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Abstract

This document contains supplementary material. In particular, additional segmentation results are shown
and validation results are presented. Further, this document contains the full derivations of the prox oper-
ators, the ADMM dual energy, and the derivation of the estimate of the relaxed dual energy.
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To graphically illustrate the behavior of the pro-
posed area-constrained segmentation method Sec-
tion S.1 shows the segmentation results. Section S.2
presents the detailed validation results of the pro-
posed method in comparison to an unconstrained
segmentation, biased normalized cut, normalized
cut, seeded watershed, and random walker segmen-
tation. Sections S.3-S.5 contain the derivations for
the prox operators, the ADMM dual energy, and
the estimate of the relaxed dual energy respectively.

S.1. Full vesicle segmentation results

Figure S1 shows an overview of seed points,
the gold standard manual segmentation as well
as results for the area-constrained and the uncon-
strained segmentations for the synaptic vesicle seg-
mentation scenario.

S.2. Statistical significance and detailed seg-
mentation results

Figures S2 and S3 show boxplots for the segmen-
tation results for all the tested methods and statis-
tical significance levels between the methods with
respect to mean Dice performance for the synaptic
vesicles and the SARS: double-membrane vesicles
respectively.

S.3. ADMM prox operators

The prox operator for the update of the consen-
sus variable u is a simple average over the residuals
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between the local copies and their dual variables:
prox%g(uA,us,ﬂs,ﬂt) =
Nz
argmin (2~ (ul —uy + (1)) + (uf —ug + (2)")
u

23X @ @

t:(s,t)€E

+ > @ -+ (E)9?)),

t:(t,s)€E

Here, £ is the edge-set. The problem decouples
spatially. For any position s on the computational
grid we obtain (upon differentiation) the averaging
rule of Equation (12).

For the unary term we get

proxs (g) =

. g
argmin S (psuy + 00, (us)) + 5 S (1 = 45)°.

S

This operator decouples spatially also and we there-
fore need to minimize for every s

E(u) = (pu -+ 1o, (w) + 5 (u— ).

Assume there is no constraint on u, then the mini-
mizer is

u=q-——p,
o
otherwise u will be clamped from which Equa-
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Figure S1: Full vesicle segmentation results: (a) unconstrained, (b) lower bound. Fewer selection regions by more (left) and
more selection regions by (right). The selection regions leave the segmentation results for the area-constrained segmentation
largely unaffected, whereas they influence the unconstrained segmentation results greatly. Zoom for best viewing results.
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Figure S3: Statistical significance (p-value) for the null-hypothesis that there are no segmentation differences as measured by
the mean Dice similarity coefficients. Unconstrained (UC) segmentation, lower (LB), and lower and upper bound (LBUB)
area-constrained segmentations. Biased normalized cut (BNC), normalized cut (NC), seeded watershed (WS), random walker
(RW) and random walker with default settings (d-RW). Bold: best results. P-values between Dice results from permutation
test (for 100,000 permutations each). Bold: statistically significant at significance level ae = 0.05 after Bonferroni correction
(for 21 tests performed in total for each image). Top: overview of the individual Dice coefficients for the different segmentation
methods. Solid lines indicate mean plus/minus one standard deviation. Circles indicate potential outliers. Box center indicates
the median and the box extends between the 25th and the 75th percentile of the data.



tion (13) follows. For the area-based term, we have
prOX% fA (Q) =

o

arirzlin ) {Al < zszuf < Au} +§ zs:(uf—qs)Q.

If the area is too small, all values are uniformly
increased, if it is too large they are uniformly de-
creased. Consider the case ) u, < A, then the
projection will result in > u, = A;. Adding this
constraint through a Lagrangian multiplier A\, re-
sults in

E(q) = 23 (ud = g)* = MY ult = A,

S

At a critical point the KKT conditions

U(us - QS) —Ae = 0,

Zus = A,

from which follows that the values are uniformly
raised (by addition of A\./o) so that the area con-
straint is fulfilled. The same reasoning holds for the
upper bound. Hence Equation (14) follows. Since
the edge-terms do not decouple we need to compute
the joint prox operator

proxi g (u,v) =

. s — g _ .
argmin 3 cqlu—utl+ 5 3 (@ —u)*+ (@ —v)?,

whu (s,t) (s,t)

which decouples for every edge pairing!. Therefore,
for every edge pairing

proxis, (u,v) =

: o
argmin cg|as — at| + 5 (@ —u)® + (@t —v)?).

77s a7t
U, Uy

Considering the three cases (1): s =ut, (2): ué <
uk, (3) ul > ul, we get in the first case

argmin F(u;) =
argmin g (@ —u)®+ (@ —v)*) = l ;— v

INote that this works, because the edges are chosen to
conform with right-sided differences if working on a grid (or
the equivalent for a general graph). Thus u$ denotes an
outgoing edge and u! an incoming edge.

In the second case,

. o _ g ,,_ o
argmtln cst(ui —us) + 5 ((uz — u)2 + (ui — v)2)
s

(s v )

g

and similarly in the third case

argmin cg; (7S — ) + % (@ —w)? + (@ —v)?)
s ul

= (- v+ ),

which yields the prox operator of Equation (15).
This leaves the prox operator for g. For a point

s¢SUT

. no
prox 1, (u) = argmin 2o 1] (us) + 7(% —u)?
no us

= min(1, max(0, u))
For points s in S or T the prox operator simply

returns 1 or 0 respectively and immediately yields
the prox operator of Equation (16).

S.4. ADMM dual energy

The z variables correspond to the normalized
dual variables (p = o0z). To compute the dual
energy requires the computations of the conjugate
functions for fs, fst, and f4. We obtain

fi(p) = sup (up—pu) =[p—pls.
u€l0,1]

For the area-based term

Fa(p) = sup{p"u — oAy < Agu, < Ay}
= sup (pTu)
w A <> Asus <A,

{Au maxg Z—i, if 3s: ps >0,

Apmax, &=

otherwise.
For the edge-term

fa(Ps,pr) = sup [psu+ piv — cor|lu —v|],

U,v

which is equal the maximum over all three cases
u<v,u=v,u>v Foru=wv

sup [psu +ptu] = Z{ps +pe = 0}'



Hence ps + p: = 0 for f}, < oco. Testing the other
two cases under this restriction yields

Sl;p [(ps - CSt)(u - U)] = Z{ps S Cst}v
sup [(ps +cst)(u—0)] = ofps > —ca}
u<v

Therefore

far(psipe) = z{ps +pe = 0N |ps| < est

The overall primal energy can be written abstractly
as

EU, Vi) = thvk +Zz{u Vi)

:th Vk —l—Z{AU:O},
k
st.Ue[0,1], Us =1forse S; U; =0fors e T,

where U = (U, ..., Vk,...)T and

The conjugate function for f. = +{AU = 0} is

fX(P) = sup - AU = O}}

c

u

0, forse T,

—{ P+ 2k @, for s € S,

sup [PU+ 3, Quld], otherwise,

Uuelo,1]

0, for s e T,
=q9P+2>2Q for se S,
[P+ >, Qkl+, otherwise,

where P = (P,...,Qk,...)T and the derivations
are based on the fact that the supremum is only
achieved (in all cases) if U = Vj. The results hold
pointwise. Note that we are free to choose a P.
Note that for s ¢ SUT

(30m) -

sup > (Qf Vi — (Vi) + PTU
Z/IE[O,l],Vk k

= > hi(Qu)+ sup PTU =D hi(Qu)+) [P
& Uuecio,1] & S

Overall, we obtain

<th%>> =Y R Q)Y Pt D [P+

s€S sETUS

The dual program to
inf {£(y) +9(y)}
is according to Fenchel duality
sup {—f"(2) —g"(=2)}-

Therefore the overall dual is

(EU, V)" = (Zh* Q;ﬁ%( Zk: )
* 3 (o ge))

For the ADMM this results in the dual energy
E*(2%,24,7°,7) =
{Zf )+ falz +Zfst
+Z(—z: — 227 —zt)

seS

+ > (e + -

2= 2= - —zzm}.
s¢TUS
S.5. Estimate of
the relaxed dual energy

A lower bound for the dual energy can be ob-
tained by adjusting the dual variables for the terms
which would otherwise lead to a —oo estimate be-
fore convergence. For the edge-based variables we
therefore need to find a dual variable pair (ps, Dt)
which is as close as possible to the current estimate
(ps, pt) while fulfilling the constraint on this edge
variable, i.e., we need to solve

argmin 1{u+v = 0, |u| < cst}—f— ((u—ps)*+ (v —pe)?),

u,v

which is equivalent for v = —u to

. 1
argmin o{|u|] < st} + 3 ((u —ps)2 + (—u —pt)Q) .



In the unconstrained case the solution is

_ Ps — Dt V= —u
2 ) b
therefore the projection is
(C7 70)7 for Ps —pt > 2cst7
H(ps,pt) = (_Cv C) for Ps — Pt < _QCsta

Psfpf Pt —Ps :
(Pe5Pt Bi5Pe) otherwise.

Since within the solution process the dual variable
z is nowhere computed, we are free to choose it
as desired. With the objective being a lower bound
which is as large as possible this amounts to finding
(at every point s) z such that

z = argmin [z]y + [~z +ply

where p € R is the negative sum of the dual vari-

ables (22, 24, 25, Z!). There will be an infinite

S s/*
number of solutions, but we get

min [z + [~z +ply = [pl4

The overall (finite-valued) dual energy which can
be used as the current lower bound also before full
convergence of the iterations is therefore

E*(ZS,ZA,ES,E )=

Zf( )+ AN D @) EDN

(s,t)

+y (2 =2t = (@) - )T

I
—N

sﬁTUS

where (%) and ()" denote the projected edge

S
variables.



