force state for force only matching.
Note that for all three curves the start point (the identity
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of images such that u(t) = 0 and p(¢) = 0 along the matching path in diffeomorphisms. This matching only estimates initial momenta, m(0).
(b) Middle row is for force only matching to estimate «(0) such that p(¢t) = 0 along the path but m(¢) accelerates from zero initial condition,
i.e., m(0) = 0. This matching only estimates initial force, u(0). (c¢) Bottom row correspond to jerk only matching such that both m(t) and
u(t) accelerate from zero initial conditions, i.e., m(0) = «(0) = 0. This matching only estimates initial jerk, w(0).

The length of arrows is proportional to their scales.
optimization problems.

On the right is the convergence of gradient descent with line search for the three

Table 1: Total squared error of fit

Spline fit Spline fit .
(one control) | (no control) Geodesic fit
Synthetic 40.50 139.77 162.39
Cell data 70.68 71.36 307.18
Cardiac data 962.75 975.15 1440.58
deformation) and the end points (the best matching de- y = 2% — x, we integrate Eq. (9) starting from the initial

formation) are identical. The matching only differs in the
order of motion along the path the curve traces in diffeo-
morphisms.

To further understand the Euclidean analogy of our pro-
posed shooting equations in Eq. (9) we combine the three
estimates and observe the resulting evolution. In partic-
ular, the above three experiments result in the three co-
efficients that follow similar scaling rules as the standard
cubic curves, y = ax> + bx? + cx + d, where a is equivalent
to p(0) estimated for jerk only matching, b to u(0) esti-
mated for force only matching, and ¢ to m(0) obtained for
momenta only matching. We can now conveniently synthe-
size different parametric curves using the scaling of these
coefficients. In Figure 5, we demonstrate the quadratic
and the cubic polynomial curves in diffeomorphisms syn-
thesized using these estimates obtained from matching.

To simulate a curve similar to the Euclidean quadratic,

momenta of m(0) and initial force of —u(0). We observe
that the diffeomorphic path traces a quadratic path which
is analogous to the motion of a particle under constant
force. This is similar to the motion of a particle with a
given initial velocity at ¢ = 0 but opposite force such that
the particle decelerates initially, comes to a rest state ex-
actly at t = 0.5 and then accelerates to return back to the
exact initial position at ¢ = 1.0 (Figure 5 (a)). The shoot-
ing equations are accurate such that the diffeomorphisms
end at the identity transformation at ¢t = 0. Another way
to visualize this path in diffeomorphisms is to observe the
motion of a pixel at the boundary of the image as it de-
forms from ¢t = 0 to ¢ = 1. For this we display stacked-up
1-D cross sections (middle row of the image). This forms a
2D matrix displayed as a picture in Figure 5 (c), such that
the rows are stacked up in increasing order of time from
bottom to top. We notice that the pixels trace a quadratic



(a) Quadratic

(b) Cubic

t = 0.000 0.125 0.375

0.500

T
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(c¢) Quadratic cross-section

(d) Cubic cross-section

Figure 5: Quadratic and cubic polynomial paths in diffeomorphisms. Row (a) corresponds to the diffeomorphic path for quadratic evolution
obtained by shooting along m(0) and —u(0). This is analogous to the motion of a particle with finite initial velocity under constant decelerating
force. Row (b) corresponds to the cubic evolution obtained by shooting along coefficients scaled as per the Bernoulli coefficients, i.e., m(0),
—3u(0) and 2p(0). Bottom row, (c) and (d) are the cross-section visualization of the generated images along these paths. The trajectory of

boundary points follow quadratic and cubic paths, respectively.

Note that the base coefficients, m(0), u(0) and p(0) that were scaled, are the initial conditions estimated by solving the image registration
problem with momenta only, force only and jerk only constraints, respectively, as per Figure 4.

curve as the image deforms along this path.

To demonstrate a cubic-like behavior, we scale the coef-
ficients to generate a Bernoulli polynomial of degree 3 that
takes the form, y = 23 — 222 4+ 1z. For this, we integrate
Eq. (9) starting with scaled initial conditions and use the
initial momenta of $m(0), initial force of —3u(0) and the
initial jerk of p(0). We observe that the diffeomorphic path
traces a cubic path such that the shape first compresses
in one direction and then expands and reaches back to a
state that it started with and continues to expand until it
finally shrinks back (Figure 5 (b)). This is analogous to
the behavior a Euclidean Bernoulli polynomial of degree
3 follows with the exact same coefficients. Also, similar
to the visualization of the quadratic curve, the cross sec-
tional boundary pixel visualization of this curve results in
a Bernoulli path that resembles a Bernoulli cubic (Figure 5

(d))-

4.1.1. Quadratic and cubic regression

Next, to assess the strength of regression using these
parametric shooting equations, we generate (N = 9) sam-
pled shapes to simulate non-monotonic quadratic and cu-
bic like dynamics from ¢t = 0 to ¢t = 1 (Figure 6 (a) and (c),
respectively) using the shooting methods described above.
The corresponding quadratic and cubic regression fit are

shown in Figure 6 (b) and (d), respectively.

A note on initialization. A good initialization is necessary
since the variational problem is non-convex. A possible
strategy for the initialization is to first compute the initial
momenta, m, for matching the first image (source image)
with the next image in sequence that looks to be the most
deformed image (target image) relative to the initial im-
age. In the case of quadratic data in row (a), a good
candidate for the target image could be the one at ¢t = 0.5
while for the cubic data in row (c), a possible candidate
for the target image could be the one at ¢ = 0.25. A good
initialization for the quadratic regression gradient descent
optimization problem could then use this momenta direc-
tion estimated only from the data to initialize both the
initial quadratic states, for example, using approximately
scaled m: m*(0) = 2m and u*(0) = —4m at first iteration
for k = 1. Similarly, for the cubic regression variational
problem, such an initialization could be used to also initial-
ize all the initial states of momenta, force and jerk for the
first iteration at k£ = 1 of the gradient descent, for example,
using approximately scaled: m*(0) = 2m, u*(0) = —12m
and p¥(0) = 24, where 1 denotes the momenta corre-
sponding to the geodesic matching problem of matching
initial image with the image at ¢ = 0.25. Note these fac-



tors correspond to quadratic and Bernoulli cubics respec-
tively along with additional scalings to compensate for the
shorter length of the path for which m is computed.

We emphasize that the above strategies use only the
data to decide initial conditions of a curve that could be
close to the possible minimizing least square polynomial
curve. This provides a practical way to find good ini-
tialization for the fitting problem for any given data set.
We notice that using such initializations the optimization
converges faster for both the quadratic and the cubic re-
gression variational problems (Figure 6 (f) and (h)).

For the quadratic regression, we notice that the esti-
mated fit captures the trend and results in a smoothly
shrinking followed by expanding grids along the regression
path to closely match the data. The boundary pixel also
traces a quadratic curve when the image deforms (Figure 6
(e)). Similarly, for the cubic regression, the estimated fit
captures the two inflections of the motion to best fit the
data. The boundary pixel also traces a quadratic curve
when the image deforms (Figure 6 (e)).

4.2. Assessment of spline regression.

In this section, we investigate the performance of spline
regression on synthetic and real data. For the synthetic
data, we generate the data such that a cubic-like dy-
namic alone is not sufficient to explain the trends in shape
changes and therefore necessitates adding a control for the
spline fit. For the real data, we perform spline regression
experiments using cell and cardiac images.

4.2.1. Synthetic data.

To assess the strength of spline regression for non-
geodesic image data, we create a synthetic sequence of
N = 13 shapes to simulate non-monotonic changes with
more than two inflection points from ¢t = 0 to ¢t = 1 (Fig-
ure 7, (a)). The synthetic shape first shrinks and then
expands till £ = 0.5, and then again shrinks and finally ex-
pands back again till it reaches the end point, at t = 1.0.
Using such data, we attempt to simulate dynamics such
that a cubic alone would not be sufficient to trace through
the inflection. For optimization, we follow a similar strat-
egy we discussed in Section 4.1.1 for cubic regression to
initialize momenta, force and jerk at t = 0 but just switch
the sign on the jerk state, p at the control location to add
another inflection.

We report a quantitative comparison of the three fits in
the first row of Table 1. The reported error of fit corre-
sponds to L? image residual as per the data-likelihood in
Eq. (10). We observe that adding a single spline control
at the mid point results in the best fit that summarizes
the smooth dynamics of change (Figure 7 (b)). The esti-
mated diffeomorphism successfully captures the two cycles
of trends in the shrinking shape, followed by expansion
(Figure 7 (c)). Without adding any control, the result-
ing spline trend, even though a cubic, fails to capture the
dynamics and fails to recover the inflection points in the

rate of shape change. Finally, being the most inflexible,
geodesic regression performs worst, and barely captures
any real spatio-temporal trend (Figure 7 (d)). The visu-
alization of the motion of boundary pixels also confirms
(last column) the flexible diffeomorphism fit obtained for
the spline regression with one control.

4.2.2. Deforming cell data.

The cell time-sequence data corresponds to 11 snapshots
at equal intervals a deforming cell imaged using an atomic
force microscope. We preprocessed the images using total
variation denoising (Chambolle, 2004) to preserve edges.
The images depict a trend in which the shape of the cell
deforms such that its left boundary first bends inward and
then resumes back to its original shape (Figure 8 (a)).

A visual assessment of the cell images suggests that this
data should have an inflection in the dynamics of shape
changes. The regression fit using one control and no con-
trol result in a very similar fit (Figure 8 (b) and (c)).
However, the geodesic fit only results in a monotonous
compression of the cell and fails to capture the expansion
in the last half of the dynamics (Figure 8 (d). We also
notice in Table 1 that the spline regressions with one con-
trol and without a control result in comparable L? error
of fit as per the data likelihood. The geodesic fit, however,
clearly performs worst in terms of the residual error of fit.

4.2.3. Cardiac data.

The cardiac time-sequence data corresponds to 20 snap-
shots at equal intervals of the beating heart of a normal
individual with age=63 years (Subject Id: SCD0003701).
We cropped all the axial images to a common rectangu-
lar region around the heart followed by histogram match-
ing to align intensities of all the timepoints to the image
at t = 0. Figure 9 shows the original scans (first row)
and the result of regression models (second to fourth row).
We only display half of the timepoints of the ones actu-
ally used to fit the model. Similar to the synthetic data,
we observe that the original data exhibit a non-geodesic
and non-monotonic trend in changing shape of the beat-
ing heart. The comparison in terms of the error of fit for
all models suggests that both spline curves perform better
than the geodesic. Although visually the fits look similar
for splines, we obtained a marginal improvement of fit for
the spline curve with single control when compared to the
spline curve without any control (Table 1). The geodesic
fit again performs worst out of the three models. The dy-
namics of the beating heart for these models are best seen
in the multimedia file in the supplementary material. The
CPU/GPU implementations of the shooting splines for
2D and 3D image sequences is at https://nikhilsingh®
bitbucket.org/nikhilsingh/diffeosplines.git.

5. Discussion

In this article, we developed a theory for higher order
curves that generalizes the notion of parametric curves


https://nikhilsingh@bitbucket.org/nikhilsingh/diffeosplines.git
https://nikhilsingh@bitbucket.org/nikhilsingh/diffeosplines.git

such as the quadratic, the cubic and the piecewise cubics
to the manifold of diffeomorphisms. We provided a prin-
cipled way to define curves with nonzero acceleration and
nonzero jerk, which is the natural next step of extension to
geodesic-based methods developed during the last decade
for computational anatomy in the large deformation dif-
feomorphic image analysis framework. We took a varia-
tional approach that is governed by an underlying energy
formulation, which respects the nonflat geometry of dif-
feomorphisms. Such an approach of minimal energy curve
estimation also provides a physical analogy with particle
motion under a varying force field.

As a consequence, the initial conditions of our varia-
tional quadratics and cubics are interpretable similar to
the initial conditions of their corresponding Euclidean
parametric counterparts. To validate this, we demon-
strated that evolving the curves according to scaled initial
conditions also results in the same behavior as a scalar Eu-
clidean parametric curve would exhibit under these scal-
ings. We tested this for different scalings and presented the
results for quadratic parabolic scalings and for Bernoulli
cubic scalings.

Our proposed system of evolution equations for higher
order curves can be used for regression. The benefit of
using these forward shooting equations in an optimal con-
trol setting is that the solution to the resulting regression
problem is given only in terms of a few initial conditions.
We emphasize that in all our experiments, the full diffeo-
morphic paths and the evolution of all states along the es-
timated curves are completely parameterized by very few
parameters (four for spline fits with one control and three
for spline fits without any control) that are independent
of the study size.

5.1. Open questions and extensions.

Regression models are expected to fit better with in-
creasing number of control points, which will necessitate
model selection methods. Due to the limitations of our
current optimization method, i.e., gradient descent, our
spline estimation experiments used at most one control
point only. A possible future work would be to explore
better optimization strategies and to develop second order
methods utilizing limited memory for the optimization of
splines (Byrd et al., 1995). We expect improved conver-
gence for example by using a quasi-Newton methods such
as IBFGS.

We developed the regression problem for a fixed initial
image. Adding template estimation would add another
parameter to the estimation problem. With better opti-
mization strategies, it should also be possible to develop
an alternate optimization algorithm for template estima-
tion (Singh et al., 2013b).

The position of control points is also a modeling choice.
The uniform placement of control points on the axis of
the regressor variable is convenient and facilitates model
comparisons and interpretability in medical imaging pop-
ulation studies. However, it remains an open problem to
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also optimize for the locations of control points. The pos-
sible challenges will include investigating the differentia-
bility of the energy functional in Eq. (10) with respect to
the location of the jump in the jerk state.

Another aspect could be investigating possibilities of
combining our model on diffeomorphisms with the higher
order models on shapes (Gay-Balmaz et al., 2012; Trouvé
and Vialard, 2012).

One of the most critical contribution in this research is
the ability to trace a path in diffeomorphisms with nonzero
acceleration. This could be immensely useful for medi-
cal studies of growth or decline where the rate of change
gets affected and the emphasis is on accelerated tissue
growth or decline. One future possible application for the
quadratic models could be to study differences in aging of
individuals with or without dementia and investigating the
ages and local region in the brain exhibiting the most accel-
erated atrophy. This would add second order information
on tissue atrophy to the information currently being ob-
tained using contemporary first order geodesic regression
methods and deformation based morphometry analysis.

Another use of higher order models is for the recently
proposed longitudinal models for diffeomorphisms such as
hierarchical geodesic models (HGM) (Singh et al., 2013a).
Even though for brain studies, a geodesic-like trend is ex-
pected to be a good approximation of changes in the brain
for a single individual when the measurements are taken
within a span of five years, the geodesic assumption on the
average group trend of the entire population data for stag-
gered designs may not be the best modeling choice. Thus,
our proposed higher order curves would provide a better
model for the longitudinal summary of a group spanning
a wide range of ages from, say, 60 to 90 years.

Our method of shooting splines in diffeomorphisms lays
a foundation to model flexible dynamics of shape changes
seen in time series of medical images, and also opens the
possibility to model periodic data by adding periodicity
constraints.
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Appendix A. Euler-Lagrange for relaxation prob-
lem

We determine the Euler-Lagrange equation in the con-
text of the regression problem. We write the problem of
regression for the fixed initial image I and use h(t) to



denote the inverse deformation g=!(¢). For readability we
drop the argument, ¢, for all the time dependent states,
h(t), m(t) and u(t). We denote the Jacobian operator by
D(-) and the pixel-wise Kronecker product of two vectors
by ®. The constrained energy minimization for the re-
laxation problem of minimizing the elastic energy for the
force controlled curve takes the form,

N
- 1
B(hy 1, Ay A M) = 35— > d2 (1% o h(t:), Ji)
I =1

11 1 )
+§/ (u,K"u)detJr/ O, B+ (DR)EK™m) 2dt
0 0
1
—|—/ (A, — u + adjem,, m) p2dt,
0

where K% and K™ correspond to the different time in-
dependent metric kernels for v and m, respectively, and
d(-,-) is the metric on images. Note that the metric on
images can also be the metric on G, here we will keep this
simpler, and derive our results for the L? metric.

Appendiz A.1. Variations

In what follows, unless specified otherwise, all inner
products correspond to the L? pairing. Computing vari-
ations of E with respect to adjoint variables will give us
the dynamic constraints back. Computing variations of E
with respect to all state variables gives,

5hE = <%vh(ti)dh(10 (¢] h(ti), Jz), 5h(t7)>
I
+ (An(1),6h(1)) — (An(0), 6R(0))
+/ (=An — V- Ay ® K™m), Shydt
0
(Am(1),0m(1)) — (Am(0),6m(0))

1
+/ (=Am + K™(DR)" M) 4 adgmm Am
0

SmE

— K™ad)  m,0m)dt

1
6, FE = / (K"t — A\, Gu)dt
0

At the optimum the above must vanish. This results in
the following adjoint system,
M4V ®K™m) =0
Am — K™((Dh) " A\p) — adgmm A + K™ ady, m =0
Ky — M\, =0
Notice that, similar to the Euclidean case where the ad-
joint variable corresponding to the second state, x5, turned
out to be equal to the third state x3, here A\,, = K"u.
M4+ V- ®K™m) =0
K" — K™((Dh) " \p) — adgmp K%+ K™ adjeu, m =0
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Again, analogous to the Euclidean state, where the adjoint
variable corresponding to the first state, 1, was renamed
as the primal state, x4, for the shooting evolution, we re-
name A, to be p to describe the evolution of u for shooting
cubics to give:
P+V-(p@K™m)=0
K% — K™((Dh)"p) — adgmpy K + K™ adje., m = 0
Thus the forward evolution of the cubic system is deter-
mined by the following set of four PDE’s:
h+ (Dh)K™m = 0
m—u+ady,m=0
o — K MK™((Dh)"p) — K~ adgm, K*u
+ K ME™adlu, m =0
P+V-(p@K™"m)=0

For the case when the metric is same, i.e., K™ = K"
the above equations further simplify to,

=K,
h+ (DR)Km =0
m—u+adxzm=0
@ — (Dh)"p — K~ 'adg, Ku+adj, m=0
P+ V- -(p®Km)=0

Next we discuss how to use these shooting equations for
the cubic evolution to define the cubic regression problem.

Appendix B. Euler-Lagrange for shooting prob-
lem

Let, J;, for ¢ = 1... N, denote N measured images at
timepoints, t; € (0,1). Let us assume there are no mea-
surements at the end points, i.e., neither at ¢ = 0, nor at
t =1. Let t. € (0,1), for ¢ = 1...C, denote C data-
independent fixed control locations. The control locations
also implicitly define C'+ 1 intervals or partitions in (0, 1).
Let us denote these intervals as Z,, for c=1...(C' +1).

For regression on such a data configuration, the least-
squares energy takes the form,

C+1

E(h) = % Z Z d2(1° o h(ty), Ji),

c=1i€Z,

subject to the dynamic constraints.
We first write the constrained energy minimization
problem as,

E(I) (B.1)

miniImize
h+ (Dh)Km =0
1 —u+adym = 0| for each
i— (Dh) p— K adgm Ku + adje, m = 0 [ interval, Z,
P+ V-(poKm)=0

subject to continuity of h, m, and u at C' joins.



The unconstrained Lagrangian for spline regression for a

fixed initial image I° takes the form:

E~<hamau7paptca )‘h7 )‘ma )‘uv )‘;D) =
C+1

1 2(70 e
ﬁzzd (I Oh(tz)vjz)"‘ﬁ/o <U,KU>L2dt

c=1i€Z. w
C+1

1
+> /0 (Mhes he 4+ (Dhe)Kmy) p2dt
c=1

C+1 1
+> / e e — ue + adje,, me) p2dt
c=1 0

C+1 1
+ Z / <)\ucyuc - (Dhc)—rpc - K_l a‘deC KUC
c=1"70

+ adje,, me)p2dt
C+1 1

+ Z / </\p0al.)c +V- (pc ® ch)>L2dt7 and
c=1 0

subject to continuity of h, m, u, and p at C joins.

The second term is the relaxation energy term, |Jul|Z. This
term acts as a regularizer on the force along the full path
in diffeomorphisms.

Appendixz B.1. Variations

We discuss each piece of this optimization separately
and combine the result in the end of this section. It is
convenient to first derive it for the case with no controls,
i.e., C' = 0. The unconstrained Lagrangian takes the form,

with respect to all the primals as:

3B = (5 Viedn(100 A1), J2), 61(12)

+ </\hl(1)75h(1)> — (An(0),0h(0))

+/01<—>}h + V- (p® Ay — A @ Km), 6h)dt
ImE = (Am(1),0m(1)) = (Am(0),0m(0))

+ /01<Am + K((Dh)"Ap) + adgem Ay — K ad, m

+ K adj, K™\ +adgy Ay — K((DX,) "p), m)dt
6uE~‘ = <)‘u(1)’6u(1>> - <)‘u(0>76u(0)>

1
: 1
+/ (= + 5 Ku— Ay
0 g

u

— K adj,, K"\, — K ad}, m,du)dt
0, = (Ap(1),6p(1)) — (A,(0), 5p(0))

+ / 1<_Ap — (Dh)Ay — (DA,)Km, 6p)dt

At the optimum, the above must vanish. This results in

the following adjoint system:
M—=V-p@A— A, @ Km) =0
Am = adgm A + K ad, m — Kadj, K\,
—adgy A + K((DX,) "p) — K((DR)"Ap) =0

: 1
A — =5 Ku+ Ay + Kadje,, KAy + Kady, m=0
ag.

u

Mp + (DR)A, + (DX))Km =0

The boundary conditions are,

Sn)E = —An(0) Shy E = An(1)
Om(0)E = =Am(0) Om() B = A (1)
Su)E = —Au(0) SumyE = Au(1)
5p(0)E = —2(0) 510(1)E = Ap(1)

N Notice that we can also rewrite the adjoint system by re-

- 1 ing the K operator and using their duals, v = Km
E(h, m, 1,0, Ans Ao Ay Ap) = —— A2(1° o h(ty), J; moving the perator and using their duals,

( Py My Ams Aus Ap) 207 ZZ:; ( (t:), ) and f = Ku, and the conjugate operator, ad} is adl, =

1 K x ad L, such that:

1 1
+7/ u, Ku zdt+/ M, b+ (DR)Km) pdt .
2 o< ) o<h (Dh)Km) . A=V -p®A, —Ap®v)=0

1 .
+ / A, — u + adj,, m) p2dt Am — ady A + adir\m v — ad} Au
. —ady A+ K((DX) Tp) = K((Dh)TAn) = 0
Au—f+Am+adf A, +ad] v=0
Ap + (DR)Ay + (DXy)v = 0

1
+/ (A, — (Dh)Tp — K~ Y ad g, Ku + adle, m) 2dt
0

1
[ 4 V- @ K)ot
0 Furthermore, the adjoint in terms of duals for A\y = K1\,
and A\, = K~1)\,, is:
The variations with respect to dual adjoint variables give . .
the dynamic constraints back. We write the variations Ap —ut Ay tad, Ay +adxy,m =0
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Appendiz B.1.1. For the data fit constraints
The gradient of the data match term with respect to h
is:
1 0
53 (Va@odn(I” 0 h(ts), Ji), 6n(t:))
207

22 (00 () = 10, Fya (I (1)) 1)
(0o ht) = 1), V161

Note there is no application of the chain rule in the last
step above for the term, Vj,;,)(I° 0 h(t;)) because the gra-
dient is computed with respect to h(t;). This is equivalent
to the substitution of h(¢;) as y, which then is equivalent
to taking the derivative of I(y) with respect to y. Thus,
this gradient of the data fit constraints with respect to h,
results in jumps during the backward integration of the
adjoint variable, A, as,

1
M) = M(ty) = ?(IO o h(t;) — J;)VI".
I

Appendiz B.1.2. For the continuity constraints
We derive the variations of the energy functional for the
joins and study the continuity of the adjoint system in the
interval (0,1). For this analysis, we introduce again the
subscripts ¢ to denote the intervals. We first rewrite the
above functional here as,
E = fit of the data within each interval, Z,

+dynamics within each interval, Z,

C
+ Z<ah07 hC(tC) - hc—l-l(tC)>L2
c;l
+ Z(amm mc(tc) - mc+1(tc)>L2

C
+ Z<auc> uc(tC) - u5+1(tc)>L2

Notice that the Lagrangian adjoint variables, apc, tyne and
Qye, do not vary with time. We write the variations with
respect to all the primals at joins as:
Ohe(te) B = Ane(te) + ame
6hc+1(tC)E = —Aneti(te) — Qme
Ome(te) B = Ame(te) + me
Omet1(t)E = —Amet1(te) — ame
Suc(to) B = Auc(te) + e
—Auc(te) —
Equating all the above variations to zero and algebraically
eliminating variables, we get,
Ane(te) = Anc(te)
Ame(te) = Amet(te)
Auc(te) = Auct(te)

6uc+1(tc)E = Qyc
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This proves that Ape, A\me and Ay are continuous at the
boundaries of the control point locations.

Appendiz B.1.3. Gradient computation using backward in-
tegration

We summarize the optimization here.

with respect to the initial conditions are,

The gradients

(5m1(0)E = —An1(0)
6u1(0)E = 7>\u1(0)
5p1(0)E = _/\pl(o)

We compute the gradients by integrating the adjoint sys-
tem of equations within each interval backward in time,

/.\hc_v' (pc®>\uc_Ahc®ch) =0
Ame = adgm, Ame + K ad}  me — K adj,, K™ Ae
—adgu, Aue + K((DX\pe) "pe) — K((Dhe) " Ape) =0

: 1
Muc = —5 Kt + Ame + K ad,,, K™ Aye
ag,

p
+Kady, m.=0

Ape + (Dhe)Aue + (DApe) Kme = 0

All variables start from zero as their initial conditions for
this backward integration. We add jumps in Ay, as Ay () —
M) = U%(IO o h(t;) — J;)VI' at measurements, t = t;.
We ensure the continuity of Apc, Apme, and Ay at the joins.
However, Ay, starts from zero at every join.

The accumulated Apc41 is used to update the p.(tx) as
per the gradient,

0,
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to be estimated numerically.
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Regression using a quadratic path in diffeomorphisms

Regression using a cubic path in diffeomorphisms
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(b) Fit
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Figure 6: Regression of quadratic and cubic like data. Top two rows (a) and (b) detail the quadratic like sparsely sampled data and the
corresponding quadratic regression fit, respectively, and (e) and (f) show the cross-sectional view of movement of a boundary point along the

quadratic fit and the convergence of the optimization, respectively.
Similarly, rows (c¢) and (d) detail the cubic-like sparsely sampled data and the corresponding cubic regression fit, respectively, and (g) and

(h) show the cross-sectional view of movement of a boundary point along the cubic fit and its convergence, respectively.
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(a) Original data

t = 0.000 0.083 0.166 0.250 0.333 0.416 0.500

0.583 0.666 0.750 0.833 0.916 1.000

(b) Spline fit (control at ¢ = 0.5)

(c) Spline fit (no control)

(d) Geodesic fit

Figure 7: Comparison of regression models on the synthetic data. (a) details the original synthetic shapes that goes through non-monotonic
deformations simulating three inflection points. (b) details the spline fit using a control at location ¢ = 0.5 overlaid with the corresponding
deformed grid. The last image in the sequence visualizes the motion of a pixel at the boundary, in the middle 1-D horizontal slice of the
deforming 2-D image, as we move along the regression fit in diffeomorphisms. (c) and (d) depict the spline and the geodesic fit, respectively.
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(a) Original data

t = 0.000 0.100 0.200 0.300 0.400 0.500
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(b) Spline fit (control at ¢t = 0.5)

Figure 8: Comparison of regression models on the deforming cell data. (a) details the original cell images that shrinks and then expands
back. (b) details the spline fit using a control at location ¢t = 0.5 overlaid with the corresponding deformed grid. (c) and (d) depict the spline
with no control and the geodesic fit, respectively.
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0.600 0.700 0.800 0.900 1.000
(b) Spline fit (control at ¢t = 0.5)

(c) Spline fit (no control)

(d) Geodesic fit

Figure 9: Comparison of regression models on the cardiac motion data. (a) details the original cardiac snapshots. (b) details the spline fit

using a control at location ¢ = 0.5 overlaid with the corresponding deformed grid. (c) and (d) depict the spline with no control and the
geodesic fit, respectively.
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